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PREFACE

The study of real analysis is indispensible for a prospective graduate student of pure or
applied mathematics. It also has great value for any undergraduate student who wishes
to go beyond the routine manipulations of formulas to solve standard problems, because
it develops the ability to think deductively, analyze mathematical situations, and extend
ideas to a new context. In recent years, mathematics has become valuable in many areas,
including economics and management science as well as the physical sciences, engineering,
and computer science. Our goal is to provide an accessible, reasonably paced textbook in
the fundamental concepts and techniques of real analysis for students in these areas. This
book is designed for students who have studied calculus as it is traditionally presented in
the United States. While students find this book challenging, our experience is that serious
students at this level are fully capable of mastering the material presented here.

The first two editions of this book were very well received, and we have taken pains
to maintain the same spirit and user-friendly approach. In preparing this edition, we have
examined every section and set of exercises, streamlined some arguments, provided a few
new examples, moved certain topics to new locations, and made revisions. Except for the
new Chapter 10, which deals with the generalized Riemann integral, we have not added
much new material. While there is more material than can be covered in one semester,
instructors may wish to use certain topics as honors projects or extra credit assignments.

It is desirable that the student have had some exposure to proofs, but we do not assume
that to be the case. To provide some help for students in analyzing proofs of theorems,
we include an appendix on “Logic and Proofs” that discusses topics such as implications,
quantifiers, negations, contrapositives, and different types of proofs. We have kept the
discussion informal to avoid becoming mired in the technical details of formal logic. We
feel that it is a more useful experience to learn how to construct proofs by first watching
and then doing than by reading about techniques of proof.

We have adopted a medium level of generality consistently throughout the book: we
present results that are general enough to cover cases that actually arise, but we do not strive
for maximum generality. In the main, we proceed from the particular to the general. Thus
we consider continuous functions on open and closed intervals in detail, but we are careful
to present proofs that can readily be adapted to a more general situation. (In Chapter 11
we take particular advantage of the approach.) We believe that it is important to provide
students with many examples to aid them in their understanding, and we have compiled
rather extensive lists of exercises to challenge them. While we do leave routine proofs as
exercises, we do not try to attain brevity by relegating difficult proofs to the exercises.
However, in some of the later sections, we do break down a moderately difficult exercise
into a sequence of steps.

In Chapter 1 we present a brief summary of the notions and notations for sets and
functions that we use. A discussion of Mathematical Induction is also given, since inductive
proofs arise frequently. We also include a short section on finite, countable and infinite sets.
We recommend that this chapter be covered quickly, or used as background material,
returning later as necessary.
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Chapter 2 presents the properties of the real number system R. The first two sections
deal with the Algebraic and Order Properties and provide some practice in writing proofs
of elementary results. The crucial Completeness Property is given in Section 2.3 as the
Supremum Property, and its ramifications are discussed throughout the remainder of this
chapter.

In Chapter 3 we give a thorough treatment of sequences in R and the associated limit
concepts. The material is of the greatest importance; fortunately, students find it rather
natural although it takes some time for them to become fully accustomed to the use of ¢.
In the new Section 3.7, we give a brief introduction to infinite series, so that this important
topic will not be omitted due to a shortage of time.

Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute
the heart of the book. Our discussion of limits and continuity relies heavily on the use of
sequences, and the closely parallel approach of these chapters reinforces the understanding
of these essential topics. The fundamental properties of continuous functions (on intervals)
are discussed in Section 5.3 and 5.4. The notion of a “gauge” is introduced in Section 5.5
and used to give alternative proofs of these properties. Monotone functions are discussed
in Section 5.6.

The basic theory of the derivative is given in the first part of Chapter 6. This important
material is standard, except that we have used a result of Carathéodory to give simpler
proofs of the Chain Rule and the Inversion Theorem. The remainder of this chapter consists
of applications of the Mean Value Theorem and may be explored as time permits.

Chapter 7, dealing with the Riemann integral, has been completely revised in this
edition. Rather than introducing upper and lower integrals (as we did in the previous
editions), we here define the integral as a limit of Riemann sums. This has the advantage that
itis consistent with the students’ first exposure to the integral in calculus and in applications;
since itis not dependent on order properties, it permits immediate generalization to complex-
and vector-valued functions that students may encounter in later courses. Contrary to
popular opinion, this limit approach is no more difficult than the order approach. It also is
consistent with the generalized Riemann integral that is discussed in detail in Chapter 10.
Section 7.4 gives a brief discussion of the familiar numerical methods of calculating the
integral of continuous functions.

Sequences of functions and uniform convergence are discussed in the first two sec-
tions of Chapter 8, and the basic transcendental functions are put on a firm foundation in
Section 8.3 and 8.4 by using uniform convergence. Chapter 9 completes our discussion of
infinite series. Chapters 8 and 9 are intrinsically important, and they also show how the
material in the earlier chapters can be applied.

Chapter 10 is completely new; it is a presentation of the generalized Riemann integral
(sometimes called the “Henstock-Kurzweil” or the “gauge” integral). It will be new to many
readers, and we think they will be amazed that such an apparently minor modification of
the definition of the Riemann integral can lead to an integral that is more general than the
Lebesgue integral. We believe that this relatively new approach to integration theory is both
accessible and exciting to anyone who has studied the basic Riemann integral.

The final Chapter 11 deals with topological concepts. Earlier proofs given for intervals
are extended to a more abstract setting. For example, the concept of compactness is given
proper emphasis and metric spaces are introduced. This chapter will be very useful for
students continuing to graduate courses in mathematics.

Throughout the book we have paid more attention to topics from numerical analysis
and approximation theory than is usual. We have done so because of the importance of
these areas, and to show that real analysis is not merely an exercise in abstract thought.
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We have provided rather lengthy lists of exercises, some easy and some challenging.
We have provided “hints” for many of these exercises, to help students get started toward a
solution or to check their “answer”. More complete solutions of almost every exercise are
given in a separate Instructor’s Manual, which is available to teachers upon request to the
publisher.

It is a satisfying experience to see how the mathematical maturity of the students
increases and how the students gradually learn to work comfortably with concepts that
initially seemed so mysterious. But there is no doubt that a lot of hard work is required on
the part of both the students and the teachers.

In order to enrich the historical perspective of the book, we include brief biographical
sketches of some famous mathematicians who contributed to this area. We are particularly
indebted to Dr. Patrick Muldowney for providing us with his photograph of Professors
Henstock and Kurzweil. We also thank John Wiley & Sons for obtaining photographs of
the other mathematicians.

We have received many helpful comments from colleagues at a wide variety of in-
stitutions who have taught from earlier editions and liked the book enough to express
their opinions about how to improve it. We appreciate their remarks and suggestions, even
though we did not always follow their advice. We thank them for communicating with us
and wish them well in their endeavors to impart the challenge and excitement of learning
real analysis and “real” mathematics. It is our hope that they will find this new edition even
more helpful than the earlier ones.

February 24, 1999 Robert G. Bartle
Ypsilanti and Urbana Donald R. Sherbert
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CHAPTER 1

PRELIMINARIES

In this initial chapter we will present the background needed for the study of real analysis.
Section 1.1 consists of a brief survey of set operations and functions, two vital tools for all
of mathematics. In it we establish the notation and state the basic definitions and properties
that will be used throughout the book. We will regard the word “set” as synonymous with
the words “class”, “collection”, and “family”, and we will not define these terms or give a
list of axioms for set theory. This approach, often referred to as “naive” set theory, is quite
adequate for working with sets in the context of real analysis.

Section 1.2 is concerned with a special method of proof called Mathematical Induction.
It is related to the fundamental properties of the natural number system and, though it is
restricted to proving particular types of statements, it is important and used frequently. An
informal discussion of the different types of proofs that are used in mathematics, such as
contrapositives and proofs by contradiction, can be found in Appendix A.

In Section 1.3 we apply some of the tools presented in the first two sections of this
chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions
are given and some basic consequences of these definitions are derived. The important
result that the set of rational numbers is countably infinite is established.

In addition to introducing basic concepts and establishing terminology and notation,
this chapter also provides the reader with some initial experience in working with precise
definitions and writing proofs. The careful study of real analysis unavoidably entails the
reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is
a starting point.

Section 1.1 Sets and Functions

To the reader: In this section we give a brief review of the terminology and notation that
will be used in this text. We suggest that you look through quickly and come back later
when you need to recall the meaning of a term or a symbol.

If an element x is in a set A, we write

xX€EA
and say that x is a member of A, or that x belongs to A. If x is not in A, we write
x ¢ A.
If every element of a set A also belongs to a set B, we say that A is a subset of B and write
ACB or Bo A

We say thata set A is a proper subset of a set B if A C B, butthere is at least one element
of B thatis not in A. In this case we sometimes write

A CB.
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1.1.1 Definition Two sets A and B are said to be equal, and we write A = B, if they
contain the same elements.

Thus, to prove that the sets A and B are equal, we must show that
ACB and B C A.

A set is normally defined by either listing its elements explicitly, or by specifying a
property that determines the elements of the set. If P denotes a property that is meaningful
and unambiguous for elements of a set S, then we write

{x € S: Px))

for the set of all elements x in S for which the property P is true. If the set S is understood
from the context, then it is often omitted in this notation.

Several special sets are used throughout this book, and they are denoted by standard
symbols. (We will use the symbol := to mean that the symbol on the left is being defined
by the symbol on the right.)

« The set of natural numbers N := {1, 2, 3, -- -},

+ The set of integers Z := {0, 1, —1,2, -2, -- -},

« The set of rational numbers Q := {m/n : m,n € Z and n # 0},
¢+ Theset of real numbers R.

The set R of real numbers is of fundamental importance for us and will be discussed
atlength in Chapter 2.

1.1.2 Examples (a) The set

{xeN:x2-3x+2=0}

consists of those natural numbers satisfying the stated equation. Since the only solutions of
this quadratic equation are x = 1 and x = 2, we can denote this set more simply by {1, 2}.

(b) A natural number » is even if it has the form n = 2k for some k € N. The set of even
natural numbers can be written

{2k : k € N},

which is less cumbersome than {n € N : n = 2k, k € N}. Similarly, the set of odd natural
numbers can be written

{2k —1:k e N} a

Set Operations

We now define the methods of obtaining new sets from given ones. Note that these set
operations are based on the meaning of the words “or”, “and”, and “not”. For the union,
it is important to be aware of the fact that the word “or” is used in the inclusive sense,
allowing the possibility that x may belong to both sets. In legal terminology, this inclusive
sense is sometimes indicated by “and/or”.

1.1.3 Definition (a) The union of sets A and B is the set

AUB:={x:x€ Aorx € B}.
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(b) The intersection of the sets A and B is the set
ANB ={x:xe€ Aandx € B}.
(c) The complement of B relative to A is the set

A\B={x:xe€e Aandx ¢ B}.

B

AU B [ ANB A A\B B

Figurel.l.1 (a)AUB (b)ANB (c) A\B

The set that has no elements is called the empty set and is denoted by the symbol @.
Two sets A and B are said to be disjoint if they have no elements in common; this can be
expressed by writing AN B = 0.

To illustrate the method of proving set equalities, we will next establish one of the
DeMorgan laws for three sets. The proof of the other one is left as an exercise.

1.1.4 Theorem If A, B, C are sets, then
(a) A\(BUOC) = (A\B)N (A\O),
(b) A\(BNC)=(A\B)U(A\C).

Proof. To prove (a), we will show that every element in A\ (B U C) is contained in both
(A\B) and (A\C), and conversely.

If x is in A\(BUC), then x is in A, but x is not in B U C. Hence x is in A, but x
is neither in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus,
x € A\B and x € A\C, which shows that x € (A\B) N (A\C).

Conversely, if x € (A\B) N (A\C), then x € (A\B) and x € (A\C). Hence x € A
andboth x ¢ B and x ¢ C. Therefore,x € Aandx ¢ (B U C), sothat x € A\(B U C).

Since the sets (A\B) N (A\C) and A\ (B U C) contain the same elements, they are
equal by Definition 1.1.1. QED.

There are times when it is desirable to form unions and intersections of more than two
sets. For a finite collection of sets {A,, A,,---, A, }, their union is the set A consisting of
all elements that belong to at least one of the sets A,, and their intersection consists of all
elements that belong to all of the sets A, .

This is extended to an infinite collection of sets {A 1 Agy o, A, -} as follows. Their
union is the set of elements that belong to ar least one of the sets A,. In this case we
write

00
U A, ={x:x €A, forsomen e N}.

n=

—_
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Similarly, their intersection is the set of elements that belong to all of these sets A, . In this
case we write

DL

A, ={x:xe€A,forallneN}.

3
1
—_

Cartesian Products

In order to discuss functions, we define the Cartesian product of two sets.

1.1.5 Definition If A and B are nonempty sets, then the Cartesian product A x B of A
and B is the set of all ordered pairs (a, b) witha € A and b € B. Thatis,

AxB:={(a,b):acA,beB}.

Thusif A = {1, 2, 3} and B = {1, 5}, then the set A x B is the set whose elements are
the ordered pairs

1D, @5, @D, &5, G, G5).

We may visualize the set A x B as the set of six points in the plane with the coordinates
that we have just listed.

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of
two sets A and B. However, it should be realized that this diagram may be a simplification.
For example, if A = {x e R:1<x<2}land B:={yeR:0<y<lor2<y<3},
then instead of a rectangle, we should have a drawing such as Figure 1.1.3.

We will now discuss the fundamental notion of a function or a mapping.

To the mathematician of the early nineteenth century, the word “function” meant a
definite formula, such as f(x) := x% 4 3x — 5, which associates to each real number x
another number f(x). (Here, f(0) = -5, f(1) = —1, f(5) = 35.) This understanding
excluded the case of different formulas on different intervals, so that functions could not
be defined “in pieces”.

AXB

B AXB

&

A 1 2

>
i
i
i
i
I
I
-
=~
8
S
s

Figure 1.1.2 Figure1.1.3
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As mathematics developed, it became clear that a more general definition of “function”
would be useful. It also became evident that it is important to make a clear distinction
between the function itself and the values of the function. A revised definition might be:

A function f from a set A into a set B is a rule of correspondence that assigns to
each element x in A a uniquely determined element f(x) in B.

But however suggestive this revised definition might be, there is the difficulty o finterpreting
the phrase “rule of correspondence”. In order to clarify this, we will express the definition
entirely in terms of sets; in effect, we will define a function to be its graph. While this has
the disadvantage of being somewhat artificial, it has the advantage of being unambiguous
and clearer.

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered
pairs in A x B such that for each a € A there exists a unique b € B with (a, b) € f. (In
other words, if (a, b) € f and (a, b') € f,thenb =b'.)

The set A of first elements of a function f is called the domain of f and is often
denoted by D(f). The set of all second elements in f is called the range of f and is
often denoted by R(f). Note that, although D(f) = A, we only have R(f) C B. (See
Figure 1.1.4.)

The essential condition that:

(@ b)ef and (ab)ef implies that b=V

is sometimes called the vertical line test. In geometrical terms it says every vertical line
x = a with a € A intersects the graph of f exactly once.
The notation

f:A—> B

is often used to indicate that f is a function from A into B. We will also say that f is a
mapping of A into B, or that f maps A into B. If (a, b) is an element in f, it is customary
to write

b= f(a) or sometimes am— b.

fe———————A = D(f)

Figure 1.1.4 A function as a graph
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If b = f(a), we often refer to b as the value of f at a, or as the image of a under f.

Transformations and Machines

Aside from using graphs, we can visualize a function as a transformation of the set D(f) =
A into the set R(f) C B. In this phraseology, when (a, b) € f, we think of f as taking
the element a from A and “wansforming” or “mapping” it into an element b = f(a) in
R(f) € B. We often draw a diagram, such as Figure 1.1.5, even when the sets A and B are
not subsets of the plane.

b =f(a)

R{f)

Figure 1.1.5 A function as a transformation

There is another way of visualizing a function: namely, as a machine that accepts
elements of D(f) = A as inputs and produces corresponding elements of R(f) € B as
outputs. If we take an element x € D (f) and put it into f, then out comes the corresponding
value f(x).If we put adifferentelement y € D(f) into f, then out comes f(y) which may
or may not differ from f(x). If we &y to insert something that does not belong to D(f)
into f, we find that it is not accepted, for f can operate only on elements from D(f). (See
Figure 1.1.6.)

This last visualization makes clear the distinction between f and f(x): the first is the
machine itself, and the second is the output of the machine f when x is the input. Whereas
no one is likely to confuse a meat grinder with ground meat, enough people have confused
functions with their values that it is worth distinguishing between them notationally.

i
ST

2l
’

fx)

Figure 1.1.6 A function as a machine
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Direct and Inverse Images

Let f : A — B be a function with domain D(f) = A and range R(f) < B.

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset
f(E) of B given by

f(E) ={f(x):x € E}.

If H is a subset of B, then the inverse image of H under f is the subset f 1 (H) of A
given by

fTYH) ={x€eA: f(x) € H}.

Remark The notation f ~1(H) used in this connection has its disadvantages. However,
we will use it since it is the standard notation.

Thus, if we are given a set E C A, then a point y, € B is in the direct image f(E)
if and only if there exists at least one point x, € E such that y, = f(x,). Similarly, given
aset H C B, then a point x, is in the inverse image f ~!(H) if and only if Y, = f(xy)
belongs to H. (See Figure 1.1.7.)

1.1.8 Examples (a) Let f: R — R be defined by f(x) := x2. Then the direct image
oftheset E .= {x :0<x <2}istheset f(E) ={y:0<y <4}

If G :={y : 0 < y < 4}, then the inverse image of G is the set f‘l(G) ={x:-2<
x < 2}. Thus, in this case, we see that f'l (f(E)) # E.

On the other hand, we have f (f'l(G)) =G.Butif H :={y: -1 <y <1}, then
wehave f (f'(H)) ={y:0<y <1} #H.

A sketch of the graph of f may help to visualize these sets.
(b) Let f: A— B, andlet G, H be subsets of B. We will show that

FFIGNnH C UGN FUH).

For, if x € f~/(G N H), then f(x) € GN H, so that f(x) € G and f(x) € H. But this
impliesthatx € f_l(G) andx € f~(H), whencex € f‘l(G) N f~'(H). Thus the stated
implication is proved. [The opposite inclusion is also true, so that we actually have set
equality between these sets; see Exercise 13.] a

Further facts about direct and inverse images are given in the exercises.

Figure 1.1.7 Direct and inverse images
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Special Types of Functions

The following definitions identify some very important types of functions.

1.1.9 Definition Let f : A — B be a function from A to B.

(a) The function f is said to be injective (or to be one-one) if whenever x, # x,, then
f(x)) # f(xy).If £ is an injective function, we also say that f is an injection.

(b) The function f is said to be surjective (or to map A onto B) if f(A) = B; that is, if
the range R(f) = B. If f is a surjective function, we also say that f is a surjection.

(c) If f is both injective and surjective, then f is said to be bijective. If f is bijective, we
also say that f is a bijection.

+ Inorder to prove that a function f is injective, we must establish that:
forall x,, x, in A, if f(x,) = f(x,), then x; =x,.

To do this we assume that f(x;) = f(x,) and show that x, = x,.
[In other words, the graph of f satisfies the first horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at most one point.]

« Toprove that a function f is surjective, we must show that for any b € B there exists at
least one x € A such that f(x) = b.
[In other words, the graph of f satisfies the second horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at least one point.]

1.1.10 Example LetA :={x € R:x # 1}anddefine f(x) := 2x/(x — 1) forallx € A.
To show that f is injective, we take x,; and x, in A and assume that f (x,) = f(x,). Thus
we have

2x, _ 2x,

x—1 —xz—l’

which implies that x, (x, — 1) = x,(x; — 1), and hence x;, = x,. Therefore f is injective.
To determine the range of f, we solve the equation y = 2x/(x — 1) for x in terms of

y. We obtain x = y/(y — 2), which is meaningful for y # 2. Thus the range of f is the set

B :={y € R: y # 2}. Thus, f is a bijection of A onto B. d

Inverse Functions

If f is a function from A into B, then f is a special subset of A x B (namely, one passing
the vertical line test.) The set of ordered pairs in B x A obtained by interchanging the
members of ordered pairs in f is not generally a function. (That is, the set f may not pass
both of the horizontal line tests.) However, if f is a bijection, then this interchange does
lead to a function, called the “inverse function” of f.

1.1.11 Definition If f : A — B is a bijection of A onto B, then
g:={(b,a) e BxA:(ab) e f}

is a function on B into A. This function is called the inverse function of f, and is denoted
by f~!. The function f~! is also called the inverse of f.
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We can also express the connection between f and its inverse f~! by noting that
D(f) = R(f~") and R(f) = D(f~") and that

b= f(a) if and only if a=f').
For example, we saw in Example 1.1.10 that the function

2x
x—1

fx) =

is a bijection of A := {x € R: x # 1} onto the set B := {y € R : y # 2}. The function
inverse to f is given by

f7'o) = y—i_i for y e B.

Remark We introduced the notation f ~1(H) in Definition 1.1.7. It makes sense even if
f does not have an inverse function. However, if the inverse function f ~1 does exist, then
f~1(H) is the direct image of the set H C B under f‘l.

Composition of Functions

It often happens that we want to “compose” two functions f, g by first finding f (x) and
then applying g to get g(f(x)); however, this is possible only when f (x) belongs to the
domain of g. In order to be able to do this for all f(x), we must assume that the range of
f is contained in the domain of g. (See Figure 1.1.8.)

1.1.12 Definition If f: A — B and g : B — C, and if R(f) C D(g) = B, then the
composite function g o f (note the order!) is the function from A into C defined by

(go flx) =g(f(x)) forall x € A.
1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f
and g be the functions whose values at x € R are given by

fx)=2x and g(x):=3x%-1.

Since D(g) = Rand R(f) € R = D(g), then the domain D(g o f) is also equal to R, and
the composite function g o f is given by

o fHx) =32x)* = 1= 122 — 1.

B
A c
f g
— ——n
gef

Figure 1.1.8 The composition of f and g
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On the other hand, the domain of the composite function f o g is also R, but
(fog)(x) =2(3x2 = 1) = 6x% — 2.

Thus, in this case, we have g o f # f o g.

(b) In considering g o f, some care must be exercised to be sure that the range of 7f is
contained in the domain of g. For example, if

f(x):=1-x? and  g(x) := /x,
then, since D(g) = {x : x > 0}, the composite function g o f is given by the formula
(go fHx) =vV1-x?

only forx € D(f) thatsatisfy f(x) > 0; that is, for x satisfying —1 < x < 1.
We note that if we reverse the order, then the composition f o g is given by the formula

(fog)x)=1-nx,

but only for those x in the domain D(g) = {x : x > 0}. a

We now give the relationship between composite functions and inverse images. The
proof is left as an instructive exercise.

1.1.14 Theorem Let f:A — B and g: B — C be functions and let H be a subset of
C. Then we have

(go /) '(H) = f (g (H)).
Note the reversal in the order of the functions.

Restrictions of Functions

If f: A— Bisafunctionandif A; C A, we can define a function f; : A, - Bby
fix) = fx) for xeA,.

The function f, is called the restriction of f to A . Sometimesit is denoted by f, = f|A,.

It may seem strange to the reader that one would ever choose to throw away a part of a
function, but there are some good reasons for doing so. For example, if f : R — R is the
squaring function:

fx) = x? for x e R,

then f is not injective, so it cannot have an inverse function. However, if we restrict f to
the set A; := {x : x > 0}, then the restriction f IAl is a bijection of A, onto A, Therefore,
this restriction has an inverse function, which is the positive square root function. (Sketch
a graph.)

Similarly, the trigonomesric functions S(x) := sinx and C(x) := cos x are not injective
on all of R. However, by making suitable restrictions of these functions, one can obtain
the inverse sine and the inverse cosine functions that the reader has undoubtedly already
encountered.
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Exercises for Section 1.1

10.

11.

12.

13.

14.

15.

16.
17.

18.

If A and B are sets, show that A € B ifandonlyif AN B = A.
Prove the second De Morgan Law [Theorem 1.1.4(b)].

Prove the Distributive Laws:
(@ ANBUC)=(ANB)U(ANC),
b)) AUMBNC)=(AUB)N(AUC).

The symmetric difference of two sets A and B is the set D of all elements that belong to either
A or B but not both. Represent D with a diagram.

(a) Showthat D = (A\B) U (B\A).

(b) Show that D is also given by D = (AU B)\(A N B).

Foreachn e N,let A, = {(n+ 1)k : k € N}.
(@) WhatisA NA,?
(b) Determine the sets ( J{A, : n € N}and ({A_ :n € N}.

Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B.

@ A={xeR:1<x<2o0r3<x<4}, B={xeR:x=1orx=2}.

b) A=({1,2,3}, B={xeR:1=<x <3}

Let A:= B:={x € R: —1 < x < 1} and consider the subset C := {(x, y) : x> +y? =1} of
A x B.Is this set a function? Explain.

Let f(x):=1/x% x#0,x € R.
(a) Determine the directimage f(E) where E :={x e R:1 <x <2}.
(b) Determine the inverse image f 1(G)whereG:={xeR:1<x< 4}.

Let g(x) := x?and f(x) := x + 2 for x € R, and let h be the composite function h := g o f.
(a) Find the direct image R(E) of E :={x e R: 0 <x < 1}.

(b) Find the inverse image A (G)ofGi={xeR:0<x <4).

Let f(x):=x*forx e R,andletE:={xeR:-1<x<0}and F:={xeR:0<x <1}.
Show that EN F ={0} and f(EN F) = {0}, while f(E)=f(F)={yeR:0<y<1}.

Hence f(E N F) is a proper subset of f(E) N f(F). What happens if O is deleted from the sets
E and F?

Let f and E, F be as in Exercise 10. Find the sets E\F and f(E)\ f(F) and show that it is not
true that f(E\F) € f(E)\f(F).

Show that if f: A — B and E, F are subsets of A, then f(EU F) = f(E)U f(F) and
F(ENF)C f(E)N f(F).

Show thatif f : A — B and G, H are subsets of B, then f "' (GU H) = f~{(G) U f~}(H)
and f"{(GNH) = f1(G)N f~(H).

Show that the function f defined by f(x) :=x/+/x*+ 1,x € R, is a bijection of R onto
{y:-1<y<l1}

Fora, b € R witha < b, find an explicit bijectionof A :== {x :a < x <b}ontoB:={y:0 <
y <1}

Give an example of two functions f, g on R to R such that f # g, butsuchthat f o g=go f.

(a) Show thatif f: A — B is injective and E C A, then fNf(E)) = E. Give an example
to show that equality need not hold if f is not injective.

(b) Show thatif f : A — B issurjectiveand H C B, then f(f‘l(H)) = H.Give an example
to show that equality need not hold if f is not surjective.

(@) Suppose that f is an injection. Show that f~'o f(x) = x for all x € D(f) and that
fof'(y)=yforally € R(f).
(b) If £ is a bijection of A onto B, show that f~! is a bijection of B onto A.
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19. Prove thatif f : A — B is bijective and g : B — C is bijective, then the composite g o f is a
bijective map of A onto C.

20. Letf: A — Bandg: B — C be functions.
(a) Show thatif g o f is injective, then f is injective.
(b) Show that if g o f is surjective, then g is surjective.

21. Prove Theorem 1.1.14.

22. Let f, g be functions such that (g o f)(x) = x for all x € D(f) and (f o g)(y) =y for all
y € D(g). Provethat g = f~1.

Section 1.2 Mathematical Induction

Mathematical Induction is a powerful method of proof that is frequently used to establish
the validity of statements that are given in terms of the natural numbers. Although its utility
is restricted to this rather special context, Mathematical Induction is an indispensable tool
in all branches of mathematics. Since many induction proofs follow the same formal lines
of argument, we will often state only that a result follows from Mathematical Induction
and leave it to the reader to provide the necessary details. In this section, we will state the
principle and give several examples to illustrate how inductive proofs proceed.
We shall assume familiarity with the set of natural numbers:

N:= {192’ 31"'}5

with the usual arithmetic operations of addition and multiplication, and with the meaning
of a natural number being less than another one. We will also assume the following
fundamental property of N.

1.2.1 Well-Ordering Property of N Every nonempty subset of N has a least element.

A more detailed statement of this property is as follows: If S is a subset of N and if
S # (3, then there exists m € S such thatm < k forallk € §S.

On the basis of the Well-Ordering Property, we shall derive a version of the Principle
of Mathematical Induction that is expressed in terms of subsets of N.

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the
two properties:

(1) The number1 € S.
(2) Foreveryk € N,ifk € S,thenk + 1 € S.

Then we have S = N.

Proof. Suppose to the contrary that S # N. Then the set N\S is not empty, so by the
Well-Ordering Principle it has a least element m. Since 1 € S by hypothesis (1), we know
that m > 1. But this implies that m — 1 is also a natural number. Since m — 1 < m and
since m is the least element in N such that m ¢ S, we conclude thatm — 1 € S.

We now apply hypothesis (2) to the element k :=m — 1 in S, to infer that k + 1 =
(m — 1) + 1 = m belongs to S. But this statement contradicts the fact thatm ¢ S. Since m
was obtained from the assumption that N\ S is not empty, we have obtained a contradiction.
Therefore we must have S = N. QED.
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The Principle of Mathematical Induction is often set forth in the framework of proper-
ties or statements about natural numbers. If P(n) is a meaningful statement about n € N,
then P(n) may be true for some values of » and false for others. For example, if P1 (n) is
the statement: “n* = n”, then P, (1) is true while P, (n) is false foralln > 1,n € N. On
the other hand, if P,(n) is the statement: “n° > 17, then P,(1) is false, while P,(n) is true
foralln > 1,n € N.

In this context, the Principle of Mathematical Induction can be formulated as follows.

For eachn € N, Ilet P(n) be a statement about n. Suppose that:

1) PQ) is axue.
(2") Foreveryk € N, if P (k) is #rue, then P (k + 1) is true.

Then P (n) is &ue foralln € N.

The connection with the preceding version of Mathematical Induction, given in 1.2.2,
is made by letting S := {n € N : P(n) is true}. Then the conditions (1) and (2) of 1.2.2
correspond exactly to the conditions (1") and (2'), respectively. The conclusion that § = N
in 1.2.2 corresponds to the conclusion that P (n) is true for alln € N.

In (2') the assumption “if P (k) is true” is called the induction hypothesis. In estab-
lishing (2"), we are not concerned with the actual truth or falsity of P(k), but only with
the validity of the implication “if P(k), then P(k + 1)”. For example, if we consider the
statements P(n): “n = n + 57, then (2') is logically correct, for we can simply add 1 to
both sides of P (k) to obtain P (k + 1). However, since the statement P (1): “1 = 6” is false,
we cannot use Mathematical Induction to conclude that n = n 4 5 for alln € N.

It may happen that statements P (n) are false for certain natural numbers but then are
true for all n > n, for some particular n,. The Principle of Mathematical Induction can be
modified to deal with this situation. We will formulate the modified principle, but leave its
verification as an exercise. (See Exercise 12.)

1.2.3 Principle of Mathematical Induction (second version) Letn, € N and let P(n)
be a statement for each natural number n > n . Suppose that:

(1) The statement P (n) is true.
(2) Forallk > n, the sruth of P (k) implies the sruth of P (k + 1).

Then P(n) is true for alln > n,,.

Sometimes the number n in (1) is called the base, since it serves as the starting point,
and the implication in (2), which can be written P (k) = P(k + 1), is called the bridge,
since it connects the case k to the case k + 1.

The following examples illustrate how Mathematical Induction is used to prove asser-
tions about natural numbers.

1.2.4 Examples (a) Foreachn € N, the sum of the first n natural numbers is given by

l+2+---+n=%n(n+l).

To prove this formuld, we let S be the set of all n € N for which the formula is true.
We must verify that conditions (1) and (2) of 1.2.2 are satisfied. If n = 1, then we have
1= % -1.-(1+1)sothatl € S, and (1) is satisfied. Next, we assume that k € S and wish
to infer from this assumption that k + 1 € S. Indeed, if k € S, then

1424 +k=k(k+1).
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If we add k + 1 to both sides of the assumed equality, we obtain

1424 +k+Gk+1D)=2kk+1)+G*k+1)
=31(k+ Dk +2).
Since this is the stated formula for n = k + 1, we conclude that k + 1 € S. Therefore,

condition (2) of 1.2.2 is satisfied. Consequently, by the Principle of Mathematical Induction,
we infer that S = N, so the formula holds for all n € N.

(b) Foreachn € N, the sum of the squares of the first n natural numbers is given by
124224 +n*= ¢n(n + D2n + 1).

To establish this formula, we note that it is true for n = 1, since 12 = % .1.2.3.If
we assume it is true for k, then adding (k 4 1)? to both sides of the assumed formula gives

P+22 4+ B+ (k+ 1% = th(k+ 1)@k + 1) + (k+ 1)
= §(k + DK +k + 6k +6)
= ¢(k + 1)(k +2)(2k + 3).

Consequently, the formula is valid for all n € N.
(¢) Given two real numbers a and b, we will prove that a — b is a factor of a" — b" for
alln e N.

First we see that the statement is clearly true for n = 1. If we now assume thata — b
is a factor of @* — b, then

aktl — pRtl — gkl gpk 4 bk — pht
= a(a* — b*) + b*(a - b).

By the induction hypothesis, a — b is a factor of a(a* — b*) and it is plainly a factor of
b*(a — b). Therefore, a — b is a factor of a¥*! — b¥*!, and it follows from Mathematical
Induction that a — b is a factor of a” — b" foralln € N.

A variety of divisibility results can be derived from this fact. For example, since
11 — 7 = 4, we see that 11" — 7" is divisible by4 forall n € N.
(d) The inequality 2" > 2n + 1 is false forn = 1, 2, but it is true for n = 3. If we assume
that 2* > 2k + 1, then multiplication by 2 gives, when 2k + 2 > 3, the inequality

P S 22k 4+ 1) =dk+2=2k+ 2k +2) > 2k+3=2(k+ 1) + 1.

Since 2k + 2 > 3 for all kK > 1, the bridge is valid for all k > 1 (even though the statement
is false for k = 1, 2). Hence, with the base n, = 3, we can apply Mathematical Induction
to conclude that the inequality holds for alln > 3.
(e) The inequality 2" < (n + 1)! can be established by Mathematical Induction.

We first observe that it is true for n = 1, since 2! =2 =1 + 1. If we assume that
2k < (k + 1), it follows from the fact that 2 < k + 2 that

M =2 2k <2k + ! < k+2)(k+ 1) = (k+2).

Thus, if the inequality holds for k, then it also holds for k + 1. Therefore, Mathematical
Induction implies that the inequality is true for all n € N.

) IfreR, r#1,andn € N, then

1= rn+1

l+r+ri+-+r=
1—r
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This is the formula for the sum of the terms in a “geometric progression”. It can
be established using Mathematical Induction as follows. First, if n =1, then 1 +r =
a- r2)/(1 — r). If we assume the truth of the formula for n = k and add the term r**! to
both sides, we get (after a little algebra)

1— rk+l
L7 4rkg ooqrktl = 4Pk =
1—-r 1—r
which is the formula for n = k + 1. Therefore, Mathematical Induction implies the validity
of the formula forall n € N.

[This result can also be proved without using Mathematical Induction. If we let

s, = 1+r+r? +---+7r" thenrs, = r+r24-- 4" sothat

1-— rk+2

’

— — n+1
(I=r)s,=s,—rs,=1—r""".

If we divide by 1 — r, we obtain the stated formula.]

(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd
conclusions. The reader is invited to find the error in the “proof” of the following assertion.

Claim: If n € N and if the maximum of the natural numbers p and g is n, then p = q.

“Proof.” Let S be the subset of N for which the claim is true. Evidently, 1 € § since if
D, 9 € Nandtheirmaximumis 1, then both equal 1 and so p = g. Now assume thatk € S
and that the maximum of p and g is k 4 1. Thenthe maximumof p — 1 and g — 1is k. But
since k € S, then p — 1 = g — 1 and therefore p = q. Thus, k + 1 € §, and we conclude
that the assertion is true forall n € N.

(h) There are statements that are true for many natural numbers but that are not true for
all of them.

For example, the formula p (n) := n® — n + 41 givesaprime numberforn =1, 2, - - -,
40. However, p(41) is obviously divisible by 41, so it is not a prime number. g

2

Another version of the Principle of Mathematical Induction is sometimes quite useful.
It is called the “ Principle of Strong Induction”, even though it is in fact equivalent to 1.2.2.

1.2.5 Principle of Strong Induction Let S be a subset of N such that

a”y 1es.
2") ForeverykeN, if{1,2,---,k} S, thenk+1¢€ S.
Then S = N.

We will leave it to the reader to establish the equivalence of 1.2.2 and 1.2.5.

Exercises for Section 1.2

1. Provethat1/1-2+1/2-3+---+1/n(n+ 1) =n/(n+1) foralln e N.
Provethat P +2° + .-+’ = [In(n + 1)]2 foralln € N.

Provethat 3+ 11+ ---+ (81 — 5) = 4n®* — nforalln € N.

Prove that 12 + 3% 4 ... 4+ (2n — 1)2 = (4n® — n)/3 foralln € N.

Prove that 12 — 22 + 32 + ... + (= 1)"*'n% = (=1)"*'n(n + 1)/2 foralln € N.

AT I o
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Prove that n® + Sn is divisible by 6 for all n € N.

Prove that 52" — 1 is divisible by 8 forall n € N.

Prove that 5" — 4n — 11is divisible by 16 for alln € N.

Prove that n® 4+ (n + 1)3 + (n + 2) is divisible by 9 for all n € N.

10. Conjecture a formula forthesum 1/1-3 +1/3-5+---+1/(2n — 1)(2n + 1), and prove your
conjecture by using Mathematical Induction.

© o N o

11. Conjecture a formula for the sum of the first n odd natural numbers 1 +3 +--- + (2n — 1),
and prove your formula by using Mathematical Induction.

12. Prove the Principle of Mathematical Induction 1.2.3 (second version).
13. Provethatn < 2" foralln € N.

14. Provethat2" < n!foralln >4,n € N.

15. Provethat2n —3 <2"2foralln > 5,n € N.

16. Findall natural numbers n such that n> < 2". Prove your assertion.

17. Find the largest natural number m such that n* — n is divisible by m for all # € N. Prove your
assertion.

18. Provethat 1/ﬁ+ 1/v2+---+1/y/n > /nforalln € N.

19. Let S be a subset of N such that (a) 2% € § for all k € N, and (b) if k € S and k > 2, then
k —1 € S. Prove that S = N.

20. Let the numbers x, be defined as follows: x, := 1, X, = 2,and X0 = %(xnﬂ +x,) for all
n € N. Use the Principle of Strong Induction (1.2.5) to show that 1 < x, <2 foralln € N.

Section 1.3 Finite and Infinite Sets

When we count the elements in a set, we say “one, two, three,- - -”, stopping when we
have exhausted the set. From a mathematical perspective, what we are doing is defining a
bijective mapping between the set and a portion of the set of natural numbers. If the set is
such that the counting does not terminate, such as the set of natural numbers itself, then we
describe the set as being infinite.

The notions of “finite” and “infinite” are extremely primitive, and it is very likely
that the reader has never examined these notions very carefully. In this section we will
define these terms precisely and establish a few basic results and state some other important
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in
Appendix B and can be read later.

1.3.1 Definition (a) The empty set @ is said to have O elements.

(b) If n e N, aset S is said to have n elements if there exists a bijection from the set
N, :={1,2,---,n} onto S.

(c) A set Sis saidto be finite if it is either empty or it has n elements for some n € N.

(d) A set S is said to be infinite if it is not finite.

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n
elements if and only if there is a bijection from S onto the set {1, 2, - - -, n}. Also, since the
composition of two bijections is a bijection, we see that a set S, has n elements if and only
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if there is a bijection from S, onto another set S, that has n elements. Further, a set T, is
finite if and only if there is a bijection from T, onto another set 7, that is finite.

It is now necessary to establish some basic properties of finite sets to be sure that the
definitions do not lead to conclusions that conflict with our experience of counting. From
the definitions, it is not entirely clear that a finite set might not have n elements for more
than one value of n. Also it is conceivably possible that the set N := (1, 2, 3, - - -} might be
a finite set according to this definition. The reader will be relieved that these possibilities
do not occur, as the next two theorems state. The proofs of these assertions, which use the
fundamental properties of N described in Section 1.2, are given in Appendix B.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a
unique number in N.

1.3.3 Theorem The set N of natural numbers is an infinite set.
The next result gives some elementary properties of finite and infinite sets.

1.3.4 Theorem (a) If A is a set with m elements and B is a set withn elements and if
ANB =@, then AU B has m + n elements.

(b) IfAisasetwithm € N elements and C € A is a set with 1 element, then A\C is a
set withm — 1 elements.

(¢) IfC is an infinite set and B is a finite set, then C\ B is an infinite set.

Proof. (a) Let f be a bijection of N, onto A, and let g be a bijection of N, onto
B. We define 2 on N by k(i) = f(@i) fori=1,---,m and h(i) = g(i — m) for

m+n
i=m+1,-.-,m+ n. We leave it as an exercise to show that 4 is a bijection from N, n
onto AU B.
The proofs of parts (b) and (c) are left to the reader, see Exercise 2. QEUD.

It may seem “obvious” that a subset of a finite set is also finite, but the assertion must
be deduced from the definitions. This and the corresponding statement for infinite sets are
established next.

1.3.5 Theorem Suppose that S and T are sets and that T < S.

(@) IfSisa finite set, then T is a finite set.
(b) IfT is an infinite set, then S is an infinite set.

Proof. (a) If T = @, we already know that T is a finite set. Thus we may suppose that
T # . The proof is by induction on the number of elements in S.

If S has 1 element, then the only nonempty subset T of S must coincide with S, so T
is a finite set.

Suppose that every nonempty subset of a set with k elements is finite. Now let S be
a set having k + 1 elements (so there exists a bijection f of N, , onto S),andlet T C S.
If f(k+1) ¢ T, we can consider T to be a subset of S, := S\{f(k + 1)}, which has k
elements by Theorem 1.3.4(b). Hence, by the induction hypothesis, T is a finite set.

On the other hand, if f(k + 1) € T,then T, := T\{f(k + 1)} is a subset of S, . Since
S, has k elements, the induction hypothesis implies that 7| is a finite set. But this implies
that 7 =T, U {f (k + 1)} is also a finite set.

(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a
discussion of the conwrapositive.) QED.
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Countable Sets

We now inwoduce an important type of infinite set.

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there
exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or denumerable.
(¢) A setS is said to be uncountable if it is not countable.

From the properties of bijections, it is clear that S is denumerable if and only if there
exists a bijection of S onto N. Also a set S, is denumerable if and only if there exists a
bijection from S1 onto a set S2 that is denumerable. Further, a set T} is countable if and
only if there exists a bijection from T onto a set T, that is countable. Finally, an infinite
countable set is denumerable.

1.3.7 Examples (a) Theset E := {2n : n € N} of even natural numbers is denumerable,
since the mapping f : N — FE defined by f(n) := 2n forn € N, is a bijection of N onto E.
Similarly, the set O := {2n — 1 : n € N} of odd natural numbers is denumerable.

(b) The set Z of all integers is denumerable.

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural
numbers onto the set N of positive integers, and we map the set of odd natural numbers
onto the negative integers. This mapping can be displayed by the enumeration:

Z=10,1,-1,2,-2,3,-3,--}.

(c) The union of two disjoint denumerable sets is denumerable.
Indeed, if A = {a,, a,,a;,---} and B = {b,, b,, b;, - - -}, we can enumerate the ele-
ments of A U B as:

a;,b,a,,by,0a,,bs,---. a
1.3.8 Theorem The set N x N is denumerable.

Informal Proof. Recallthat N x N consists of all ordered pairs (m, n), where m,n € N.
We can enumerate these pairs as:

(LD, (1,2, @D, (13), (22), G, (1,49, -
according to increasing sum m + n, and increasing m. (See Figure 1.3.1.) QED.

The enumeration just described is an instance of a “diagonal procedure”, since we
move along diagonals that each contain finitely many terms as illustrated in Figure 1.3.1.
While this argument is satisfying in that it shows exactly what the bijectionof N x N - N
should do, it is not a “formal proof™, since it doesn’t define this bijection precisely. (See
Appendix B for a more formal proof.)

As we have remarked, the construction of an explicit bijection between sets is often
complicated. The next two results are useful in establishing the countability of sets, since
they do not involve showing that certain mappings are bijections. The first result may seem
intuitively clear, but its proof is rather technical; it will be given in Appendix B.
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Figure 1.3.1 ThesetN x N

1.3.9 Theorem Suppose thatS and T are sets and that T C S.

(a) IfS isacountable set, then T is a countable set.
(b) IfT is an uncountable set, then S is an uncountable set.

1.3.10 Theorem The following statements are equivalent:

(a) S is a countable set.
(b) There exists a surjection of N onto S.
(c) There exists an injection of S into N.

Proof. (a) = (b) If S is finite, there exists a bijection 4 of some set N, onto S and we
define H on N by

hk) for k=1,---,n,

Hk) = {h(n) for k > n.

Then H is a surjection of N onto S.

If S is denumerable, there exists a bijection H of N onto S, which is also a surjection
of Nonto S.
(b) = (c¢) If H is a surjection of N onto S, we define H, : § — N by letting H,(s) be
the least element in the set H~'(s) := {n € N : H(n) = s}. To see that H, is an injection
of Sinto N, note thatif s,z € Sandn, := H,(s) = H,(¢),thens = H(n) = 1.
(©) = (a) If H, is an injection of § into N, then itis a bijection of S onto H,(S) S N.
By Theorem 1.3.9(a), H, (S) is countable, whence the set S is countable. Q.E.D.

1.3.11 Theorem The set Q of all rational numbers is denumerable.

Proof. The idea of the proof is to observe that the set Q" of positive rational numbers is
contained in the enumeration:

—In
(SIS
—lw

N

L Ll

i} ’ ’

| —

’ ’

—_—
N —

’

which is another “diagonal mapping” (see Figure 1.3.2). However, this mapping is not an
injection, since the different fractions % and % represent the same rational number.

To proceed more formally, note that since N x N is countable (by Theorem 1.3.8),
it follows from Theorem 1.3.10(b) that there exists a surjection f of N onto N x N. If
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CalA ws N

Figure 1.3.2 The set Q*

g : N x N — Q' is the mapping that sends the ordered pair (m, n) into the rational num-
ber having a representation m / n, then g is a surjection onto Q*. Therefore, the composition
g o f is a surjection of N onto Q*, and Theorem 1.3.10 implies that Q* is a countable set.

Similarly, the set Q™ of all negative rational numbers is countable. It follows as in
Example 1.3.7(b) that the set Q = Q™ U {0} UQ™ is countable. Since Q contains N, it
must be a denumerable set. QED.

The next result is concerned with unions of sets. In view of Theorem 1.3.10, we need
not be worried about possible overlapping of the sets. Also, we do not have to construct a
bijection.

1.3.12 Theorem IfA, isa countable set foreachm € N, thenthe union A :=J;,_, A,,
is countable.

Proof. Foreachm € N, let ¢,, be a surjectionof Nonto A,,. Wedefiney : NxN — A
by
Y(m,n) =g, (n).

We claim that i is a surjection. Indeed, if a € A, then there exists a least m € N such that
a € A,,, whence there exists a least n € N such that a = ¢, (n). Therefore, a = y(m, n).
Since N x N is countable, it follows from Theorem 1.3.10 that there exists a surjection
f :N —= N x N whence ¥ o f is a surjection of N onto A. Now apply Theorem 1.3.10
again to conclude that A is countable. Q.E.D.

Remark A less formal (but more intuitive) way to see the truth of Theorem 1.3.12 is to
enumerate the elements of A, m € N, as:

Ay = a0, 03}
A, = {ay, 05,0y, -},
Ay = {ay, a5, a53,--},

We then enumerate this array using the “diagonal procedure’:
Q10 G1pr G715 G135 895 G315 Gg " " s

as was displayed in Figure 1.3.1.
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The argument that the set Q of rational numbers is countable was first given in 1874
by Georg Cantor (1845—1918). He was the first mathematician to examine the concept of
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set R
of real numbers is an uncountable set. (This result will be established in Section 2.5.)

In a series of important papers, Cantor developed an extensive theory of infinite sets and
transfinite arithmetic. Some of his results were quite surprising and generated considerable
controversy among mathematicians of that era. In a 1877 letter to his colleague Richard
Dedekind, he wrote, after proving an unexpected theorem, “I see it, but I do not believe it”.

We close this section with one of Cantor’s more remarkable theorems.

1.3.13 Cantor’s Theorem If A is any set, then there is no surjection of A onto the set
P(A) of all subsets of A.

Proof. Suppose that ¢ : A — P(A) is a surjection. Since ¢(a) is a subset of A, either a
belongs to ¢(a) or it does not belong to this set. We let

D={aeA:aé¢qp))

Since D is a subset of A, if ¢ is a surjection, then D = ¢(a,) for some a, € A.

We must have either a; € D or a, ¢ D. If a; € D, then since D = ¢(a,), we must
have a;, € ¢(qa), contrary to the definition of D. Similarly, if a, ¢ D, then a; ¢ ¢(a,) so
that a, € D, which is also a contradiction.

Therefore, ¢ cannot be a surjection. QED.

Cantor’s Theorem implies that there is an unending progression of larger and larger
sets. In particular, it implies that the collection P (N) of all subsets of the natural numbers
N is uncountable.

Exercises for Section 1.3

1. Prove that a nonempty set T, is finite if and only if there is a bijection from 7| onto a finite
setT,.
2

2. Prove parts (b) and (c) of Theorem 1.3.4.

LetS:={1,2}and T := {a, b, c}.
(a) Determine the number of different injections from S into 7.
(b) Determine the number of different surjections from T onto S.

Exhibit a bijection between N and the set of all odd integers greater than 13.
Give an explicit definition of the bijection f from N onto Z described in Example 1.3.7(b).
Exhibit a bijection between N and a preper subset of itself.

N oy n kA

Prove that a set 7| is denumerable if and only if there is a bijection from T; onto a denumerable
set T,.
2

Give an example of a countable collection of finite sets whose union is not finite.
9. Provein detail that if S and T are denumerable, then S U T is denumerable.

10. Determine the number of elements in P(S), the collection of all subsets of S, for each of the
following sets:
(@ S:=(1,2},
b S:={1,273},
© S§:=1{1,273,4}
Be sure to include the empty set and the set S itself in P(S).
11. UseMathematical Induction to prove thatif theset S hasn elements, then P(S) has2" elements.

12. Prove that the collection F(N) of all finize subsets of N is countable.



CHAPTER 2

THE REAL NUMBERS

In this chapter we will discuss the essential properties of the real number system R.
Although it is possible to give a formal construction of this system on the basis of a more
primitive set (such as the set N of natural numbers or the set QQ of rational numbers), we
have chosen not to do so. Instead, we exhibit a list of fundamental properties associated
with the real numbers and show how further properties can be deduced from them. This
kind of activity is much more useful in learning the tools of analysis than examining the
logical difficulties of constructing a model for R.

The real number system can be described as a “complete ordered field”, and we
will discuss that description in considerable detail. In Section 2.1, we first introduce the
“algebraic” properties—often called the “field” properties in abstract algebra—that are
based on the two operations of addition and multiplication. We continue the section with
the introduction of the “order” properties of R and we derive some consequences of these
properties and illustrate their use in working with inequalities. The notion of absolute value,
which is based on the order properties, is discussed in Section 2.2.

In Section 2.3, we make the final step by adding the crucial “completeness” property to
the algebraic and order properties of R. It is this property, which was not fully understood
until the late nineteenth century, that underlies the theory of limits and continuity and
essentially all that follows in this book. The rigorous development of real analysis would
not be possible without this essential property.

In Section 2.4, we apply the Completeness Property to derive several fundamental
results concerning R, including the Archimedean Property, the existence of square roots,
and the density of rational numbers in R. We establish, in Section 2.5, the Nested Interval
Property and use it to prove the uncountability of R. We also discuss its relation to binary
and decimal representations of real numbers.

Part of the purpose of Sections 2.1 and 2.2 is to provide examples of proofs of
elementary theorems from explicitly stated assumptions. Students can thus gain experience
in writing formal proofs before encountering the more subtle and complicated arguments
related to the Completeness Property and its consequences. However, students who have
previously studied the axiomatic method and the technique of proofs (perhaps in a course
on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A
brief discussion of logic and types of proofs can be found in Appendix A at the back of the
book.

Section 2.1 The Algebraic and Order Properties of R

We begin with a brief discussion of the “algebraic structure” of the real number system. We
will give a short list of basic properties of addition and multiplication from which all other
algebraic properties can be derived as theorems. In the terminology of abstract algebra, the
system of real numbers is a “field” with respect to addition and multiplication. The basic

22
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properties listed in 2.1.1 are known as the field axioms. A binary operation associates with
each pair (a, b) a unique element B(a, b), but we will use the conventional notations of
a + b and a - b when discussing the properties of addition and multiplication.

2.1.1 Algebraic Properties of R On the set R of real numbers there are two binary
operations, denoted by + and - and called addition and multiplication, respectively. These
operations satisfy the following properties:

(A1) a+b=b+aforalla binR (commutative property of addition),

(A2) (a@a+b)+c=a+B+c)foralla,b,cinR (associative property of addition),

(A3) there exists an element 0 in R such that 0+a =a anda+0=a forall a in R
(existence of a zero element),

(A4) for each a in R there exists an element —a in R such that a 4+ (—a) = 0 and
(—a) +a =0 (existence of negative elements);

(M1) a-b=b-aforalla,binR (commutative property of multiplication);

M2) (@-b)-c=a-(b-c)foralla,b,cinR (associative property of multiplication);,

(M3) there exists an element 1 in R distinct from O suchthat 1 -a =a and a -1 = a for
allain R (existence of a unit element),

(M4) for each a # 0 in R there exists an element 1/a in R such thata - (1/a) =1 and
(1/a) -a =1 (existence of reciprocals),

M a-b+c)=@-b)+@-c)andb+c)-a=((b-a)+(c-a)foralla,b,cinR
(distributive property of multiplication over addition).

These properties should be familiar to the reader. The first four are concerned with
addition, the next four with multiplication, and the last one connects the two operations.
The point of the list is that all the familiar techniques of algebra can be derived from these
nine properties, in much the same spirit that the theorems of Euclidean geomewy can be
deduced from the five basic axioms stated by Euclid in his Elements. Since this task more
properly belongs to a course in abstract algebra, we will not carry it out here. However, to
exhibit the spirit of the endeavor, we will sample a few results and their proofs.

We firstestablish the basic fact that the elements 0 and 1, whose existence were asserted
in (A3) and (M3), are in fact unique. We also show that multiplication by 0 always results
in 0.

2.1.2 Theorem (a) Ifzanda areelementsin R withz+ a = a, thenz = 0.
(b) Ifuandb # 0 are elements inR withu - b = b, thenu = 1.
(¢) IfaeR,thena-0=0.

Proof. (a) Using (A3), (A4), (A2), the hypothesis z + a = g, and (A4), we get
z=2z+0=z+ @+ (—a)) =(z+a)+(—a) =a+(—a) =0.
(b) Using (M3), (M4), (M2), the assumed equality u - b = b, and (M4) again, we get
u=u-1=u-b-1/b))=w-b)-(1/b)=>b-(1/b) =1.
(c) We have (why?)
a+a-0=a-14a-0=a-(1+0=a-1=a.

Therefore, we conclude from (a) thata - 0 = 0. QE.D.
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We next establish two important properties of multiplication: the uniqueness of recip-
rocals and the fact that a product of two numbers is zero only when one of the factors is
zero.

2.1.3 Theorem (a) Ifa #0andbin R are suchthata-b =1, thenb = 1/a.
(b) Ifa-b=0,theneithera =0o0rb = 0.

Proof. (a) Using (M3), (M4), (M2), the hypothesis a - b = 1, and (M3), we have
b=1-b=((1/a)-a)-b=/a)- (@ -b)=(1/a)-1=1/a.

(b) It suffices to assume a # 0 and provethatb = 0. (Why?) We multiply a - b by 1/a and
apply (M2), (M4) and (M3) to get

(1/a) - (@a-b)=((1/a)-a)-b=1-b=1b.
Since a - b = 0, by 2.1.2(c) this also equals
(1/a) - (@-b) = (1/a)-0=0.
Thus we have b = 0. QED.

These theorems represent a small sample of the algebraic properties of the real number
system. Some additional consequences of the field properties are given in the exercises.

The operation of subtraction isdefinedbya — b := a + (—b) for g, b in R. Similarly,
division is defined for a,b in R with b # 0 by a/b :=a - (1/b). In the following, we
will use this customary notation for subtraction and division, and we will use all the
familiar properties of these operations. We will ordinarily drop the use of the dot to indicate
multiplication and write ab for a - b. Similarly, we will use the usual notation for exponents
and write a® for aa, a3 for (az)a; and, in general, we define a*tl .= (@™)a forn € N. We
agree to adopt the convention that a' =a. Further, if a # 0, we write a®=1anda™! for
1/a, and if n € N, we will write a™" for (1/a)", when it is convenient to do so. In general,
we will freely apply all the usual techniques of algebra without further elaboration.

Rational and Irrational Numbers

We regard the set N of natural numbers as a subset of R, by identifying the natural number
n € N with the n-fold sum of the unit element 1 € R. Similarly, we identify 0 € Z with the
zero element of 0 € R, and we identify the n-fold sum of —1 with the integer —n. Thus,
we consider N and Z to be subsets of R.

Elements of R that can be written in the form b/a where a, b € Z and a # 0 are called
rational numbers. The set of all rational numbers in R will be denoted by the standard
notation Q. The sum and product of two rational numbers is again a rational number (prove
this), and moreover, the field properties listed at the beginning of this section can be shown
to hold for Q.

The fact that there are elements in R that are not in Q is not immediately apparent.
In the sixth century B.C. the ancient Greek society of Pythagoreans discovered that the
diagonal of a square with unit sides could not be expressed as a ratio of integers. In view
of the Pythagorean Theorem for right triangles, this implies that the square of no rational
number can equal 2. This discovery had a profound impact on the development of Greek
mathematics. One consequence is that elements of R that are not in Q became known
as irrational numbers, meaning that they are not ratios of integers. Although the word
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“irrational” in modern English usage has a quite different meaning, we shall adopt the
standard mathematical usage of this term.

We will now prove that there does not exist a rational number whose square is 2. In the
proof we use the notions of even and odd numbers. Recall that a natural number is even if
it has the form 2n for some n € N, and it is odd if it has the form 2n — 1 for some n € N.
Every natural number is either even or odd, and no natural number is both even and odd.

2.1.4 Theorem There does not exist a rational numberr such that r*> = 2.

Proof. Suppose, on the contrary, that p and g are integers such that (p /q)2 =2. We
may assume that p and g are positive and have no common integer factors other than 1.
(Why?) Since p? = 24*%, we see that p? is even. This implies that p is also even (because
if p=2n —1 is odd, then its square p2 =202n%> —2n+1)—1is also odd). Therefore,
since p and g do not have 2 as a common factor, then ¢ must be an odd natural number.

Since piseven, then p = 2m forsomem € N, and hence 4m? = 24¢?, so that 2m? = ¢*.
Therefore, g is even, and it follows from the argument in the preceding paragraph that g
is an even natural number.

Since the hypothesis that (p/q)* = 2 leads to the contradictory conclusion that g is
both even and odd, it must be false. QE.D.

The Order Properties of R

The “order properties” of R refer to the notions of positivity and inequalities between real
numbers. As with the algebraic structure of the system of real numbers, we proceed by
isolating three basic properties from which all other order properties and calculations with
inequalities can be deduced. The simplest way to do this is to identify a special subset of R
by using the notion of “positivity”.

2.1.5 The Order Properties of R There is a nonempty subset P of R, called the set of
positive real numbers, that satisfies the following properties:

(i) Ifa,bbelongtoP,thena + b belongsto P.
(ii) If a, b belong to P, then ab belongs to P.
(iii) If a belongs to R, then exactly one of the following holds:

aeP, a=0, —a e P.

The first two conditions ensure the compatibility of order with the operations of addi-
tion and multiplication, respectively. Condition 2.1.5(iii) is usually called the Trichotomy
Property, since it divides R into three distinct types of elements. It states that the set
{—a : a € P} of negative real numbers has no elements in common with the set P of
positive real numbers, and, mqreover, the set R is the union of three disjoint sets.

Ifa € P, we write a > 0and say that a is a positive (or a strictly positive) real number.
If a € PU {0}, we write a > 0 and say that a is a nonnegative real number. Similarly, if
—a € P, we write a < 0 and say that a is a negative (or a strictly negative) real number.
If —a € P U {0}, we write a < 0 and say that a is a nonpositive real number.

" The notion of inequality between two real numbers will now be defined in terms of the
set P of positive elements.

2.1.6 Definition Let a, b be elements of R.

(a) Ifa —b e P,thenwewritea > borb < a.
(b) Ifa—b ePU{0},thenwewritea >borb < q.
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The Trichotomy Property 2.1.5(iii) implies that for a, b € R exactly one of the follow-
ing will hold:

a>b, a=>ob, a<b.

Therefore,if botha < band b < a, thena = b.
For notational convenience, we will write

a<b<c

to mean thatbotha < b and b < c are satisfied. The other “double” inequalitiesa < b < c,
a <b <c,anda < b < c are defined in a similar manner.

Toillustrate how the basic Order Properties are used to derive the “rules of inequalities”,
we willnow establish several results that the reader has used in earlier mathematics courses.

2.1.7 Theorem Let a, b, ¢ be any elements of R.

(a) Ifa>bandb > c,thena > c.
(b) Ifa > b,thena+c > b+ c.

(¢) Ifa>bandc > 0, thenca > cb.
Ifa > bandc <0, thenca < cb.

Proof. (a) If a—b e P and b — c € P, then 2.1.5(%1) implies that (a —b) + (b —¢) =
a — c belongs to P. Hence a > c.

(b) fa—beP,then(a+c)—(b+c)=a—bisinP. Thusa+c > b+c.

(c) Ifa—bePandcelP, then ca — cb = c(a —b) is in P by 2.1.5(ii). Thus ca > cb
when ¢ > 0.

On the otherhand, if c < 0,then —c € P, so that cb — ca = (—c)(a — b) isinP. Thus
cb > cawhenc < 0. QED.

It is natural to expect that the natural numbers are positive real numbers. This property
is derived from the basic properties of order. The key observation is that the square of any
nonzero real number is positive.

2.1.8 Theorem (a) Ifa € Randa # 0, then a’ > 0.
(b) 1>0.
(¢) Ifne N, thenn > 0.

Proof. (a) By the Trichotomy Property, if a # 0, theneithera € Por —a € P.Ifa € P,
then by 2.1.5(ii), a’> =a-a € P. Also, if —a € P, then a*> = (—a)(—a) € P. We conclude
that if a # 0, then a® > 0.

(b) Since 1 = 12, it follows from (a) that 1 > O.

(c) Weuse Mathematical Induction. The assertionforn = 1istrue by (b). If we suppose the
assertion is true for the natural number k, then k € P, and since 1 € P, we have k +1 € P
by 2.1.5(i). Therefore, the assertion is true for all natural numbers. QED.

It is worth noting that no smallest positive real number can exist. This follows by
observing that if a > 0, then since % > 0 (why?), we have that

O<%a<a.
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Thus if it is claimed that a is the smallest positive real number, we can exhibit a smaller
positive number %a.

This observation leads to the next result, which will be used frequently as a method of
proof. For instance, to prove that a number a > 0 is actually equal to zero, we see that it
suffices to show that a is smaller than an arbitrary positive number.

2.1.9 Theorem Ifa € R issuchthatQ <a < ¢ foreverye > 0, thena = 0.

Proof. Supposetothe contrary thata > 0. Thenifwetake ¢ := %a, wehave 0 < ¢g) < a.
Therefore, it is false that a < ¢ for every € > 0 and we conclude thata = 0. QE.D.

Remark It is an exercise to show thatif a € R is suchthat 0 < a < ¢ forevery ¢ > 0,
thena = 0.

The product of two positive numbers is positive. However, the positivity of a product
of two numbers does not imply that each factor is positive. The correct conclusion is given
in the next theorem. It is an important tool in working with inequalities.

2.1.10 Theorem Ifab > 0, then either

) a>0andb > 0, or
(ii) a<O0andb < 0.

Proof. First we note that ab > 0 implies that a # 0 and b # 0. (Why?) From the Tri-
chotomy Property, either a > 0 ora < 0. If a > 0, then 1/a > 0 (why?), and therefore
b = (1/a)(ab) > 0. Similarly, ifa < 0, then 1/a < 0, so that b = (1/a)(ab) < 0. QE.D.

2.1.11 Corollary Ifab < O, then either

(i) a<Oandb > 0, or
(ii) a>0andb <0.

Inequalities

We now show how the Order Properties presented in this section can be used to “solve”
certain inequalities. The reader should justify each of the steps.

2.1.12 Examples (a) Determine the set A of all real numbers x such that 2x + 3 < 6.
We note that we have'
xeA & 2x+3<6 —= 2x<3 & «x<

Therefore A= {x e R:x < %}

(b) Determine the set B := {x € R: x>+ x > 2}.
We rewrite the inequality so that Theorem 2.1.10 can be applied. Note that

(S

xeB & x*+x-2>0 < (x—-Dx+2)>0.

Therefore, we either have (i) x — 1 > 0 and x + 2 > 0, or we have (ii) x —1 < 0 and
x 4+ 2 < 0. In case (i) we must have both x > 1 and x > —2, which is satisfied if and only

"The symbol <= should be read “if and only if”.
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if x > 1. In case (ii) we must have both x < 1 and x < —2, which is satisfied if and only
ifx < —2.

Weconcludethat B={x e R:x > 1}U{x e R:x < —2}.
(c) Determine the set

C:={x€R:2x+l<l}.
x+2
We note that
2 1 -
xeC 10 = *loo
x+2 x+2

Therefore we have either () x —1 <0andx+2 >0,0or(ii)x —1>0and x+2 < 0.

(Why?) In case (i) we must have both x < 1 and x > —2, which is satisfied if and only if

—2 < x < 1.In case (ii), we must have both x > 1 and x < —2, which is never satisfied.
Weconcludethat C ={x e R: -2 < x < 1}. a

The following examples illustrate the use of the Order Properties of R in establishing
certain inequalities. The reader should verify the steps in the arguments by identifying the
properties that are employed.

It should be noted that the existence of square roots of positive numbers has not yet
been established; however, we assume the existence of these roots for the purpose of these
examples. (The existence of square roots will be discussed in Section 2.4.)

2.1.13 Examples (a) Leta > 0and b > 0. Then
(€)) a<b < da<b = «/5<«/E

We consider the case wherea > 0 and b > 0,leaving the case a = 0 to the reader. It follows
from 2.1.5(i) that @ + b > 0. Since b* — a® = (b — a)(b + a), it follows from 2.1.7(c) that
b — a > 0 implies that b* — a? > 0. Also, it follows from 2.1.10 that b* — a?> > 0 implies
that b —a > 0.

Ifa > 0andb > 0, then v/a > 0 and vb > 0. Since a = (v/a)’ and b = (v/b)’, the
second implication is a consequence of the first one when a and b are replaced by /a and
Vb, respectively.

We also leave it to the reader to show that if a > 0 and b > 0, then

1) a<b < a*<b & Ja<+b

(b) Ifa and b are positive real numbers, then their arithmetic mean is %(a + b) and their
geometric mean is +/ab. The Arithmetic-Geometric Mean Inequality for a, b is

) Vab < L(a+b)

with equality occurring if and only if a = b.

To prove this, note thatifa > 0,5 > 0, and a # b, then ./a > 0, v/b > 0 and /a #
Vb. (Why?) Therefore it follows from 2.1.8(a) that (/a — JE)Z > 0. Expanding this
square, we obtain

a—2vab+b>0,
whence it follows that

Vab < 1@+b).
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Therefore (2) holds (with strict inequality) when a # b. Moreover, if a = b(> 0), then both
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds fora > 0, b > 0.

On the other hand, suppose thata > 0, b > 0 and that Vab = %(a + b). Then, squar-
ing both sides and multiplying by 4, we obtain

4ab = (a + b)* = a* + 2ab + b?,
whence it follows that
0=a?—2ab+b* = (a - b)>.
But this equality implies that a = b. (Why?) Thus, equality in (2) implies that a = b.

Remark The general Arithmetic-Geometric Mean Inequality for the positive real num-
bers a,,a,---,a,is

a+a,+---+a
3) (a1a2 . .a")l/n < - %2 " =
with equality occurring if and only if a; = a, = --- = a,,. It is possible to prove this more

general statement using Mathematical Induction, but the proof is somewhat intricate. A
more elegant proof that uses properties of the exponential function is indicated in Exercise
8.3.9 in Chapter 8.

(c) Bernoulli’s Inequality. If x > —1, then

4 A4+x)">14nx forall neN

The proof uses Mathematical Induction. The case n = 1 yields equality, so the assertion
is valid in this case. Next, we assume the validity of the inequality (4) for k € N and will
deduce it for k + 1. Indeed, the assumptions that (1 + x)¥>14kx andthat 1 +x > 0
imply (why?) that

A +x)* =1+ x)* (1+x)
> (A +kx)-(1+x) =14 G+ Dx + kx?
> 1+ (k+1)x.

Thus, inequality (4) holds for n = k + 1. Therefore, (4) holds for all n € N. O

Exercises for Section 2.1

1. Ifa, b € R, prove the following.

(@ Ifa+b=0,thenb=—a, (b) —(-a)=a,
© (-Da=-—a, @ DD =1
2. Provethatifa, b € R, then
(@ —(a+b)=(—a)+(-b), () (—a)-(-=b)=a-b,
© 1/(=a)=-(1/a), (d) —(a/b) = (—a)/b ifb #0.
3. Solve the following equations, justifying each step by referring to an appropriate property or
theorem.
(@ 2x+5=38, (b) x*=2x,
© x*—1=3, d x-—Dx+2) =0

4. Ifa € Rsatisfiesa - a = aq, prove that eithera = 0ora = 1.
5. Ifa # 0and b # 0, show that 1/(ab) = (1/a)(1/b).
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10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

CHAPTER 2 THE REAL NUMBERS

Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a rational
number s such that s> = 6.

Modify the proof of Theorem 2.1.4 to show that there does not exist a rational number ¢ such
that # = 3.

(a) Show thatif x, y are rational numbers, then x + y and xy are rational numbers.
(b) Provethatif x is a rational numberand y is an irrational number, then x + y is an irrational
number. If, in addition, x # O, then show that xy is an irrational number.

LetK = {s+t/2:5,t € @Q}. Show that K satisfies the following:

(@) Ifx,,x, € K,thenx, +x, € Kandx,x, € K.

(b) Ifx#0andx € K,thenl/x € K.

(Thus the set X is a subfield of R. With the order inherited from R, the set K is an ordered field
that lies between Q and R).

(@ Ifa<bandc <d,provethata+c <b+d.
(b) If0<a <band0 <c <d,provethat0 < ac < bd.

(a) Show thatifa > 0,then 1/a > Oand 1/(1/a) = a.
(b) Show thatifa < b, thena < %(a +b) <b.

Leta, b, ¢, d be numbers satisfying0 < a < bandc < d < 0. Give an example where ac < bd,
and one where bd < ac.

If @, b € R, show that > +b? = Oifandonly if a = Oand b = 0.

If0 < a < b,showthata® < ab < b%. Show by example that it does not follow that a* <ab <
b2,

If0 < a < b, show that (a) a < v/ab < b,and (b) 1/b < 1/a.

Find all real numbers x that satisfy the following inequalities.

(@ x%>3x+4, ® 1<x*<4,
(c) 1/x <x, d 1/x < x>

Prove the following form of Theorem 2.1.9: If a € R is such that 0 < a < ¢ for every ¢ > 0,
thena = 0.

Leta, b € R, and suppose that for every ¢ > 0 we have a < b + ¢. Show thata < b.

Prove that [%(a + b)]2 < % (a2 + bz) for all a, b € R. Show that equality holds if and only if
a=b.

(@ If0<c<I,showthat0 <c®<c<1.
(b) Ifl <c,showthatl < ¢ < c2.

(a) Prove thereis non € N such that 0 < n < 1. (Use the Well-Ordering Property of N.)
(b) Prove that no natural number can be both even and odd.

(@) Ifc > 1, showthatc” > cforalln € N, and thatc” > cforn > 1.
(b) If0 <c < 1, show thatc” < cforalln € N, and that ¢" < ¢ forn > 1.

Ifa>0,b>0andn €N, show that a < b if and only if a” < b". [Hint: Use Mathematical
Induction].

(@ Ifc> 1and m, n €N, show that ¢™ > ¢" if and only if m > n.
(b) If0 <c <1andm,n € N, show that ™ < ¢"ifand only if m > n.

Assuming the existence of roots, show thatif ¢ > 1, then c/™ < /" if and only if m > n.

Use Mathematical Induction to show that if a € R and m, n, € N, then a™*" = a™a" and

(am)n — amn.
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Section 2.2 Absolute Value and the Real Line

From the Trichotomy Property 2.1.5(iii), we are assured that if a € R and a # 0, then
exactly one of the numbers a and —a is positive. The absolute value of a # 0 is defined to
be the positive one of these two numbers. The absolute value of 0 is defined to be 0.

2.2.1 Definition The absolute value of a real number a, denoted by |al, is defined by

a ifa > 0,
lal :=40 ifa =0,
—a ifa <0.

For example, |5| =5 and | — 8] = 8. We see from the definition that |a| > 0 for
all a € R, and that |a| = 0 if and only if a = 0. Also | — a| = |a| for all a € R. Some
additional properties are as follows.

2.2.2 Theorem (a) |ab| = |al|b| foralla, b € R.
(b) lal> =a? foralla € R.

(¢) Ifc>0,thenlal <cifandonlyif—c <a <c.
(d) —l|al <a <|alforalla € R.

Proof. (a) If either a or b is 0, then both sides are equal to 0. There are four other cases
to consider. If a > 0, b > 0, thenab > 0, sothat |ab| = ab = |a||b|. Ifa > 0, b < 0, then
ab < 0, so that [ab| = —ab = a(—b) = |a||b|. The remaining cases are treated similarly.
(b) Since a® > 0, we have a* = |a?| = |aal = lalla| = lal?.

(c¢) If |a| < c,then we have both a < ¢ and —a < ¢ (why?), which is equivalent to —c <
a < c. Conversely, if —c < a < c, then we have both a < ¢ and —a < ¢ (why?), so that
lal < c.

(d) Take ¢ = |a| in part (c). QE.D.

The following important inequality will be used frequently.

2.2.3 Triangle Inequality Ifa,b € R, then la + b| < |al + |b|.

Proof. From 2.2.2(d), we have —|a| < a < |a| and —|b| < b < |b|. On adding these
inequalities, we obtain

—(lal+ |b]) <a+b <lal +|bl.
Hence, by 2.2.2(c) we have |a + b| < la| + |b]. QED.

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0,
which is equivalent to saying that a and b have the same sign. (See Exercise 2.)
There are many useful variations of the Triangle Inequality. Here are two.

2.2.4 Corollary Ifa, b € R, then

@ |lal—1bl| < la—bl,
(b) la —bl <lal+bI.

Proof. (a) We write a = a — b + b and then apply the Triangle Inequality to get |a| =
|(@a — b) + b| < |a — b| + |b|. Now subtract |b| to get |a| — |b| < la — b|. Similarly, from
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bl =1b —a+al <|b—al|+|al,weobtain—|a — b| = —|b — a| < |a| — |b|. If we com-
bine these two inequalities, using 2.2.2(c), we get the inequality in (a).

(b) Replace b inthe Triangle Inequality by —b to get |a — b| < |a| + | — b|. Since | — b| =
|b| we obtain the inequality in (b). QED.

A straightforward application of Mathematical Induction extends the Triangle Inequal-
ity to any finite number of elements of R.

2.2.5 Corollary If a,,a,, -, a, are any real numbers, then

Ial +a2+"'+a,,| = |a1|+ |az| +- 'anl-
The following examples illustrate how the properties of absolute value can be used.

2.2.6 Examples (a) Determine the set A of x € R such that [2x +3| < 7.

From a modification of 2.2.2(c) for the case of strict inequality, we see that x € A if
and only if —7 < 2x + 3 < 7, which is satisfied if and only if —10 < 2x < 4. Dividing by
2, weconcludethat A={x e R: -5 < x < 2}.

(b) Determinetheset B:={x €eR: |x — 1| < |x|}.

One method is to consider cases so that the absolute value symbols can be removed.

Here we take the cases

Gx>1, ()0<x <1, (iii) x < 0.

(Why did we choose these three cases?) In case (i) the inequality becomes x — 1 < x,
which is satisfied without further restriction. Therefore all x such that x > 1 belong to the
set B. In case (ii), the inequality becomes —(x — 1) < x, which requires that x > % Thus,
this case contributes all x such that % < x < 1 to the set B. In case (iii), the inequality
becomes —(x — 1) < —x, which is equivalent to 1 < 0. Since this statement is false, no
value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we
conclude that B = {x e R: x > 1}.

There is a second method of determining the set B based on the fact that a < b if
and only if a? < b* when both a > 0 and b > 0. (See 2.1.13(a).) Thus, the inequality
Ix — 1| < |x| is equivalent to the inequality |x — 1|> < |x|?. Since |a|> = a® for any a by
2.2.2(b), we can expand the square to obtain x? — 2x + 1 < x%, which simplifies to x > 3.
Thus, we again find that B = {x eR:x > %} This method of squaring can sometimes be
used to advantage, but often a case analysis cannot be avoided when dealing with absolute

values.

(c) Letthe function f be defined by f(x) = Q2x%+3x + 1)/2x —1) for2 <x <3.
Find a constant M such that | f(x)] < M for all x satisfying2 < x < 3.
We consider separately the numerator and denominator of

22X +3x+1]
Il = 2 — 1]
From the Triangle Inequality, we obtain
222 +3x +1] <2x* +3lx| +1<2-3°+3.3+1=28

since |x| <3 for the x under consideration. Also, 2x — 1| >2|x|—-1>2.2—-1=3
since |x| > 2 for the x under consideration. Thus, 1/|2x — 1| < 1/3 for x > 2. (Why?)
Therefore, for 2 < x <3 we have | f(x)| < 28/3. Hence we can take M = 28/3. (Note
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that we have found one such constant M ; evidently any number H > 28/3 will also satisfy
| f(x)| < H.Itis also possible that 28/3 is not the smallest possible choice for M.) O

The Real Line

A convenient and familiar geometric interpretation of the real number system is the real
line. In this interpretation, the absolute value |a| of an element a in R is regarded as the
distance from a to the origin 0. More generally, the distance between elements a and b in
Ris la — b|. (See Figure 2.2.1.)

We will later need precise language to discuss the notion of one real number being
“close to” another. If a is a givenreal number, then saying that areal number x is “close to” a
should meanthatthe distance |x — a| between them s “small”. A context in which this idea
can be discussed is provided by the terminology of neighborhoods, which we now define.

le— [-2-@3) =5 —

Figure 2.2.1 The distance betweena = —2andb =3

2.2.7 Definition Leta € Rande > 0. Thenthe s-neighborhood of a is the set V_(a) :=
{x e R:|x —al <¢&}.

Fora € R, the statement that x belongsto V_(a) is equivalent to either of the statements
(see Figure 2.2.2)

—E<XxX—a<Eée€ — a—€e<x<a-+e.

£ )
t e O
a-¢t a a+¢

Figure 2.2.2 An ¢-neighborhood of a

2.2.8 Theorem Leta € R.Ifx belongs to the neighborhood V. (a) for every ¢ > 0, then
x =a.

Proof. If a particular x satisfies |[x — a| < ¢ forevery ¢ > 0, then it follows from 2.1.9
that |x — a| = 0, and hence x = a. QED.

2.2.9 Examples (a) Let U :={x:0 < x < 1}. If a € U, then let ¢ be the smaller of
the two numbers a and 1 — a. Then it is an exercise to show that V_(a) is contained in U.
Thus each element of U has some e-neighborhood of it contained in U.

(b) If I := {x : 0 < x < 1}, then for any ¢ > 0, the e-neighborhood V, (0) of O contains
points not in 7, and so V, (0) is not contained in /. For example, the number x, := —&/2 is
in V,_(0) but not in /.

() If|x —al < eand|y — b| < &, then the Triangle Inequality implies that

lx+y) —(@+b)|=Ix—a)+ (y—b)
<|x—al+ |y — bl <2e
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Thus if x, y belong to the e-neighborhoods of a, b, respectively, then x 4 y belongs to the
2¢-neighborhood of a + b (but not necessarily to the e-neighborhood of a + b). g

Exercises for Section 2.2

1. Ifa,b € Randb # 0, show that:
@ lal = Vd?, ® la/bl = lal/Ibl.
2. Ifa,b € R, show that |a + b| = |a| + || if and only if ab > 0.

Ifx,y,ze Rand x < z, showthat x < y < zif and only if |x — y| + |y — z| = |x — z|. Inter-
pret this geometrically.

4. Show that|x —a| <¢eifandonlyifa —e <x <a +e.
Ifa <x <banda < y < b, show that |[x — y| < b — a. Interpret this geometrically.

6. Find all x € R that satisfy the following inequalities:
@ lx—5<13, ® k-1 <3

7. Find all x € R that satisfy the equation |x + 1| + |x —= 2| = 7.

Find all x € R that satisfy the following inequalities.
(@ lx—1>|x+1l, ®) Ixl+lx+1] <2

9. Sketch the graph of the equation y = |x| — |x — 1].

10. Find all x € R that satisfy the inequality 4 < |x + 2| + |x — 1| < 5.
11. Find all x € R that satisfy both [2x — 3| < 5 and |x + 1| > 2 simultaneously.
12. Determine and sketch the set of pairs (x, y) in R x R that satisfy:

@ I|xI=Ilyl, ® Ixl+I1yl=1,
© Ilxyl=2, @ x| =yl =2.
13. Determine and sketch the set of pairs (x, y) in R x R that satisfy:
@ Ix|=lyl, ®) Ixl+Iyl=1,
© Ixyl=2, @ Ixl =yl =2

14. Lete >0andé >0, and a € R. Show that V_(a) N V,(a) and V, (a) U V(a) are y-neighbor-
hoods of a for appropriate values of y.

15. Show thatif a, b € R, and a # b, then there exist e-neighborhoods U of a and V of b such that
unv =a2a.

16. Show thatif a, b € R then
(@) max{a,b) = j(a+b+ la — b|) and min{a, b} = 3(a+ b — |a — bl).
(b) min{a, b, ¢} = min{min{a, b}, c}.

17. Showthatifa, b, ¢ € R, then the “middle number” is mid{a, b, c} = min{max{a, b}, max{b, c},
max{c, a}}.

Section 2.3 The Completeness Property of R

Thus far, we have discussed the algebraic properties and the order properties of the real
number system R. In this section we shall present one more property of R that is often called
the “Completeness Property”. The system Q of rational numbers also has the algebraic and
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order properties described in the preceding sections, but we have seen that +/2 cannot be
represented as a rational number; therefore +/2 does not belong to Q. This observation
shows the necessity of an additional property to characterize the real number system. This
additional property, the Completeness (or the Supremum) Property, is an essential property
of R, and we will say that R is a complete ordered field. 1t is this special property that
permits us to define and develop the various limiting procedures that will be discussed in
the chapters that follow.

There are several different ways to describe the Completeness Property. We choose to
give what is probably the most efficient approach by assuming that each nonempty bounded
subset of R has a supremum.

Suprema and Infima

We now introduce the notions of upper bound and lower bound for a set of real numbers.
These ideas will be of utmost importance in later sections.

2.3.1 Definition Let S be a nonempty subset of R.

(@) The set S is said to be bounded above if there exists anumberu € R suchthats < u
forall s € S. Each such number u is called an upper bound of S.

(b) The set S is said tobe bounded below if there exists a number w € R suchthat w < s
for all s € S. Each such number w is called a lower bound of S.

(c) A setis said to be bounded if it is both bounded above and bounded below. A set is
said to be unbounded if it is not bounded.

For example, the set S := {x € R : x < 2} is bounded above; the number 2 and any
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set
is not bounded below. Thus it is unbounded (even though it is bounded above).

If a set has one upper bound, then it has infinitely many upper bounds, because if u
is an upper bound of S, then the numbers u + 1, u + 2, - - - are also upper bounds of S.
(A similar observation is valid for lower bounds.)

In the set of upper bounds of S and the set of lower bounds of S, we single out their
least and greatest elements, respectively, for special attention in the following definition.
(See Figure 2.3.1.)

N

~
lower bounds of § upper bounds of §

Figure2.3.1 infS and sup$

2.3.2 Definition Let S be a nonempty subset of R.

(a) If S is bounded above, then a number u is said to be a supremum (or a least upper
bound) of S if it satisfies the conditions:

(1) u isanupper bound of S, and
(2) if vis any upper bound of S, then u < v.



36 CHAPTER 2 THE REAL NUMBERS

(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower
bound) of S if it satisfies the conditions:

(1) w is a lower bound of S, and
(2') ift is any lower bound of S, thent < w.

It is not difficult to see that there can be only one supremum of a given subset S of R.
(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that
u, and u, are both suprema of S. If u; < u,, then the hypothesis that u, is a supremum
implies that u; cannot be an upper bound of S. Similarly, we see that u, < u, is not
possible. Therefore, we must have u; = u,. A similar argument can be given to show that
the infimum of a set is uniquely determined.

If the supremum or the infimum of a set S exists, we will denote them by

supS and infS.

We also observe that if &’ is an arbitrary upper bound of a nonempty set S, thensup S < u'.
This is because sup S is the least of the upper bounds of S.

First of all, it needs to be emphasized that in order for a nonempty set S in R to have
a supremum, it must have an upper bound. Thus, not every subset of R has a supremum;
similarly, not every subset of R has an infimum. Indeed, there are four possibilities for a
nonempty subset S of R: it can

@) have both a supremum and an infimum,
(i) have a supremum but no infimum,

(iii) have a infimum but no supremum,

(iv) have neither a supremum nor an infimum.

We also wish to stress thatin order to show that u = sup S for some nonempty subset S
of R, we need to show that both (1) and (2) of Definition 2.3.2(a) hold. It will be instructive
toreformulate these statements. First the reader should see that the following two statements
about a number u and a set S are equivalent:

(1)  wisan upper bound of S,
(1) s <uforalls € S.

Also, the following statements about an upper bound u of a set S are equivalent:

?) if v isany upper bound of S, then u < v,

(2")  if z < u, then z is not an upper bound of S,

(2")  if z < u, then there exists s, € S suchthat z < s,
(2") ife > 0, then there exists s, € S suchthat u — ¢ < s,.

Therefore, we can state two alternate formulations for the supremum.

2.3.3 Lemma A number u is the supremum of a nonempty subset S of R if and only if
u satisfies the conditions:

(1) s<uforallseS,
(2) ifv < u, then there exists s' € S such thatv < s’.

We leave it to the reader to write out the details of the proof.

2.3.4 Lemma An upper bound u of a nonempty set S in R is the supremum of S if and
only if for every ¢ > O there exists an s, € S such thatu — ¢ < s,.
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Proof. If u is an upper bound of S that satisfies the stated condition and if v < u, then we
pute :=u —v. Then ¢ > 0, so there exists s, € Ssuchthatv=u —¢ < s,. Therefore, v
is not an upper bound of S, and we conclude that u = sup S.

Conversely, suppose that u = sup S and let ¢ > 0. Since u — € < u, then u — ¢ is not
an upper bound of S. Therefore, some element s, of S must be greater than u — ¢; that is,
u —¢ <s,.(SeeFigure 2.3.2.) Q.E.D.

Figure2.32 u=supS$

It is important to realize that the supremum of a set may or may not be an element
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We
consider a few examples.

2.3.5 Examples (a) If a nonempty set S, has a finite number of elements, then it can
be shown that S, has a largest element u and a least element w. Then u = sup S, and
w = inf Sv and they are both members of S, . (This is clear if S, has only one element, and
it can be proved by induction on the number of elements in S, ; see Exercises 11 and 12.)

(b) The set S, :={x :0 < x < 1} clearly has 1 for an upper bound. We prove that 1 is
its supremum as follows. If v < 1, there exists an element s’ € S, such that v < s'. (Name
one such element s’.) Therefore v is not an upper bound of S, and, since v is an arbitrary
number v < 1, we conclude that sup §, = 1. It is similarly shown that inf S, = 0. Note that
both the supremum and the infimum of S, are contained in S, .

() The set S, := {x : 0 < x < 1} clearly has 1 for an upper bound. Using the same
argument as given in (b), we see that sup S; = 1. In this case, the set S, does not contain
its supremum. Similarly, inf §; = 0 is not contained in S;. g

The Completeness Property of R

It is not possible to prove on the basis of the field and order properties of R that were
discussed in Section 2.1 that every nonempty subset of R that is bounded above has a
supremum in R. However, it is a deep and fundamental property of the real number system
that this is indeed the case. We will make frequent and essential use of this property,
especially in our discussion of limiting processes. The following statement concerning the
existence of suprema is our final assumption about R. Thus, we say that R is a complete
ordered field.

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has
an upper bound also has a supremum in R.

This property is also called the Supremum Property of R. The analogous property
for infima can be deduced from the Completeness Property as follows. Suppose that § is
a nonempty subset of R that is bounded below. Then the nonempty set S == {—s : s € S}
is bounded above, and the Supremum Property implies that u := sup S exists in R. The
reader should verify in detail that —u is the infimum of S.
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Exercises for Section 2.3

10.

11.

12.

13.
14.
15.

Let S, := {x € R: x > 0}. Show in detail that the set S, has lower bounds, butno upper bounds.
Show thatinf §; = 0.

Let §, = {x € R: x > 0}. Does S, have lower bounds? Does S, have upper bounds? Does
inf S, exist? Does sup S, exist? Prove your statements.

Let S, = {1/n : n € N}. Show that sup §; = 1 and inf S, > 0. (It will follow from the Archi-
medean Property in Section 2.4 that inf S; = 0.)

LetS, :={1—(=1)"/n:n € N}. Find inf §, and sup §,,.
Let S be a nonempty subset of R that is bounded below. Prove thatinf § = — sup{—s: s € S}.

If aset S C R contains one of its upper bounds, show that this upper bound is the supremum of
S.

Let S C R be nonerpty. Show that # € R is an upper bound of S if and only if the conditions
t e Rand ¢ > u imply that ¢ ¢ S.

Let S € R be nonempty. Show that if u = sup S, then for every number n € N the number
u — 1/n is not an upper bound of S, but the number u + 1/n is an upper bound of S. (The
converse is also true; see Exercise 2.4.3.)

Show that if A and B are bounded subsets of R, then A U B is a bounded set. Show that
sup(A U B) = sup{sup A, sup B}.

Let S be a bounded set in R and let S0 be a nonempty subset of S. Show that inf § < inf S0 <
sup S, < sup S.

Let S C R and suppose that s* := sup S belongs to S. If u ¢ S, show that sup(S U {u}) =
sup{s*, u}.

Show that a nonempty finite set S C R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.]

Show that the assertions (1) and (1’) before Lemma 2.3.3 are equivalent.
Show that the assertions (2), (2'), (2”), and (2") before Lemma 2.3.3 are equivalent.

Write out the details of the proof of Lemma 2.3.3.

Section 2.4 Applications of the Supremum Property

We will now discuss how tc work with suprema and infima. We will also give some very
important applications of these concepts to derive fundamental properties of R. We begin
with examples that illustrate useful techniques in applying the ideas of supremum and
infimum.

2.4.1 Example (a) Itisanimportant factthattaking suprema and infima of sets is com-
patible with the algebraic properties of R. As an example, we present here the compatibility
of taking suprema and addition.

Let S be a nonempty subset of R that is bounded above, and let a be any number in

R. Define the seta + S := {a +s : s € S}. We will prove that

sup(a + S) =a +supS.
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If weletu = sup S, thenx < uforall x € S,sothata + x < a + u.Therefore,a + u
is an upper bound for the set a + S; consequently, we have sup(a + §) < a + u.

Now if v is any upper bound of the set a + S, then a + x < v forall x € S. Con-
sequently x <v —a for all x € S, so that v — a is an upper bound of S. Therefore,
u =supS < v—a, which gives us a +u < v. Since v is any upper bound of a + S,
we can replace v by sup(a + S) to geta + u < sup(a + S).

Combining these inequalities, we conclude that

sup(a+ S)=a+u=a+supS.

For similar relationships between the suprema and infima of sets and the operations of
addition and multiplication, see the exercises.

(b) If the suprema or infima of two sets are involved, it is often necessary to establish
results in two stages, working with one set at a time. Here is an example.
Suppose that A and B are nonempty subsets of R that satisfy the property:

a<b foralla € Aandallb € B.
We will prove that
sup A < inf B.

For, given b € B, we havea < b for all a € A. This means that b is an upper bound of A, so
that sup A < b. Next, since the last inequality holds for all b € B, we see that the number
sup A is a lower bound for the set B. Therefore, we conclude that sup A < inf B. g

Functions

The idea of upper bound and lower bound is applied to functions by considering the
range of a function. Given a function f : D — R, we say that f is bounded above if
the set f(D) = {f(x) : x € D} is bounded above in R; that is, there exists B € R such
that f(x) < B for all x € D. Similarly, the function f is bounded below if the set f (D)
is bounded below. We say that f is bounded if it is bounded above and below; this is
equivalent to saying that there exists B € R suchthat | f(x)| < B forall x € D.

The following example illustrates how to work with suprema and infima of functions.

2.4.2 Example Suppose that f and g are real-valued functions with common domain
D < R. We assume that f and g are bounded.

(@) If f(x) < g(x)forallx € D,thensup f(D) < sup g(D), which is sometimes written:

sup f(x) < supg(x).
x€D xeD
We first note that f(x) < g(x) < sup g(D), which implies that the number sup g(D)
is an upper bound for f (D). Therefore, sup f (D) < supg(D).

(b) We note that the hypothesis f(x) < g(x) for all x € D in part (a) does not imply any
relation between sup f(D) and inf g (D).

For example, if f(x) := x%and g(x) ;= x with D ={x:0 < x <1}, then f(x) <
g(x) forall x € D.However, we see that sup f(D) = 1 andinf g(D) = 0. Since sup g(D) =
1, the conclusion of (a) holds.



40 CHAPTER 2 THE REAL NUMBERS

(¢) If f(x) <g(y)forall x, y € D, then we may conclude that sup f(D) < inf g(D),
which we may write as:

sup f(x) < inf g(y).

xeD yeD

(Note that the functions in (b) do not satisfy this hypothesis.)
The proof proceeds in two stages as in Example 2.4.1(b). The reader should write out
the details of the argument. a

Further relationships between suprema and infima of functions are given in the exer-
cises.

The Archimedean Property

Because of your familiarity with the set R and the customary picture of the real line, it may
seem obvious that the set N of natural numbers is not bounded in R. How can we prove this
“obvious” fact? In fact, we cannot do so by using only the Algebraic and Order Properties
given in Section 2.1. Indeed, we must use the Completeness Property of R as well as the
Inductive Property of N (that is, if n € N, thenn + 1 € N).

The absence of upper bounds for N means that given any real number x there exists a
natural number n (depending on x) such that x < n.

2.4.3 Archimedean Property If x € R, then there exists n, € Nsuchthat x <n,_.

Proof. If the assertion is false, thenn < x for alln € N; therefore, x is an upper bound of
N. Therefore, by the Completeness Property, the nonempty set N has a supremum u € R.
Subtracting 1 from u gives a number u — 1 which is smaller than the supremum u of N,
Therefore u — 1 is not an upper bound of N, sothereexistsm € Nwithu — 1 < m. Adding
1 gives u < m + 1, and since m 4+ 1 € N, this inequality contradicts the fact that u is an
upper bound of N. QED.

2.4.4 Corollary IfS:={1/n:n € N}, theninf S = 0.
Proof. Since S # @ is bounded below by 0, it has an infimum and we let w := inf S. Itis

clear that w > 0. For any ¢ > 0, the Archimedean Property implies that there exists n € N
such that 1 /¢ < n, which implies 1/n < &. Therefore we have

O<w<l/n<e.

But since ¢ > 0 is arbitrary, it follows from Theorem 2.1.9 that w = 0. QED.
24.5 Corollary Ift > O, there exists n, € N such that0 < 1/n, <.
Proof. Since inf{l/n:n € N} =0 and ¢t > 0, then ¢ is not a lower bound for the set

{1/n : n € N}. Thus there exists n, € Nsuchthat0 < 1/n, <. QED.

2.4.6 Corollary Ify > O, there exists n,e N such that n v l<y<n y
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Proof. The Archimedean Property ensures that the subset £ :={m € N:y < m} of N
is not empty. By the Well-Ordering Property 1.2.1, E | has a least element, which we denote
by n,. Then n,—1 does not belong to E, and hence we have n—l<y< n,. QED.

Collectively, the Corollaries 2.4.4—2.4.6 are sometimes referred to as the Archimedean
Property of R.

The Existence of v/2

The importance of the Supremum Property lies in the fact that it guarantees the existence of
real numbers under certain hypotheses. We shall make use of it in this way many times. At
the moment, we shall illustrate this use by proving the existence of a positive real number
x such that x2 = 2; that is, the positive square root of 2. It was shown earlier (see Theorem
2.1.4) that such an x cannot be a rational number; thus, we will be deriving the existence
of at least one irrational number.

2.4.7 Theorem There exists a positive real number x such that x* = 2.

Proof. Let S:={se R:0<y, s? < 2}. Since 1 € S, the set is not empty. Also, S is
bounded above by 2, because if 7 > 2, then #> > 4 so that t ¢ S. Therefore the Supremum
Property implies that the set S has a supremum in R, and we let x := sup S. Note that
x> 1

We will prove that x> = 2 by ruling out the other two possibilities: x> < 2 and x* > 2.

First assume that x2 < 2. We will show that this assumption contradicts the fact that
x = sup S by finding an n € N such that x 4+ 1/a € S, thus implying that x is not an upper
bound for S. To see how to choose n, note that 1/ n <l /n so that

1\? 2 1 1
(x+—) =x2+—x+—25x2+—(2x+1).
n n n n
Hence if we can choose 7 so that
1
—2x+1) <2 —x2,
n

then we get (x +1/n)? < x* + (2 — x?) = 2. By assumption we have 2 — x? > 0, so that
(2 — x%)/(2x + 1) > 0. Hence the Archimedean Property (Corollary 2.4.5) can be used to
obtain n € N such that
1 2 —x2
- < .
n 2x+1
These steps can be reversed to show that for this choice of n we have x + 1/n € S, which
contradicts the fact that x is an upper bound of S. Therefore we cannot have x> < 2.
Now assume that x> > 2. We will show that it is then possible to find m € N such that
x — 1/m is also an upper bound of S, contradicting the fact that x = sup S. To do this, note

that
1\2 2 1 2
(x——) =x2——x+——>x2——x.
m m m m

Hence if we can choose m so that
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then (x — 1/m)* > x?> — (x* —2) = 2. Now by assumption we have x> —2 > 0, so that
(x? —2)/2x > 0. Hence, by the Archimedean Property, there exists m € N such that
1 x2-2

<
m 2x

These steps can be reversed to show that for this choice of m we have (x — 1/m)? > 2. Now
ifseS, thens? <2< (x — 1/m)2, whence it follows from 2.1.13(a) that s < x — 1/m.
This implies that x — 1/m is anupper bound for S, which contradicts the factthatx = sup S.
Therefore we cannot have x* > 2.
Since the possibilities x> < 2 and x> > 2 have been excluded, we must have x> = 2.
QE.D.

By slightly modifying the preceding argument, the reader can show that if a > 0, then
there is aunique b > 0 such that b = a. We call b the positive square root of a and denote
it by b = \/a or b = a'/2. A slightly more complicated argument involving the binomial
theorem can be formulated to establish the existence of a unique positive nth root of a,
denoted by ¥/a or a'/*, for each n € N.

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational
numbers T :={r e Q:0 <r, r? < 2}, the argument then gives the conclusion that y :=
sup T satisfies y? = 2. Since we have seen in Theorem 2.1.4 that y cannot be a rational
number, it follows that the set T that consists of rational numbers does not have a supremum
belonging to the set Q. Thus the ordered field Q of rational numbers does not possess the
Completeness Property.

Density of Rational Numbers in R

We now know that there exists at least one irrational real number, namely +/2. Actually
there are “more” irrational numbers than rational numbers in the sense that the set of
rational numbers is countable (as shown in Section 1.3), while the set of irrational numbers
is uncountable (see Section 2.5). However, we next show that in spite of this apparent
disparity, the set of rational numbers is “dense” in R in the sense that given any two real
numbers there is a rational number between them (in fact, there are infinitely many such
rational numbers).

2.4.8 The Density Theorem Ifx and y are any real numbers with x < y, then there
exists a rational numberr € Q suchthatx <r < y.

Proof. 1t is no loss of generality (why?) to assume that x > 0. Since y —x > 0, it
follows from Corollary 2.4.5 that there exists n € N such that 1/n < y — x. Therefore,
we have nx + 1 < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m € N with
m — 1 < nx < m. Therefore,m < nx + 1 < ny, whence nx < m < ny. Thus, the rational
number r := m/n satisfies x <r < y. QE.D.

To round out the discussion of the interlacing of rational and irrational numbers, we

have the same “betweenness property” for the set of irrational numbers.

2.4.9 Corollary Ifx and y are real numbers with x <y, then there exists an irrational
number z such thatx < z < y.
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Proof. 1f we apply the Density Theorem 2.4.8 to the real numbers x /v/2 and y//2, we
obtain a rational number » # 0 (why?) such that

X
<r<

X R
V2 V2

Then z := r+/2 is irrational (why?) and satisfies x < z < y. Q.E.D.

Exercises for Section 2.4

10.

Show that sup{l — 1/n:n € N} = 1.
IfS:={1/n—~1/m:n, m € N}, find inf S and sup S.

Let S € R be nonempty. Prove that if a number « in R has the properties: (i) for every n € N
the number 4 — 1/n is not an upper bound of S, and (ii) for every number n € N the number
u + 1/n is an upper bound of S, then u = sup S. (This is the converse of Exercise 2.3.8.)

Let S be a nonempty bounded setin R.
(@) Leta > 0,andlet aS = {as: s € S§}. Prove that

inf(aS) = ainf §, sup(aS) = asup S.
(b) Letb < OandletbS = {bs: s € S}. Prove that
inf(bS) = bsup S, sup(bS) = binf S.

Let X be a nonempty set and let f: X — R have bounded range in R. If a € R, show that
Example 2.4.1(a) implies that

supla + f(x): x € X} = a + sup{f(x): x € X}
Show that we also have
inffa + f(x): x € X} = a+ inf{f(x): x € X}

Let A and B be bounded nonempty subsets of R, and let A+ B:={a +b: a€ A, b € B}.
Prove that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B.

Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in R. Show
that

sup{f(x) + g(x): x € X} < sup{f(x): x € X} + sup{g(x) : x € X}
and that
inf{f(x) : x € X} +inf{g(x) : x € X} <inf{f(x) + g(x) : x € X}.
Give examples to show that each of these inequalities can be either equalities or strict inequalities.

LetX=Y :={xeR:0<x <1}).Defineh: X x Y - Rbyh(x,y) =2x+y.

(a) Foreachx € X, find f(x) := sup{h(x, y): y € Y}, then find inf{f(x): x € X}.

(b) Foreach y €Y, find g(y) := inf{h(x, y): x € X}; then find sup{g(y): y € Y}. Compare
with the result found in part (a).

Perform the computations in (a) and (b) of the preceding exercise forthe function 2: X x ¥ — R
defined by

0 ifx<y,

hix, y) = {1 ifx>y.

Let X and Y be nonempty setsandleth : X x ¥ — RhaveboundedrangeinR. Let f : X — R
and g : Y — R be defined by

f(x) :==sup{h(x,y):y €Y}, g(y) :=inf{h(x,y) : x € X}.
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Prove that
sup{g(y) : y € Y} <inf{f(x) : x € X}
We sometimes express this by writing
sup igfh(x, y) <infsuph(x,y).
y x oy
Note that Exercises 8 and 9 show that the inequality may be either an equality or a strict
inequality.

11. Let X and Y be nonemptysets andleth : X x ¥ — R have bounded rangeinR. Let F: X - R
and G : Y — R be defined by

F(x) :=sup{h(x,y):y € Y}, G(y) :=sup{h(x,y) : x € X}.
Establish the Principle of the Iterated Suprema:
sup{h(x,y):x € X,y € Y} =sup{F(x) : x € X} =sup{G(y) : y € Y}
We sometimes express this in symbols by

suph(x, y) = supsuph(x, y) = supsup h(x, y).
X,y X y y X

12. Givenany x € R, show that there exists a unique n € Z suchthatn — 1 <x <n.
13. If y > 0, show that there exists n € N such that 1/2" < y.

14. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such
that y* = 3.

15. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real
number z such that 2 = a.

16. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such
that u® = 2.

17. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > 0.

18. If u > 0 is any real number and x < y, show that there exists a rational number r such that
x <ru < y. (Hence the set {ru: r € @} is dense in R.)

Section 2.5 Intervals

The Order Relation on R determines a natural collection of subsets called “intervals”. The
notations and terminology for these special sets will be familiar from earlier courses. If
a, b € R satisfy a < b, then the open interval determined by a and b is the set

(a,b) . ={x €eR:a <x < b}

The points a and b are called the endpoints of the interval; however, the endpoints are not
included in an open interval. If both endpoints are adjoined to this open interval, then we
obtain the closed interval determined by a and b; namely, the set

[a,p] ={xeR:a <x <b}.

The two half-open (or half-closed) intervals deternined by a and b are [a, b), which
includes the endpoint a, and (a, b], which includes the endpoint b.

Each of these four intervals is bounded and has length defined by b — a.If a = b, the
corresponding open interval is the empty set (a, a) = @, whereas the corresponding closed
interval is the singleton set [a, a] = {a}.
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There are five types of unbounded intervals for which the symbols oo (or +00) and —oco
are used as notational convenience in place of the endpoints. The infinite open intervals
are the sets of the form

(a,0):={xeR:x > a} and (—oo0,b):={xeR:x <b}.

The first set has no upper bounds and the second one has no lower bounds. Adjoining
endpoints gives us the infinite closed intervals:

[a,00) ={xeR:a <x} and (—oo,b]l :={xeR:x <b}.

It is often convenient to think of the entire set R as an infinite interval; in this case, we write
(—00, 00) := R. No point is an endpoint of (—o0, 00).

Warning It must be emphasized that co and —oo are not elements of R, but only conve-
nient symbols.

Characterization of Intervals

An obvious property of intervals is that if two points x, y with x < y belong to aninterval 7,
then any point lying between them also belongs to /. Thatis,if x <t < y, then the point ¢
belongs to the same interval as x and y. In other words, if x and y belong to an interval /,
then the interval [x, y] is contained in /. We now show that a subset of R possessing this
property must be an interval.

2.5.1 Characterization Theorem IfS is a subset of R that contains at least two points
and has the property

1) if x,yeS and x <y, then [x,y]CS,
then S is an interval.

Proof. There are four cases to consider: (i) S is bounded, (ii) S is bounded above but
not below, (iii) S is bounded below but not above, and (iv) S is neither bounded above nor
below.

Case (i): Let a := infS and b:=supS. Then S C [a, b] and we will show that
(a, b) C S.

If a < z < b, then zis not a lower bound of S, so there exists x € S with x < z. Also,
z is not an upper bound of S, so there exists y € S with z < y. Therefore z € [x, y], so
property (1) implies that z € S. Since z is an arbitrary element of (a, b), we conclude that
(a,b) C S.

Nowifa € Sandb € S, then S = [a, b]. (Why?) Ifa & Sand b & S, then S = (a, b).
The other possibilities lead to either S = (a, b] or § = [a, b).

Case (ii): Let b := sup S. Then § C (—o0, b] and we will show that (—oo, b) C S. For,
if z < b, thenthereexistx, y € S suchthatz € [x, y] € S. (Why?) Therefore (—oo, b) C S.
Ifb € S, then S = (—o0, b], andif b ¢ S, then S = (—o0, b).

Cases (iii) and (iv) are left as exercises. Q.E.D.

Nested Intervals

We say that a sequence of intervals / , n € N, is nested if the following chain of inclusions
holds (see Figure 2.5.1):

L25L2--21,21

= n n+12"'
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Figure 2.5.1 Nested intervals

For example, if I, := [0, 1/n] forn € N, then I, 2 I, for each n € N so that this
sequence of intervals is nested. In this case, the element O belongs to all 7, and the
Archimedean Property 2.4.5 can be used to show that O is the only such common point.
(Prove this.) We denote this by writing ﬂ;,“;l I, = {0}.

It is important to realize that, in general, a nested sequence of intervals need not
have a common point. For example, if J, = (0, 1/n) forn € N, then this sequence of
intervals is nested, but there is no common point, since for every given x > 0, there exists
(why?) m € N such that 1/m < x so that x ¢ J, . Similarly, the sequence of intervals
K, :=(n,00),n € N, is nested but has no common point. (Why?)

However, itis an important property of R thatevery nested sequence of closed, bounded
intervals does have a common point, as we will now prove. Notice that the completeness
of R plays an essential role in establishing this property.

2.5.2 Nested Intervals Property IfI, = [an, bn] ,n €N, is a nested sequence of closed
bounded intervals, then there exists a number § € R such that§ € I foralln € N.

Proof. Since the intervals are nested, we have I, CI forallne N, so that a, < b, for
all n € N. Hence, the nonempty set {a,: n € N} is bounded above, and we let £ be its
supremum. Clearly a, < & foralln € N.

Weclaimalsothat§ < b, foralln. This is established by showing that for any particular
n, the number b, is an upper bound for the set {a,: k € N}. We consider two cases. (i) If
n < k, then since /, 2 I, we have a, < b, < b,. (ii) If k < n, thensince I, 2 I , we have
a, < a, <b,. (See Figure 2.5.2.) Thus, we conclude thata, < b, for all £, so that b, is an
upper bound of the set {a,: k € N}. Hence, § < b, foreachn € N. Since a, <& < b, for
all n, we have £ € I, foralln € N. QED.

Figure2.5.2 Ifk <n,then/, C I,
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2.5.3 Theorem If I, :=1a,, b,], n €N, is anested sequence of closed, boundedintervals
such that the lengths b, — a, of I, satisfy

inf{b, —a,:n e N} =0,

then the number & contained in I,, for all n € N is unique.

Proof. If n :=inf{b, : n € N}, then an argument similar to the proof of 2.5.2 can be used
to show that a, < 7 for all n, and hence that § < 7. In fact, it is an exercise (see Exercise
10) toshowthat x € I, foralln € Nifandonlyif§ < x < #. If wehaveinf{b, —a, : n €
N} =0, then for any & > 0, there exists an m € N suchthat 0 <n —£§ <b, — a, <E&.
Since this holds forall ¢ > 0, it follows from Theorem 2.1.9 that n — £ = 0. Therefore, we
conclude that £ = 7 is the only point that belongs to I for every n € N. QE.D.

The Uncountability of R

The concept of a countable set was discussed in Section 1.3 and the countability of the set
Q of rational numbers was established there. We will now use the Nested Interval Property
to prove that the set R is an uncountable set. The proof was given by Georg Cantor in
1874 in the first of his papers on infinite sets. He later published a proof that used decimal
representations of real numbers, and that proof will be given later in this section.

2.5.4 Theorem The set R of real numbers is not countable.

Proof. We will prove that the unit interval I := [0, 1] is an uncountable set. This implies
that the set R is an uncountable set, for if R were countable, then the subset I would also
be countable. (See Theorem 1.3.9(a).)

The proof is by contradiction. If we assume that I is countable, then we can enumerate
the set as I = {xl, Xyyorey Xy e -}. We first select a closed subinterval I 1 of I such that
x, & I,, then select a closed subinterval I, of I; such that x, ¢ I,, and so on. In this way,
we obtain nonempty closed intervals

L2221,

such that I, € I and x, ¢ I, for all n. The Nested Intervals Property 2.5.2 implies that
there exists a point £ € I such that £ € I, for all n. Therefore £ # x, forall n € N, so the
enumeration of / is not a complete listing of the elements of I, as claimed. Hence, I is an
uncountable set. Q.E.D.

The fact that the set R of real numbers is uncountable can be combined with the fact
that the set Q of rational numbers is countable to conclude that the set R\Q of irrational
numbers is uncountable. Indeed, since the union of two countable sets is countable (see
1.3.7(¢c)), if R\Q is countable, then since R = Q U (R\Q), we conclude that R is also a
countable set, which is a contradiction. Therefore, the set of irrational numbers R\Q is an
uncountable set.

TBinary Representations

We will digress briefly to discuss informally the binary (and decimal) representations of real
numbers. It will suffice to consider real numbers between 0 and 1, since the representations
for other real numbers can then be obtained by adding a positive or negative number.

The remainder of this section can be omitted on a first reading.
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If x € [0, 1], we will use a repeated bisection procedure to associate a sequence (a,) of
Os and 1s as follows. If x # % belongs to the left subinterval [O, %] we take a, = 0, while
if x belongs to the right subinterval [% 1] we take a; = 1. If x = 3, then we may take q,
to be either O or 1. In any case, we have

1
51

a +1
>
We now bisect the interval [%al, %(a1 + l)]. If x is not the bisection point and belongs

to the left subinterval we take a, := 0, and if x belongs to the right subinterval we take
a,:=1.If x = } orx = 3, we can take a, to be either 0 or 1. In any case, we have

q
- <x=
2

We continue this bisection procedure, assigning at the nth stage the value a, := 0 if x is not
the bisection point and lies in the left subinterval, and assigning the value a, := 1 if x lies
in the right subinterval. In this way we obtain a sequence (a,) of Os or 1s that correspond
to a nested sequence of intervals containing the point x. For each n, we have the inequality

a a a a a a +1

2) 3‘+2—§+---+2—35x55‘+2—§+---+ o
If x is the bisection point at the nth stage, then x = m /2" with m odd. In this case, we may
choose either the left or the right subinterval; however, once this subinterval is chosen, then
all subsequent subintervals in the bisection procedure are determined. [For instance, if we
choose the left subinterval so that @, = 0, then x is the right endpoint of all subsequent
subintervals, and hence a, = 1forall Xk > n + 1. On the other hand, if we choose the right
subinterval so that a, = 1, then x is the left endpoint of all subsequent subintervals, and
hence a, = Oforall k > n + 1. For example, if x = %, then the two possible sequences for
xarel,0,1,1,1,---and 1,1,0,0,0,---.]

To summarize: If x € [0, 1], then there exists a sequence (a,) of Os and 1s such that
inequality (2) holds for all n € N. In this case we write

(3) X = (.alaZ .o .an .o .)2’

and call (3) a binary representation of x. This representation is unique except when
x = m/2" for m odd, in which case x has the two representations

x = (aya,---a,_,1000--.), = (.a,a,---a, |0111...),,

n—1

one ending in Os and the otherending in 1s.

Conversely, each sequence of Os and 1s is the binary representation of a unique real
number in [0, 1]. The inequality corresponding to (2) determines a closed interval with
length 1/2" and the sequence of these intervals is nested. Therefore, Theorem 2.5.3 implies
that there exists a unique real number x satisfying (2) forevery n € N. Consequently, x has
the binary representation (.ala2 ceedy ),

Remark The conceptofbinary representation is extremely important in this era of digital
computers. A number is entered in a digital computer on “bits”, and each bit can be put in
one of two states—either it will pass current or it will not. These two states correspond to
the values 1 and O, respectively. Thus, the binary representation of a number can be stored
in a digital computer on a string of bits. Of course, in actual practice, since only finitely
many bits can be stored, the binary representations must be truncated. If n binary digits
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are used for a number x € [0, 1], then the accuracy is at most 1/2". For example, to assure
four-decimal accuracy, it is necessary to use at least 15 binary digits (or 15 bits).

Decimal Representations

Decimal representations of real numbers are similar to binary representations, except that
we subdivide intervals into fen equal subintervals instead of two.

Thus, given x € [0, 1], if we subdivide [0, 1] into ten equal subintervals, then x belongs
to a subinterval [b, /10, (b, + 1)/10] for some integer b, in {0, 1, - - -, 9}. Proceeding as in
the binary case, we obtain a sequence (b,) of integers with 0 < b, < 9 for all n € N such
that x satisfies

b b b b b b, +1
4 Ly 72, noee < L 2 4 n .
@ TR A T e T AT AL T
In this case we say that x has a decimal representation given by
x=.bb,---b,---.

If x >1andif Be Nissuchthat B <x < B+ 1, thenx = B.bb,---b, - -- where the

decimal representation of x — B € [0, 1]is as above. Negative numbers are treated similarly.
The fact that each decimal determines a unique real number follows from Theorem

2.5.3, since each decimal specifies a nested sequence of intervals with lengths 1/10".

The decimal representation of x € [0, 1] is unique except when x is a subdivision
point at some stage, which can be seen to occur when x = m/10" forsome m,n € N, 1 <
m < 10". (We may also assume that m is not divisible by 10.) When x is a subdivision
point at the nth stage, one choice for b, corresponds to selecting the left subinterval, which
causes all subsequent digits to be 9, and the other choice corresponds to selecting the
right subinterval, which causes all subsequent digits to be 0. [For example, if x = % then
x=.4999...=.5000---, and if y = 38/100 then y = .37999--- = .38000 - - - .]

Periodic Decimals

Adecimal B.bb, - - - b, - - - is said to be periodic (or to be repeating), if there existk, n € N
such that b, = b, forall n > k. In this case, the block of digits b,b, b, ,_, is
repeated once the kth digit is reached. The smallest number m with this property is called
the period of the decimal. For example, 19/88 = .2159090---90 - - - has period m = 2
with repeating block 90 starting at k = 4. A terminating decimal is a periodic decimal
where the repeated block is simply the digit 0.

We will give an informal proof of the assertion: A positive real number is rational if
and only if its decimal representation is periodic.

For, suppose that x = p/q where p, g € N have no common integer factors. For
convenience we will also suppose that 0 < p < g. We note that the process of “long
division” of g into p gives the decimal representation of p/q. Each step in the division
process produces a remainder that is an integer from 0 to g — 1. Therefore, after at most g
steps, some remainder will occur a second time and, at that point, the digits in the quotient
will begin to repeat themselves in cycles. Hence, the decimal representation of such a
rational number is periodic.

Conversely, if a decimal is periodic, then it represents a rational number. The idea of the
proof is best illustrated by an example. Suppose that x = 7.31414 - .- 14 - - - . We multiply
by a power of 10 to move the decimal point to the first repeating block; here obtaining
10x = 73.1414 ---. We now multiply by a power of 10 to move one block to the left
of the decimal point; here getting 1000x = 7314.1414 - - -. We now subtract to obtain an
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integer; here getting 1000x — 10x = 7314 — 73 = 7241, whence x = 7241 /990, a rational
number.

Cantor’s Second Proof

We will now give Cantor’s second proof of the uncountability of R. This is the elega'nt
“diagonal” argument based on decimal representations of real numbers.

2.5.5 Theorem The unitinterval [0, 1] := {x € R : 0 < x < 1} is not countable.

Proof. The proofis by contradiction. We will use the fact that every real number x € [0, 1]
has a decimal representation x = 0.b,b,b, - --, where b, =0, 1---, 9. Suppose that there
is an enumeration x;, x,, x5 - - - of all numbers in [0, 1], which we display as:

S

x; =0.byb1ybyy- -
xy = 0.by1bybyy by, -+,
x3 = 0.byb3ybyy - by, -+,

n'

S

nn

Xy = O'bnlanbn3 by,

We now define a real number y := 0.y,y,y;---y, - by setting y, :=2 if b;; > 5 and
y, :=T7if b;; < 4;in general, we let

|2 ifb, >5,
W=7 ifb,, <4

Then y € [0, 1]. Note that the number y is not equal to any of the numbers with two
decimal representations, since y, # 0,9 for all n € N. Further, since y and x, differ in
the nth decimal place, then y # x, for any n € N. Therefore, y is not included in the
enumeration of [0, 1], contradicting the hypothesis. QED.

Exercises for Section 2.5

1. IfI :=[a,b]land I’ := [d, b'] are closed intervals in R, show that / C I’ if and only ifa’ < a
andb <b'.

2. If § € R is nonempty, show that S is bounded if and only if there exists a closed bounded
interval 7 such that § € I.

3. If S € Risanonempty bounded set, and / 5= [inf S, sup ST, show that § < [ s Moreover, if J
is any closed bounded interval containing S, show that /¢ C J.

4. Inthe proof of Case (ii) of Theorem 2.5.1, explain why x, y exist in S.
Write outthe details of the proof of case (iv) in Theorem 2.5.1.

6. If L2002-21,2- is a nested sequence of intervals and if I, = [an, b,], show that
a 5“25"'§an S"'andbl zbzz...zbnz..._
7. LetI :=[0,1/n]forn € N. Prove that (>, I, = {0}.

LetJ :=(0,1/n) for n € N. Prove that ();2, J, = 0.
9. LetK, := (n,o0)forn €N. Prove that ()2, K, = 0.



10.

11
12.
13.

14.

15.
16.
17.
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With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have n € (-, /,.
Also show that [£,n] =2, I,

Show that the intervals obtained from the inequalities in (2) form a nested sequence.
Give the two binary representations of % and 116.

(a) Give the first four digits in the binary representation of %
(b) Give the complete binary representation of %

Show thatifa,, b, € {0, 1,---,9} and if

245 L +a"—b‘+b2+ +b"‘;é0
10 10 10" ~ 10 102 10™ ’
thenn =manda, = b, fork=1,..-,n. ’

Find the decimal representation of —2.
Express % and % as periodic decimals.

What rationals are represented by the periodic decimals 1.25137-.-137-... and
35.14653.--653- -7



CHAPTER 3

SEQUENCES AND SERIES

Now that the foundations of the real number system R have been laid, we are prepared
to pursue questions of a more analytic nature, and we will begin with a study of the
convergence of sequences. Some of the early results may be familiar to the reader from
calculus, but the presentation here is intended to be rigorous and will lead to certain more
profound theorems than are usually discussed in earlier courses.

We will first introduce the meaning of the convergence of a sequence of real numbers
and establish some basic, but useful, results about convergent sequences. We then present
some deeper results concerning the convergence of sequences. These include the Monotone
Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy Criterion for
convergence of sequences. It is important for the reader to learn both the theorems and how
the theorems apply to special sequences.

Because of the linear limitations inherent in a book it is necessary to decide where
to locate the subject of infinite series. It would be reasonable to follow this chapter with
a full discussion of infinite series, but this would delay the important topics of continuity,
differentiation, and integration. Consequently, we have decided to compromise. A brief
introduction to infinite series is given in Section 3.7 at the end of this chapter, and a more
extensive treatment is given later in Chapter 9. Thus readers who want a fuller discussion
of series at this point can move to Chapter 9 after completing this chapter.

Augustin-Louis Cauchy

Augustin-Louis Cauchy (1789-1857) was born in Paris just after the start
of the French Revolution. His father was a lawyer in the Paris police de-
partment, and the family was forced to flee during the Reign of Terror. As
a result, Cauchy’s early years were difficult and he developed strong anti-
revolutionary and pro-royalist feelings. After returning to Paris, Cauchy’s
father became secretary to the newly-formed Senate, which included the
mathematicians Laplace and Lagrange. They were impressed by young
Cauchy’s mathematical talent and helped him begin his career.

He entered the Ecole Polytechnique in 1805 and soon established a reputation as an excep-
tional mathematician. In 1815, the year royalty was restored, he was appointed to the faculty
of the Ecole Polytechnique, but his strong political views and his uncompromising standards in
mathematics often resulted in bad relations with his colleagues. After the July revolution of 1830,
Cauchy refused to sign the new loyalty oath and left France for eight years in self-imposed exile.
In 1838, he accepted a minor teaching post in Paris, and in 1848 Napoleon III reinstated him to
his former position at the Ecole Polytechnique, where he remained until his death.

Cauchy was amazingly versatile and prolific, making substantial contributions to many areas,
includingreal and complex analysis, number theory, differential equations, mathematical physics
and probability. He published eight books and 789 papers, and his collected works fill 26 volumes.
He was one of the most important mathematicians in the first half of the nineteenth century.

52
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Section 3.1 Sequences and Their Limits

A sequence in a set S is a function whose domain is the set N of natural numbers, and
whose range is contained in the set S. In this chapter, we will be concerned with sequences
in R and will discuss what we mean by the convergence of these sequences.

3.1.1 Definition A sequence of realnumbers (or asequencein R) is a function defined
onthe set N = {1, 2, - - -} of natural numbers whose range is contained in the set R of real
numbers.

Inother words, a sequence in R assigns to each natural numbern = 1, 2, - - - auniquely
determined real number. If X : N — R is a sequence, we will usually denote the value of X
at n by the symbol x, rather than using the function notation X (n). The values x, are also
called the terms or the elements of the sequence. We will denote this sequence by the
notations

X, (x,), (x, :neN).

n

Of course, we will often use other letters, suchas Y = (y,), Z = (z;), and so on, to denote
sequences.

We purposely use parentheses to emphasize that the ordering induced by the natural
order of N is a matter of importance. Thus, we distinguish notationally between the se-
quence (x, : n € N), whose infinitely many terms have an ordering, and the set of values
{x, : n € N} in the range of the sequence which are not ordered. For example, the se-
quence X = ((—1)" : n € N) has infinitely many terms that alternate between —1 and 1,
whereas the set of values {(—1)" : n € N} is equal to the set {—1, 1}, which has only two
elements.

Sequences are often defined by giving a formula for the nth term x, . Frequently, it is
convenient to list the terms of a sequence in order, stopping when the rule of formation
seems evident. For example, we may define the sequence of reciprocals of the even numbers

by writing
¥ = 1111
o 2 b 4 ) 6 bl 8 b b

though a more satisfactory method is to specify the formula for the general term and write

1
X=|—:neN
(Zn " )
or more simply X = (1/2n).

Another way of defining a sequence is to specify the value of x; and give a formula
for x,,, (n > 1) in terms of x,. More generally, we may specify x; and give a formula
for obtaining x, 41 from x, x,, - -+, x,. Sequences defined in this manner are said to be
inductively (or recursively) defined.

3.1.2 Examples (a) Ifb € R,thesequence B := (b, b, b, - - -), all of whose terms equal
b, is called the constant sequence b. Thus the constant sequence 1 is the sequence
(1,1,1,--+), and the constant sequence O is the sequence (0, 0, 0, - - ).
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(b) Ifb € R, then B := (b") is the sequence B = (b, b2, b, ---,b", - - ). In particular, if
b= %, then we obtain the sequence

1 111 1
(? _neN> = (E,Z,g,...,z_n’...>_

(c) The sequence of (2n : n € N) of even natural numbers can be defined inductively by

X, = 2, X, =x, + 2,
or by the definition

NFE2L V1 =V Ve
(d) The celebrated Fibonacci sequence F' := (f,) is given by the inductive definition

fl =1, f2 =1 f,,+1 :=f,,_1+f,, (n>2).

Thus each term past the second is the sum of its two immediate predecessors. The first ten

terms of F are seen to be (1,1, 2, 3,5, 8,13, 21, 34,55, -..). O

The Limit of a Sequence

There are a number of different limit concepts in real analysis. The notion of limit of a
sequence is the most basic, and it will be the focus of this chapter.

3.1.3 Definition A sequence X = (x,) in R is said to converge to x € R, or x is said to
be a limit of (x,), if for every & > 0 there exists a natural number K (¢) such that for all
n > K (¢), the terms x, satisfy |x, — x| < e.

If a sequence has a limit, we say that the sequence is convergent; ifit has no limit, we
say that the sequence is divergent.

Note The notation K (¢) is used to emphasize that the choice of K depends on the value
of ¢. However, it is often convenient to write K instead of K (¢). In most cases, a “small”
value of ¢ will usually require a “large” value of K to guarantee that the distance |x, — x|
between x, and x is less than ¢ foralln > K = K (¢).

When a sequence has limit x, we will use the notation
limX =x or lim(x,) = x.

We will sometimes use the symbolism X, = X, which indicates the intuitive idea that the
values x, “approach” the number x as n — oo.

3.1.4 Uniqueness of Limits A sequence in R can have at most one limit.

Proof. Suppose that x" and x” are both limits of (x, ). For each ¢ > 0 there exist K’ such
that |x, — x'| < ¢/2foralln > K’', and there exists K" such that |x, — x"| < /2 for all
n > K"”. We let K be the larger of K’ and K”. Then for n > K we apply the Triangle
Inequality to get

’ III

n ’
X' =x"|=|x"—x, +x, —x

S =x,l+x, —x"| <e/2+¢e/2=¢.

Since ¢ > 0 is an arbitrary positive number, we conclude that x’ — x” = 0. QED.
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Forx € R and ¢ > 0, recall that the e-neighborhood of x is the set
Vx)=uelR:|lu—x| <e}

(See Section 2.2.) Since u € V,_(x) is equivalent to |u — x| < ¢, the definition of conver-
gence of a sequence can be formulated in terms of neighborhoods. We give several different
ways of saying that a sequence x, converges to x in the following theorem.

3.1.5 Theorem LetX = (x,) beasequenceofreal numbers, and letx € R. The following
statements are equivalent.

(@) X convergestox.

(b) Forevery ¢ > 0, there exists a natural number K such that for alln > K, the terms x,,
satisfy |x, — x| < e.

(c) Forevery ¢ > 0, there exists a natural number K such that for alln > K, the terms x,,
satisfy x —e < x, <x +e.

(d) For every e-neighborhood V,(x) of x, there exists a natural number K such that for
alln > K, the terms x, belong to V,(x).

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c),
and (d) follows from the following implications:

k—xl<e < —-e<u—-x<e < x—e<u<xt+e < wueV).
Q.ED.

With the language of neighborhoods, one can describe the convergence of the sequence
X = (x,) to the number x by saying: for each e-neighborhood V,(x) of x, all but a finite
number of terms of X belong to V_(x). The finite number of terms that may not belong to

the e-neighborhood are the terms x,, x,, - -+, X _;.

Remark The definition of the limit of a sequence of real numbers is used to verify that a
proposed value x is indeed the limit. It does not provide a means for initially determining
what that value of x might be. Later results will contribute to this end, but quite often it is
necessary in practice to arrive at a conjectured value of the limit by direct calculation of a
number of terms of the sequence. Computers can be helpful in this respect, but since they
can calculate only a finite number of terms of a sequence, such computations do not in any
way constitute a proof of the value of the limit.

The following examples illustrate how the definition is applied to prove that a sequence
has a particular limit. In each case, a positive ¢ is given and we are required to find a K,
depending on ¢, as required by the definition.

3.1.6 Examples (a) lim(l/n) =0.

. Ife > 0is given, then 1/¢ > 0. By the Archimedean Property 2.4.5, there is a nat-
ural number K = K (¢) such that 1/K < €. Then, if n > K, we have 1/n < 1/K < ¢.
Consequently, if n > K, then
1

r-o=1<e
n n

Therefore, we can assert that the sequence (1/n) converges to 0.
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(b) lim(1/(n*+1))=0.
Let ¢ > 0 be given. To find K, we first note thatif n € N, then

1 1 1

— < — —
n?+1 nt " n
Now choose K such that 1/K < ¢, as in (a) above. Thenn > K impliesthat1/n < ¢, and
therefore

IR
—-0|=—— < - .
n*+1 n+1 n

Hence, we have shown that the limit of the sequence is zero.
3n+2
li =3.
(c) 1m< P )
Given ¢ > 0, we want to obtain the inequality

3n+2

-3l <e¢
n+1

ey

when n is sufficiently large. We first simplify the expression on the left:
3n+2_3 3n+2-3n-3 -1 1 <l
n+1 n+1 n+1 n+l1 n
Now if the inequality 1/n < ¢ is satisfied, then the inequality (1) holds. Thus if 1/K < ¢,

then forany n > K, we also have 1/n < ¢ and hence (1) holds. Therefore the limit of the
sequence is 3.

(d) If0 < b < 1, thenlim(»") = 0.

We will use elementary properties of the natural logarithm function. If ¢ > 0 is given,
we see that

b"<e <<= nlnb<he <<= n>Ineg/lnd.

(The last inequality is reversed because In b < 0.) Thus if we choose K to be a number such
that K > Ine/ Inb, then we willhave 0 < b" < eforalln > K. Thus we have lim(¥") = 0.

Forexample, if6 = .8,andif ¢ = .01 is given,then we wouldneed K > In.01/1In .8 =
20.6377. Thus K = 21 would be an appropriate choice for ¢ = .01. d

Remark The K (¢) Game In the notion of convergence of a sequence, one way to keep
in mind the connection between the ¢ and the X is to think of it as a game called the K (¢)
Game. In this game, Player A asserts that a certain number x is the limit of a sequence (x,,)-
Player B challenges this assertion by giving Player A a specific value for ¢ > 0. Player A
must respond to the challenge by coming up with a value of K suchthat|x, — x| < eforall
n > K.If Player A can always find a value of K that works, then he wins, and the sequence
is convergent. However, if Player B can give a specific value of ¢ > 0 for which Player A
cannot respond adequately, then Player B wins, and we conclude that the sequence does
not converge to x.

In order to show that a sequence X = (x,) does not converge to the number x, it
is enough to produce one number £, > 0 such that no matter what natural number X is
chosen, one can find a particular n, satisfying n, > K such that Ian — x| > g,. (This
will be discussed in more detail in Section 3.4.)
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3.1.7 Example The sequence (0, 2, 0, 2,---,0, 2,---) does not converge to the
number 0.

If Player A asserts that O is the limit of the sequence, he will lose the K (¢) Game
when Player B gives him a value of ¢ < 2. To be definite, let Player B give Player A
the value ¢, = 1. Then no matter what value Player A chooses for K, his response will
not be adequate, for Player B will respond by selecting an even number n > K. Then the
corresponding value is x, = 2 sothat |x, — 0] =2 > 1 = ¢,. Thus the number O is not the
limit of the sequence. g

Tails of Sequences

It is important to realize that the convergence (or divergence) of a sequence X = (x,)
depends only on the “ultimate behavior” of the terms. By this we mean that if, for any
natural number m, we drop the first m terms of the sequence, then the resulting sequence
X, converges if and only if the original sequence converges, and in this case, the limits are
the same. We will state this formally after we introduce the idea of a “tail” of a sequence.

3.1.8 Definition If X = (x|, Xy, -+, X,, ) is asequence of real numbers and if m is a
given natural number, then the m-tail of X is the sequence

X =(x

m mtn - T E N) = (xm+1’ Xmt2r " )
For example, the 3-tail of the sequence X = (2,4,6,8,10,---,2n, ---), is the se-

quence X, = (8,10,12,---,2n+6, - - ).

3.1.9 Theorem LetX = (x, : n € N) be asequence of real numbers andletm € N. Then
the m-tail X, = (x :n € N) of X converges if and only if X converges. In this case,
limX, =limX.

m+n

Proof. We note that for any p € N, the pth term of X, is the (p + m)th term of X.
Similarly, if g > m, then the gth term of X is the (g — m)th termof X, ,.

Assume X converges to x. Then given any ¢ > 0, if the terms of X for n > K (¢)
satisfy |x, — x| < ¢, then the terms of X, fork > K(&) — m satisfy |x, — x| < &. Thus we
cantake K, (¢) = K(¢) — m, so that X, also converges to x.

Conversely, if the terms of X, for k > K, (¢) satisfy |xk - x| < ¢, then the terms of
X forn > K(¢) + m satisfy lxn — x| < ¢&. Thus we can take K (¢) = K, (¢) + m.

Therefore, X converges to x if and only if X, converges to x. QE.D.

We shall sometimes say that a sequence X ultimately has a certain property if some
tail of X has this property. For example, we say that the sequence (3, 4, 5,5,5,---,5,--+)
is “ultimately constant”. On the other hand, the sequence (3,5, 3,5,---,3, 5, --+) is not
ultimately constant. The notion of convergence can be stated using this terminology: A se-
quence X converges to x if and only if the terms of X are ultimately inevery e-neighborhood
of x. Other instances of this “ultimate terminology” will be noted below.

Further Examples

In establishing that a number x is the limit of a sequence (x,), we often try to simplify
the difference |x, — x| before considering an ¢ > 0 and finding a K (¢) as required by the
definition of limit. This was done in some of the earlier examples. The next result is a more
formal statement of this idea, and the examples that follow make use of this approach.
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3.1.10 Theorem Let (x,) be a sequence of real numbers and let x € R. If (a,) is a
sequence of positive real numbers with lim(a,) = 0 and if for some constant C > 0 and
some m € N we have

|x, — x| < Ca, forall n>m,
then it follows that lim(x,) = x.
Proof. 1Ife > Ois given, then since lim(a,) = 0, we know there exists X = K (¢/C) such
that n > K implies
a,=la,—0| <¢g/C.
Therefore it follows that if both n» > K and n > m, then
|x, —x| < Ca, < C(e/C) =e.

Since & > 0 is arbitrary, we conclude that x = lim(x,,). QED.

3.1.11 Examples (a) Ifa > 0, then lim( 1 ) =0
1+ na

Since a > 0, then 0 < na < 1 + na, and therefore 0 < 1/(1 4+ na) < 1/(na). Thus
we have

! —0‘ < (1) l forall neN.
1+ na a/n

Since lim(1/n) = 0, we may invoke Theorem 3.1.10 with C = 1/a and m = 1 to infer that
lim(1/(1 4+ na)) = 0.

(b) If0 < b < 1, then lim(»") = 0.

This limit was obtained earlier in Example 3.1.6(d). We will give a second proof that
illustrates the use of Bernoulli’s Inequality (see Example 2.1.13(c)).

Since 0 < b < 1, we can write b = 1/(1 + a), where a := (1/b) — 1 so that a > 0.
By Bernoulli’s Inequality, we have (1 + a)” > 1 + na. Hence

1 1 1
< < —.
(14+a)® " 14na na
Thus from Theorem 3.1.10 we conclude that lim(b") = 0.

In particular, if b = .8, sothata = .25, and if we are given € = .01, thenthe preceding
inequality gives us K (¢) = 4/(.01) = 400. Comparing with Example 3.1.6(d), where we
obtained K = 25, we see this method of estimation does not give us the “best” value of K.
However, for the purpose of establishing the limit, the size of K is immaterial.

(¢) Ifc > 0,thenlim(c'/") = 1.

The case ¢ = 1 is trivial, since then (c'/") is the constant sequence (1, 1, - - -), which

evidently converges to 1.

If ¢ >1, then c'/% =1 +d, for some d, > 0. Hence by Bernoulli’s Inequality
2.1.13(c),

0<b" =

c=0+d)"'>1+nd, for neN.

Therefore we have ¢ — 1 > nd, ,'sothatd, < (c — 1)/n. Consequently we have

1
|cl/"—1|=dn5(c_l); for neN.

1/n

We now invoke Theorem 3.1.10 to inferthat lim(c' /") = 1 whenc > 1.
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Now suppose that 0 < ¢ < 1; then ¢/ = 1/(1 + h,) for some h, > 0. Hence Ber-
noulli’s Inequality implies that
1 1 1
c = < < =,
(1+h)" ~ 1+nh, nh

n

from which it follows that0 < h, < 1/nc for n € N. Therefore we have

h
0<1—=cl/n= n
= ¢ 1+h <h”<nc

n

so that
1\ 1
|c1/"—1|<(—>— for neN.
c/)n

We now apply Theorem 3.1.10 to infer that lim(c'/") = 1 when0 < ¢ < 1.
d) limrY") =1

Since n'/" > 1 forn > 1, we can write n'/* = 1 + k, for some k, > 0 when n > 1.
Hence n = (1 +k,)" for n > 1. By the Binomial Theorem, if n > 1 we have

n=1+nk,+inm—Dk2+->1+ 300 - Dk,
whence it follows that
n—1>tnin -1k

Hence k,% <2/nforn > 1.If ¢ > 0 is given, it follows from the Archimedean Property
that there exists a natural number N, such that 2/N, < g2, It follows that if n > sup{2, N e}
then2/n < €2, whence

0<n'/"—1=k, <@/n)'? <e.

Since & > 0 is arbinary, we deduce that lim(n'/") = 1. O

Exercises for Section 3.1

1. Thesequence (x,) is defined by the following formulas for the nth term. Write the first five terms
in each case:

@@ x,:=1+(-D", (b) x,:=(-=1"/n,
1
© = laE 12
2. The first few terms of a sequence (x,) are given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term x, .
(@ 5,7,9,11,:--, ) 1/2,-1/4,1/8,-1/16, -,
(© 1/2,2/3,3/4,4/5, -, d 1,4,9,16,---.

37 List the first five terms of the following inductively defined sequences.
(@ x :=1, X = 3x, +1,
®) ¥, =2 Vo =30, +2/9,):
© z:=1 2:=2 2,,:=(2,,+2)/(Z, ~2),
@ s, =3, s =5, S,,=5+5,"

d x:=

4. For any b € R, prove that lim(b/n) = 0.
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10.

11.

12.
13.

14.
15.
16.
17.

CHAPTER 3 SEQUENCES AND SERIES

Use the definition of the limit of a sequence to establish the following limits.

. n . 2n
(a) llm(n2+1)—0, (b) hm(n—_H)_Z,
. (3n+1 3 [ n?—1 1
(c) 11m(2n+5)——2-, ) 11m(2n2+3)—-2-.
Show that
@ lim( ! )—0 (b) lim( 2n )—2
wn¥i) n+2) 7
(N VA
(c) 11m(n+l)—0, (d) 11m(n2+1)-0

Letx, :=1/In(n + 1) forn € N.

(@) Use the definition of limit to show thatlim(x,) = 0.

(b) Find a specific value of K (¢) as required in the definition of limit for each of (i) € = 1/2,
and(ii) e = 1/10.

Prove that lim(x,) = 0 if and only if lim(|x,|) = 0. Give an example to show that the conver-
gence of (|x,|) need not imply the convergence of (x,,).
Show thatifx, > O forall » € N and lim(x,) = 0, then lim (,/x, ) =0.
Prove that if lim(x,) = x andif x > 0, then there exists a natural number M such that x, > 0
foralln > M.
. 1 1

Show thatlim | — - —— ) =0.

n n+1
Show that lim(1/3") = 0.
Let b € R satisfy 0 < b < 1. Show that lim(nb") = 0. [Hint: Use the Binomial Theorem as in
Example 3.1.11(d).]
Show that lim ((2n)'/") = 1.
Show that lim(n?/n!) = 0.
Show that lim(2" /n!) = 0. [Hinr: Ifn > 3, then 0 < 2" /n! < 2(2)" %)

If lim(x,) = x > 0, show that there exists a natural number K such that if n > K, then %x <
x < 2x.
n

Section 3.2 Limit Theorems

In this section we will obtain some results that enable us to evaluate the limits of certain
sequences of real numbers. These results will expand our collection of convergent sequences
rather extensively. We begin by establishing an importantproperty of convergent sequences
that will be needed in this and later sections.

3.2.1 Definition A sequence X = (x,) of real numbers is said to be bounded if there
exists a real number M > O such that |x,| < M foralln € N.

Thus, the sequence (x, ) is bounded if and only if the set {x, : n € N} of its values is a

bounded subset of R.

3.2.2 Theorem A convergent sequence of real numbers is bounded.
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Proof. Suppose that lim(x,) = x and let ¢ := 1. Then there exists a natural number
K = K(1) such that |x, — x| < 1 forall n > K. If we apply the Triangle Inequality with
n > K we obtain

lx,| =lx, —x +x| < |x, — x|+ x| <1+ |x].
If we set
M :=sup {Ix,], lxy), -+ xg_y 1L 1+ [x1},
thenit follows that |x,| < M for alln € N. QED.

We will now examine how the limit process interacts with the operations of addition,
subtraction, multiplication, and division of sequences. If X = (x,,) and Y = (y,) are se-
quences of real numbers, then we define their sum to be the sequence X + Y = (x, + y,),
their difference to be the sequence X — Y := (x, — y,), and their product to be the se-
quence X - Y := (x,I yn). If ¢ € R, we define the multiple of X by ¢ to be the sequence
c¢X = (cx,).Finally, if Z = (z,) is a sequence of real numbers with z, # Oforalln € N,
then we define the quotient of X and Z to be the sequence X/Z := (x,/z,).

For example, if X and Y are the sequences

111 1
X=2,4,6 -2, Yi=(= = = im0 --),
¢ 2n, ) (1 2’3" n )

then we have

X'Y=(2’2’2a"'a25"')1
3X = (6,12,18,---,6n, ),
X/Y =(2,8,18,---,2n% ...

We note that if Z is the sequence
Z:=(020---,1+(=D"--),

then we can define X + Z, X — Z and X - Z, but X/Z is not defined since some of the
terms of Z are zero.

We now show that sequences obtained by applying these operations to convergent
sequences give rise to new sequences whose limits can be predicted.

3.2.3 Theorem (a) Let X = (x,) and Y = (y,) be sequences of real numbers that
converge to x and y, respectively, and let c € R. Then the sequences X +Y, X —Y, X - Y,
and cX converge tox + y, x — y, xy, and cx, respectively.

(b) If X = (x,) converges to x and Z = (z,) is a sequence of nonzero real numbers that
converges to z and if z # 0, then the quotient sequence X /Z converges to x [ z.

Proof. (a) To show that lim(x, + y,) = x +y, we need to estimate the magnitude of
|(x, +¥,) — (x + ¥)I|. To do this we use the Triangle Inequality 2.2.3 to obtain

l(x, +y,) —x+ =, =2+ @, =PI
<lx,—xl+1y, =yl
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By hypothesis,if ¢ > Othere exists a natural number K, suchthatifn > K, then lx, — x| <
€/2; also there exists a natural number K, suchthatifn > K, then |y, — y| < /2. Hence
if K (¢) :=sup{K, K,}, it follows that if n > K (¢) then

I(x, +¥,) — @x+y|=Ilx, —x[+ 1y, —yl
<le+le=c.

Since ¢ > 0 is arbitrary, we infer that X + Y = (x, + y,) converges to x + y.

Precisely the same argument can be used to show that X — Y = (x, — y,) converges
tox —y.

Toshow that X - Y = (x,y,) converges to xy, we make the estimate

Ix,y, = xy| = (x,y, = x,¥) + (x,y — xy)|
<Ix, v, =W+ I1x, —x)yl
= |x,lly, = ¥l + |x, — x[lyl.

According to Theorem 3.2.2 there exists areal number M ; > Osuch that |x,| < M , for all
n € Nand we set M := sup{M,, |y|}. Hence we have the estimate

Ix,y, —xyl < Mly, =yl + M|x, — x|.

From the convergence of X and Y we conclude that if ¢ > O is given, then there exist
natural numbers X, and K, such thatif n > K, then|x, — x| < ¢/2M, andif n > K, then
|y, — ¥l < &/2M. Now let K (¢) = sup{K,, K,}; then, if n > K (¢) we infer that

Ix,y, —xy| < Mly, — y| + M|x, — x|
< M(/2M) + M(e/2M) =¢.

“Since & > 0 is arbitrary, this proves that the sequence X - ¥ = (x,y,) converges to xy.

The fact that cX = (cx,) converges to cx can be proved in the same way; it can also
be deduced by taking Y to be the constant sequence (c, ¢, c, - --). We leave the details to
the reader.

(b) We next show that if Z = (z,) is a sequence of nonzero numbers that converges
to a nonzero limit z, then the sequence (1/z,) of reciprocals converges to 1/z. First let
o= %lz] so that @ > 0. Since lim(z,) = z, there exists a natural number K, such that if
n > K, then |z, — z| < a. It follows from Corollary 2.2.4(a) of the Triangle Inequality that
—o < —|z, — 2| < |z,| — |z| for n > K, whence it follows that 1|z| = |z| — & < |z,] for
n > K. Therefore 1/|z,| < 2/|z| forn > K, so we have the estimate

1 1 z—z, 1
———|= = lz—z,|
z, z z,z |z, 7|
2
5|7|z—zn| forall n>K,.
z

Now, if £ > 0 is given, there exists a natural number K, such that if » > K, then |z, — Z|
< %slzlz. Therefore, it follows that if K (¢) = sup{K,, K,}, then

1 1

Z, z

<e€ forall n > K(¢).

Since ¢ > 0 is arbitrary, it follows that

lim (l) = 1
z, z
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The proof of (b) is now completed by taking Y to be the sequence (1/z,) and using the
factthat X - Y = (x,/z,) converges to x(1/z) = x/z. Q.E.D.

Some of the results of Theorem 3.2.3 can be extended, by Mathematical Induction, to a
finite number of convergent sequences. For example, if A = (a,), B = (b,), -, Z = (z,)
are convergent sequences of real numbers, then theirsum A+ B +---+Z = (a, + b, +
--++ z,) is a convergent sequence and

1) lim(a, + b, + --- + z,) = lim(a,) + lim(b,) + - - - + lim(z,).
Also their product A- B---Z :=(a,b, - - - z,) is a convergent sequence and
@ lim(a b, ---z,) = (lim(a,)) (lim(,)) --- (lim(z,)) .
Hence,if k e Nandif A = (a,) is a convergent sequence, then

A3) lim(a) = (lim(a,))" .

We leave the proofs of these assertions to the reader.

3.2.4 Theorem If X = (x,) is a convergent sequence of real numbers and if x, > 0 for
alln €N, then x = lim(x,) > 0.

Proof. Suppose the conclusion is not srue and that x < 0; then ¢ := —x is positive. Since
X converges to x, there is a natural number K such that
Xx—e<x,<x+e forall n> K.

In particular, we have x; < x + & = x + (—x) = 0. But this contradicts the hypothesis
that X, = 0 for all n € N. Therefore, this contradiction implies that x > 0. Q.E.D.

We now give a useful result that is formally stronger than Theorem 3.2.4.

3.2.5 Theorem IfX = (x,)andY = (»,) are convergent sequences of real numbers and
ifx, <y, foralln € N, thenlim(x,) < lim(y,).

Proof. Letz,:=Y,—X,sothatZ :=(z,) =Y — X andz, > Oforalln € N.It follows
from Theorems 3.2.4 and 3.2.3 that

0 <lim Z = lim(y,) — lim(x,),
so that lim(x,) sylim(yn). Q.E.D.

The next result asserts that if all the terms of a convergent sequence satisfy aninequality
of the form a < x, < b, then the limit of the sequence satisfies the same inequality. Thus
if the sequence is convergent, one may “pass to the limit” in an inequality of this type.

3.2.6 Theorem If X = (x,) is a convergent sequence and ifa < x, < b for alln € N,
thena < lim(x,) z b.

Proof. LetY be the constant sequence (b, b, b, - - -). Theorem 3.2.5 implies that lim X <
lim Y = b. Similarly one shows thata < lim X. Q.E.D.

The next result asserts that if a sequence Y is squeezed between two sequences that
converge to the same limit, then it must also converge to this limit.
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3.2.7 Squeeze Theorem Suppose that X = (x,), Y = (,), and Z = (z,) are sequences
of real numbers such that

x, <y, <z, forall neN,
and thatlim(x,) = lim(z,). Then Y = (y,) is convergent and

lim(x,) = lim(y,) = lim(z,).

Proof. Letw :=lim(x,) = lim(z,).If¢ > Oisgiven, thenitfollows from the convergence
of X and Z to w that there exists a natural number K such that if » > K then

|x, —w| < ¢ and lz, — w| <e&.
Since the hypothesis implies that
X, ~w=<y ~w=<sz ~w forall neN,
it follows (why?) that
—E<y,—wW<E

foralln > K. Since ¢ > 0 is arbiwrary, this implies that lim(y,) = w. Q.ED.

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of
Theorems 3.2.4,3.2.5, 3.2.6, and 3.2.7 can be weakened to apply to the tail of a sequence.
For example, in Theorem 3.2.4, if X = (x,) is “ultimately positive” in the sense that there
exists m € Nsuch that x, > 0 for all » > m, then the same conclusion that x > 0 will hold.
Similar modifications are valid for the other theorems, as the reader should verify.

3.2.8 Examples (a) The sequence (n) is divergent.

It follows from Theorem 3.2.2 that if the sequence X := (n) is convergent, then there
exists a real number M > 0 such that n = |n| < M for all n € N. But this violates the
Archimedean Property 2.4.3.

(b) The sequence ((—1)") is divergent.

This sequence X = ((—1)") is bounded (take M := 1), so we cannot invoke Theorem
3.2.2. However, assume that a := lim X exists. Let £ := 1 so that there exists a natural
number K, such that

[((=1)—al <1 forall n>K,.

If n is an odd natural number with n > K, this gives | — 1 —a| < 1,sothat —2 < a < 0.
(Why?) On the other hand, if n is an even natural number with n > K|, this inequality
gives |1 —a| <1 so that 0 < a < 2. Since a cannot satisfy both of these inequalities,
the hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is
divergent.

2n+1

(¢) lim =2

n
If we let X := (2) and Y := (1/n), then ((2n 4+ 1)/n) = X + Y. Hence it follows
from Theorem 3.2.3(a) that im(X + ¥) =lim X 4+ limY =2+0=2.

2n +1
i —_ =2
d) 11m(n+5)
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Since the sequences (2n + 1) and (n + 5) are not convergent (why?), it is not possible
to use Theorem 3.2.3(b) directly. However, if we write

2n+1 2+41/n
n+5 1+45/n’
we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we

take X .= (2+ 1/n) and Z := (1 + 5/n). (Check that all hypotheses are satisfied.) Since
limX =2andlimZ = 1 # 0, we deduce that lim((2n + 1)/(n + 5)) =2/1 = 2.

. 2n
(e) lim (n2 n 1) =0.

Theorem 3.2.3(b) does not apply directly. (Why?) We note that
2n _ 2
n+1 n+1/n’

but Theorem 3.2.3(b) does not apply here either, because (n + 1/n) is not a convergent
sequence. (Why not?) However, if we write

2n  2/n
n+1  1+1/n%

then we can apply Theorem 3.2.3(b), since lim(2/n) = 0 and lim(1 + 1/n2) =1#0.
Therefore lim(2n/(n* 4+ 1)) = 0/1 = 0.

® lim (%) =0.

We cannot apply Theorem 3.2.3(b) directly, since the sequence (n) is not convergent
[neither is the sequence (sin#n)]. It does not appear that a simple algebraic manipulation
will enable us to reduce the sequence into one to which Theorem 3.2.3 will apply. However,
if we note that —1 < sinn < 1, then it follows that

sinn 1
<

- forall n eN.
n n

1
—-— <
e
Hence we can apply the Squeeze Theorem 3.2.7 to infer that lim(n ! sinn) = 0. (We note

that Theorem 3.1.10 could also be applied to this sequence.)

(@ Let X =(x,) be a sequence of real numbers that converges to x € R. Let p be a
polynomial; for example, let

p@)=at* +a_ "+ +at+a,
where k € N and a; € Rfor j =0,1,---, k. It follows from Theorem 3.2.3 that the se-

quence (p(x,)) converges to p(x). We leave the details to the reader as an exercise.

(h) Let X = (x,) be a sequence of real numbers that converges to x € R. Let r be a
rational function (that is, r(¢t) := p(t)/q(t), where p and q are polynomials). Suppose
that g(x,) # O for all n € N and that g(x) # 0. Then the sequence (r(x,)) converges to
rex) = p(x)/q(x). Weleave the details to the reader as an exercise. O

We conclude this section with several results that will be useful in the work that follows.

3.2.9 Theorem Let the sequence X = (x,) converge to x. Then the sequence (|x,|) of
absolute values converges to |x|. That is, if x = lim(x,), then |x| = lim(|x, |).
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Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a)) that
|lx,| = Ixl| < |x, —x|  forall neN.

The convergence of (|x,|) to |x| is then an immediate consequence of the convergence of
(x,)tox. QED.

3.2.10 Theorem Let X = (x,) be a sequence of real numbers that converges to x and
suppose that x, > 0. Then the sequence (,/x ) of positive square roots converges and

lim (y/x,) = Vx. '

Proof. 1t follows from Theorem 3.2.4 that x = lim(x,) > 0 so the assertion makes sense.
We now consider the two cases: (i) x = 0 and (ii) x > 0.

Case (i) If x =0, let £ > 0 be given. Since x, — 0 there exists a natural number X
such thatif n > K then

. 2
Osxn_xn 0<e”.

Therefore [see Example 2.1.13(a)], 0 < /x,, < ¢ forn > K. Since ¢ > 0 is arbitrary, this
implies that \/x, — 0.
Case (ii) If x > 0, then /x > 0 and we note that

_Wr - VE) (St VE)  x -
V== NN C Va+Vx

Since \/x, + +/x > +/x > 0, it follows that
1
‘,/xn - \/;l < (7';) lxn —.X'I.

The convergence of \/x,, — /x follows from the fact that x, — x. QED.

n

For certain types of sequences, the following result provides a quick and easy “ratio
test” for convergence. Related results can be found in the exercises.

3.2.11 Theorem Let (x,) be a sequence of positive real numbers such that L :=
lim(x,,/x,) exists. If L < 1, then (x,) converges and lim(x,) = 0.

Proof. By 3.2.4 it follows that L > 0. Let r be a number such that L < r < 1, and let
g€ =r — L > 0. There exists a number K € N such that if n > K then

x_"ﬂ_L
‘xn

It follows from this (why?) thatif n > K, then

<E€.

x
2 <L4e=L+(r-L)=r

xn

Therefore, if n > K, we obtain

0<x,,, <xr<x, rt<--<xerm ¥+
If we set C == xK/rK, we see that 0 < x,_ | < Cr**! forall n> K. Since 0 <r <
1, it follows from 3.1.11(b) that lim(+") = O and therefore from Theorem 3.1.10 that
lim(x,) = 0. Q.E.D.
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As an illustration of the utility of the preceding theorem, consider the sequence (x,,)

givenby x, := n/2". We have

Xppp _n+1 2" 1

1
Zatl =14 2),
x, 2l n 2(+n)

sothatlim(x,, ,/x,) = % Since % < 1, it follows from Theorem 3.2.11 thatlim(n/2") = 0.

Exercises for Section 3.2

10.

11.

12.
13,

14,
15.

For x, given by the following formulas, establish either the convergence or the divergence of
the sequence X = (x,).

n -D"n
= N b = .
@ x, n+1 ® x, n+1
2 2
n 2n° 43
c) x = ——7, d x = .
© =x, ol @ x, "
Give an example of two divergent sequences X and Y such that:
(a) their sum X + Y converges, (b) their product XY converges.

Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent.

Show that if X and Y are sequences such that X converges to x # 0 and XY converges, then Y
converges.

Show that the following sequences are not convergent.
@ @), (b) ((=1)"n?).
Find the limits of the following sequences:
. . [ (=D"
1 2+ 1/n)?), b) 1 ,
(a) 1m(( + /n)) (b) 1m<n+2
. V=1 . (n+1
1 d 1 .
(c) 1m(\/ﬁ+1 s (d) lim n/n
If (b,) is abounded sequence and lim(a, ) = 0, show that lim(a,b,) = 0. Explain why Theorem

3.2.3 cannot be used.

Explain why the resultin equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit
of the sequence ((1 + 1/n)").
Lety, == +/n+1— /nforn € N. Show that (y,) and (/ny,) converge. Find their limits.

Determine the following limits.

@ lim ((3/m)'/?"), (b) lLim((n+1)"/MtD),
n+l1 bn+l

If 0 < a < b, determine lim <2——+———>

a"+ b
Ifa > 0,b > 0, show that lim (/(n + a)(n + b) — n) = (a + b)/2.
Use the Squeeze Theorem 3.2.7 to determine the limits of the following.
2 2
@ (n), ®) ().
Show thatif z = (a" + b")'/" where 0 < a < b, then lim(z,) = b.

Apply Theorem 3.2.11 to the following sequences, where a, b satisfy0 <a < 1, b > 1.
(@ (a"), (b ©@"/2"),
©) (n/b"), (d) (2*/3™).
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16. (a) Giveanexample of aconvergentsequence (x,) of positive numbers withlim(x, , ,/x,) = 1.
(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be
used as a test for convergence.)

17. Let X = (x,) be a sequence of positive real numbers such that lim(x, a/x)=L> 1. Show
that X is not a bounded sequence and hence is not convergent.

18. Discuss the convergence of the following sequences, where a, b satisfy0 <a < 1,b > 1.
@ (n*a"), ®) ©"/n?),
() @"/nY, @ (nl/n").

19. Let (x,) be a sequence of positive real numbers such that lim(x,:/ ")y = L < 1. Show that there
exists a number r with 0 < r < 1 such that 0 < x, < r" for all sufficiently large n € N. Use
this to show that lim(x,) = 0.

20. (a) Give anexample of a convergent sequence (x,) of positive numbers with lim(x,f/ M =1.
(b) Give an example of a divergent sequence (x,) of positive numbers with lim(x,t/ =1
(Thus, this property cannot be used as a test for convergence.)

21. Suppose that (x,) is a convergent sequence and (y,) is such that for any & > O there exists M
suchthat |x, —y | < &foralln > M. Does it follow that (y, ) is convergent?

22. Show that if (x,) and (y,) are convergent sequences, then the sequences (u,) and (v,) defined
by u, := max{x,, y,}and v, ;= min{x , y } are also convergent. (See Exercise 2.2.16.)

23. Show that if (x,), (y,), (z,) are convergent sequences, then the sequence (w,) defined by

w, == mid{x,, y,, z,} is also convergent. (See Exercise 2.2.17.)

Section 3.3 Monotone Sequences

Until now, we have obtained several methods of showing that a sequence X = (x,) of real
numbers is convergent:

(i) We can use Definition 3.1.3 or Theorem 3.1.5 directly. This is often (but not
always) difficult to do.

(ii) We can dominate |x, — x| by a multiple of the terms in a sequence (a,) known
to converge to 0, and employ Theorem 3.1.10.

(iii) We can identify X as a sequence obtained from other sequences that are known
to be convergent by taking tails, algebraic combinations, absolute values, or square roots,
and employ Theorems 3.1.9, 3.2.3, 3.2.9, or 3.2.10.

(iv) Wecan “squeeze” X between two sequences that converge to the same limit and
use Theorem 3.2.7.

(v) We can use the “ratio test” of Theorem 3.2.11.

Except for (iii), all of these methods require that we already know (or at least suspect) the
value of the limit, and we then verify that our suspicion is correct.

There are many instances, however, in which there is no obvious candidate for the limit
of a sequence, even though a preliminary analysis may suggest thatconvergence is likely. In
this and the next two sections, we shall establish results that can be used to show a sequence
is convergent even though the value of the limit is not known. The method we introduce in
this section is more restricted in scope than the methods we give in the next two, but it is
much easier to employ. It applies to sequences that are monotone in the following sense.
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3.3.1 Definition Let X = (x,) be a sequence of real numbers. We say that X is increasing
if it satisfies the inequalities

xls_xzs...s_x Sx S...

n n+l1

We say that X is decreasing if it satisfies the inequalities

xl zxzz...zxn zxn+1 Z..._
We say that X is monotone if it is either increasing or decreasing.

The following sequences are increasing:

(1,2,3,4,"',","'), (1v2v2y3y3737"')’
(a,a*, a3 ---,a",--) if a>1.

The following sequences are decreasing:

(1,1/2,1/3,---,1/n, -2, (1,1/2,1/2%,...,1/2"71 ..,
(b, b* b3, b, ) if 0<b<l.

The following sequences are not monotone:
(1L, =1, 41, -, (=DM ), (=1,42, -3, -+, (=1)"n- )
The following sequences are not monotone, but they are “ultimately” monotone:
(7,6,2,1,2,3,4, .- ), (—-2,0,1,1/2,1/3,1/4,---).

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con-
vergent if and only if it is bounded. Further:

(@) IfX = (x,) is a bounded increasing sequence, then
lim(x,) = sup{x, : n € N}.

(b) IfY = (y,) is a bounded decreasing sequence, then
lim(y,) = inf{y, : n € N}.

Proof. 1t was seen in Theorem 3.2.2 that a convergent sequence must be bounded.

Conversely, let X be a bounded monotone sequence. Then X is either increasing or
decreasing.

(a) We first treat the case where X = (x,) is a bounded, increasing sequence. Since
X is bounded, there exists a real number M such that x, < M forall n € N. According to
the Completeness Property 2.3.6, the supremum x* = sup{x, : n € N} exists in R; we will
show that x* = lim(x,,).

Ife > Ois given, then x* — ¢ is not an upper bound of the set {x, : n € N}, and hence
there exists a member of set x, such that x* — & < x,. The fact that X is an increasing
sequence implies that x,, < x, whenevern > K, so that

—e<xg<x,<x*<x"+e forall n> K.
Therefore we have
|x, —x*| <& forall n>K.

Since & > 0 is arbitrary, we conclude that (x,) converges to x*.
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(b) If Y = (y,) is a bounded decreasing sequence, then it is clear that X := —Y =
(—y,) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{—y, :
n € N}. Now lim X = —limY and also, by Exercise 2.4.4(b), we have

sup{—y, : n € N} = —inf{y, : n € N}.
Therefore limY = —lim X = inf{y, : n € N}. QED.

The Monotone Convergence Theorem establishes the existence of the limit of a
bounded monotone sequence. It also gives us a way of calculating the limit of the se-
quence provided we can evaluate the supremum in case (a), or the infimum in case (b).
Sometimes it is difficult to evaluate this supremum (or infimum), but once we know that it
exists, it is often possible to evaluate the limit by other methods.

3.3.3 Examples (a) lim(1/{/n) =0.

It is possible to handle this sequence by using Theorem 3.2.10; however, we shall
use the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set {1/./n:
n € N}, and it is not difficult to show that 0 is the infimum of the set {1/,/n: n € N}; hence
0 = lim(1/+/n).

On the other hand, once we know that X := (1/4/n) is bounded and decreasing, we
know that it converges to some real number x. Since X = (1/+/n) converges to x, it follows
from Theorem 3.2.3 that X - X = (1/n) converges to x2. Therefore x> = 0, whence x = 0.
(b) Letx,:=1+1/2+1/3+---+1/nforn eN.

Sincex,, =x, +1/(n + 1) > x,, we see that (x,) is an increasing sequence. By the
Monotone Convergence Theorem 3.3.2, the question of whether the sequence is convergent
or not is reduced to the question of whether the sequence is bounded or not. Attempts to use
direct numerical calculations to arrive at a conjecture concerning the possible boundedness
of the sequence (x,) lead to inconclusive frustration. A computer run will reveal the
approximate values x, ~ 11.4 for n = 50, 000, and x, ~ 12.1 for n = 100,000. Such
numerical facts may lead the casual observer to conclude that the sequence is bounded.
However, the sequence is in fact divergent, which is established by noting that

1+1+ 1+l)+ + ! + +1
Xon = — — — B S —_
2 2 3 4 m-1 4 2"

st (A (L ]
2 \4 "4 2" 2"

—1+1+1+ +1
- 2 2 2
_1+n
= x

Since (x,,) is unbounded, Theorem 3.2.2 implies that it is divergent.

The terms x,, increase exwremely slowly. For example, it can be shown that to achieve
x, > 50 would entail approximately 5.2 x 10! additions, and a normal computer perform-
ing 400 million additions a second would require more than 400,000 years to perform
the calculation (there are 31,536,000 seconds in a year). Even a supercomputer that can
perform more than a trillion additions a second, would take more than 164 years to reach
that modest goal. a

Sequences that are defined inductively must be wreated differently. If such a sequence
is known to converge, then the value of the limit can sometimes be determined by using the
inductive relation.
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For example, suppose that convergence has been established for the sequence (x,)
defined by
1
x, =2, xn+1=2+x—, n e N.
n
If we let x = lim(x,), then we also have x = lim(x,,, ) since the 1-tail (x,,,) converges
to the same limit. Further, we see that x, > 2, so that x # 0 and x, 5 O for all n € N.
Therefore, we may apply the limit theorems for sequences to obtain

1 1
x=lim(x, ) =2+ im(x,) =2+ s
Thus, the limit x is a solution of the quadratic equation x% —2x — 1 = 0, and since x must
be positive, we find that the limit of the sequence is x = 1 + /2.

Of course, the issue of convergence must not be ignored or casually assumed. For ex-
ample, if we assumed the sequence (y,) defined by Y= 1L Yy = 2y,, + lis convergent
with limit y, then we would obtain y = 2y + 1, so that y = —1. Of course, this is absurd.

In the following examples, we employ this method of evaluating limits, but only after
carefully establishing convergence using the Monotone Convergence Theorem. Additional
examples of this type will be given in Section 3.5.

3.3.4 Examples (a) LetY = (y,) bedefined inductivelyby y, :=1, y,,, := }(Zyn +
3) for n > 1. We shall show that limY = 3/2.

Direct calculation shows that y, = 5/4. Hence we have ¥, <y, < 2. We show, by
Induction, that y, < 2 for all n € N. Indeed, this is true for n = 1, 2. If y, < 2 holds for
some k € N, then

Ves1 = 32y +3) < 3@+3)=1<2

sothat y, ., < 2 Therefore y, < 2foralln € N.

We now show, by Induction, that y, < y, ., foralln € N. The wruth of this assertion has
been verifiedforn = 1. Now suppose that y, < y, ., forsome k;then2y, +3 <2y, , +3,
whence it follows that

Ver1 = 3@y +3) < P2y +3) = Yier2r

Thus y, < y,,, impliesthaty, , < y,,,. Therefore y, < y, ., foralln € N.

We have shown that the sequence Y = (y,) is increasing and bounded above by 2.
It follows from the Monotone Convergence Theorem that Y converges to a limit that is
at most 2. In this case it is not so easy to evaluate lim(y,) by calculating sup{y,: n € N}.
However, there is another way to evaluate its limit. Since y,, | = %(Zy,l +3)foralln € N,
the nth termin the 1-tail Y, of Y has a simple algebraic relation to the nthtermof Y. Since,
by Theorem 3.1.9, we have y := limY, = lim Y, it therefore follows from Theorem 3.2.3
(why?) that

y=3Q2y+3),

from which it follows that y = 3/2.
(b) Let Z = (z,) be the sequence of real numbers defined by z, :=1, 2, , := /22, for
n € N. We will show that lim(z,) = 2.

Note that z, = 1 and z, = +/2; hence 1 < z, <z, <2 We claim that the sequence
Z is increasing and bounded above by 2. To show this we will show, by Induction, that
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1<z <z_, <2foralln € N. This fact has been verified for n = 1. Suppose that it is
true forn = k; then 2 < 2z, < 2z, a < 4, whence it follows (why?) that

1<«/§§zk+l=‘/22k<zk+2= 22k+1 <4 =2

[In this last step we have used Example 2.1.13(a).] Hence the validity of the inequality 1 <
z, < z,,, <2implies thevalidityof 1 < z,_, < z_, < 2. Therefore1 <z, <z | <2
foralln € N.

Since Z = (z,) is a bounded increasing sequence, it follows from the Monotone
Convergence Theorem that it converges to a number z := sup{z,}. It may be shown directly
that sup{z,} = 2, so that z = 2. Alternatively we may use the method employed in part (a).
Therelationz, , = \/Z_Zn gives arelation between the nth term of the 1-tail Z, of Z and the
nth term of Z. By Theorem 3.1.9, we have lim Z, = z = lim Z. Moreover, by Theorems
3.2.3 and 3.2.10, it follows that the limit z must satisfy the relation

z=42z.

Hence z must satisfy the equation z2 = 2z which has the roots z = 0, 2. Since the terms of
z= (zn) allsatisfy 1 < z, < 2, it follows from Theorem 3.2.6 that we musthave 1 < z < 2.
Therefore z = 2. O

The Calculation of Square Roots

We now give an application of the Monotone Convergence Theorem to the calculation of
square roots of positive numbers.

3.3.5 Example Leta > 0; we will construct a sequence (s,) of real numbers that con-
verges to \/a.

Let s, > O be arbitrary and define s, | = %(sn +a/s,) forn € N. We now show that
the sequence (s,) converges to \/a. (This process for calculating square roots was known
in Mesopotamia before 1500 B.C.)

We first show that s > a for n > 2. Since s, satisfies the quadratic equation s —
2s, s, +a = 0, this equation has a real root. Hence the discriminant 4s?,, — 4a must be
nonnegative; that is, sfH >aforn > 1.

To see that (s,) is ultimately decreasing, we note that for n > 2 we have

1 a 1 (s2—a)
sn—sn+l=sn_§(sn+§)=§‘ nSn > 0.

Hence, s, 1SS, for all n > 2. The Monotone Convergence Theorem implies that s :=

lim(s,) exists. Moreover, from Theorem 3.2.3, the limit s must satisfy the relation

-3+

whence it follows (why?) that s = a/s or s> = a. Thus s = Ja.

For the purposes of calculation, it is often important to have an estimate of how rapidly
the sequence (s,) converges to \/a. As above, we have /a <s, for all n > 2, whence it
follows that a/s, < /a < s,. Thus we have

0<s,—+a<s,—als, = (s} —a)/s, for n>2.

Using this inequality we can calculate \/a to any desired degree of accuracy. a
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Euler’s Number

We conclude this séction by introducing a sequence that converges to one of the most
important “transcendental” numbers in mathematics, second in importance only to 7.

3.3.6 Example Lete, := (1+1/n)" for n € N. We will now show that the sequence
E = (e,) is bounded and increasing; hence it is convergent. The limit of this sequence is
the famous Euler number e, whose approximate value is 2.718 281 828459 045 - - ., which
is taken as the base of the “natural” logarithm.

If we apply the Binomial Theorem, we have

1\" nl nr-1) 1 na—-DHnr-=-2) 1
=(1+2) =1+ 2.2y 82—~ _ A
én (+n> tiRt T et 3! w3
nn-1)---2-1 1

ne

n! n

If we divide the powers of n into the terms in the numerators of the binomial coefficients,

we get
1 1 1 1 2
=14+1+—=(1-- —[1-- - =
e=1+1+5(1-7)+5 (1-5) (1-2)
1 -
+”+_(PJ)O_E)“@_” j,
n! n n n
Similarly we have

e —1+1+1(1 ! )+1 1 1 1 2
e+l 2! n+1 3! n+1 n+1
1 1 2 -
+...+_(1_ 1- 1_" 1
n! n+1 n+1 n+1
e
n+ 1! n+1 n+1 n+1

Note that the expression for e, contains n + 1 terms, while that for e, +1 contains n + 2
terms. Moreover, each term appearing in e, is less than or equal to the corresponding term
ine, Y ande, 4 has one more positive term. Therefore we have 2 < e, <e <---<e <
e,,1 < -, sothatthe terms of E are increasing.

To show that the terms of E are bounded above, we note thatif p =1, 2, - - -, n, then
(1 — p/n) < 1. Moreover 2! < p! [see 1.2.4(e)] so that 1/p! < 1/2P~!. Therefore, if
n > 1,then we have

1 1 1
2<e, <l+l+§+?+“.+F'
Since it can be verified that [see 1.2.4(f)]
1 1 1 1
. '2‘+?+"'+2"—_1=1——2n_1 < l,

we deduce that 2 < e, < 3 for all n € N. The Monotone Convergence Theorem implies
that the sequence E converges to a real number that is between 2 and 3. We define the
number e to be the limit of this sequence.

By refining ourestimates we can find closer rational approximations to e, but we cannot
evaluate it exactly, since e is an irrational number. However, it is possible to calculate e to
as many decimal places as desired. The reader should use a calculator (or a computer) to
evaluate e, for “large” values of n. O



74 CHAPTER 3 SEQUENCES AND SERIES

Leonhard Euler

Leonhard Euler (1707-1783) was born near Basel, Switzerland. His clergy-
man father hoped that his son would follow him into the ministry, but when
Eulerentered the University of Basel at age 14, his mathematical talent was
noted by Johann Bernoulli, who became his mentor. In 1727, Euler went
to Russia to join Johann’s son, Daniel, at the new St. Petersburg Academy.
There he met and married Katharina Gsell, the daughter of a Swiss artist.
During their long marriage they had 13 children, but only five survived
childhood. -

In 1741, Euler accepted an offer from Frederick the Great to join the Berlin Academy, where
he stayed for 25 years. During this period he wrote landmark books on calculus and a steady stream
of papers. In response to a request for instruction in science from the Princess of Anhalt-Dessau,
he wrote a multi-volume work on science that became famous under the title Letters to a German
Princess.

In 1766, he returned to Russia at the invitation of Catherine the Great. His eyesight had
deteriorated over the years, and soon after his return to Russia he became totally blind. Incredibly,
his blindness made little impact on his mathematical output, for he wrote several books and over
400 papers while blind. He remained busy and active until the day of his death.

Euler’s productivity was remarkable: he wrote textbooks on physics, algebra, calculus, real
and complex analysis, analytic and differential geometry, and the calculus of variations. He also
wrote hundreds of original papers, many of which won prizes. A current edition of his collected
works consists of 74 volumes.

Exercises for Section 3.3

1. Letx, :=8andx,
limit.

= %xn + 2 forn € N. Show that (x,) is bounded and monotone. Find the

2. Let X > 1 and X = 2 1/x" forn € N. Show that (x") is bounded and monotone. Find the
limit.

3. Letx, >2andx, a=1+/x, —1forne N. Show that (x,) is decreasing and bounded
below by 2. Find the limit.

4. Letx, :=1and X, =y /2 + x, forn € N. Show that (x,) converges and find the limit.

5. Lety = ./p,wherep>0,andy , :=,/p+y, forn e N. Show that (y,) converges and

find the limit. [Hint: One upper bound is 1 + 2,/p.]
6. Leta > Oandletz, > 0.Definez, | :=,/a +z, forn € N. Show that (z,) converges and find
the limit.

7. Letx,=a>0andx,  =x, + 1/x forn € N.Determine if (x,) converges or diverges.

8. Let (a,) be an increasing sequence, (b,) a decreasing sequence, and assume that a, < b, for
all n € N. Show that lim(a,) < lim(,), and thereby deduce the Nested Intervals Property 2.5.2
from the Monotone Convergence Theorem 3.3.2.

9. Let A be an infinite subset of R that is bounded above and let « := sup A. Show there exists an
increasing sequence (x,) with x, € A for all n € N such that 4 = lim(x,).

10. Let(x,)beabounded sequence, and for eachn € Nlets, := sup{x, : k > n} and¢, := inf{x, :
k > n}. Prove that (s,) and (¢,) are monotone and convergent. Also prove that if lim(s,) =
lim(z,), then (x,) is convergent. [One calls lim(s, ) the limit superior of (x,), and lim(¢,) the
limit inferior of (x,).]
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11. Establish the convergence or the divergence of the sequence (y,), where
1 1 1
- e — f N.
n+1+n+2+ +2n or ne€
12. Letx, := 1/12+1/2% 4 - + 1/n? for each n € N. Prove that (x,) is increasing and boundec
and hence converges. [Hint: Note that if k > 2, then l/k2 <1/ktk—-—1)=1/k—1) —1/k.]

Y, =

13. Establish the convergence and find the limits of the following sequences.

@ (A+1/m™), ®) (A+1/m)?),
Ty n
(© ((1 + m) ) @ (a-1n)").

14. Use the method in Example 3.3.5 to calculate /2, correct to within 4 decimals.
15. Use the method in Example 3.3.5 to calculate +/5, correct to within 5 decimals.
16. Calculate the number e, in Example 3.3.6 forn = 2, 4, 8, 16.

17. Use a calculator to compute e, for n = 50, n = 100, and n = 1,000.

Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem

In this section we will introduce the notion of a subsequence of a sequence of real numbers.
Informally, a subsequence of a sequence is a selection of terms from the given sequence
such thatthe selected terms form a new sequence. Usually the selection is made for a definite
purpose. For example, subsequences are often useful in establishing the convergence or the
divergence of the sequence. We will also prove the important existence theorem known as
the Bolzano-Weierstrass Theorem, which will be used to establish a number of significant
results.

3.4.1 Definition Let X = (x,) be a sequence of real numbers and let n, <n, <--- <
n, < ---beastrictly increasing sequence of natural numbers. Then the sequence X' = (x ”k)

given by
(x"l’xnz’ PR ’x"k, .. .)

is called a subsequence of X.

For example, if X := ( % % % +++), then the selection of even indexed terms produces
the subsequence

111 1
X/= _’_’_’..'7_,... b
(2 4°6 2k )

where n; =2,n, =4, e ny = 2k, - - -. Other subsequences of X = (1/n) are the fol-

lowing:
(1 11 1 11 1 1
1’3’5 " 2%k—1 o\2r4r e k)Y :

The following sequences are not subsequences of X = (1/n):

111111 101010
2’194,316’59"' ’ lv 131 ’5’ P
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A tail of a sequence (see 3.1.8) is a special type of subsequence. In fact, the m-tail
corresponds to the sequence of indices

nn=m+ln,=m+2,---.,n=m+k,---.

But, clearly, not every subsequence of a given sequence need be a tail of the sequence.
Subsequences of convergent sequences also converge to the same limit, as we now
show.

3.4.2 Theorem Ifa sequence X = (x,) of real numbers converges to a real number x,
then any subsequence X' = (xnk) of X also converges to x.

Proof. Let € > 0 be given and let K (¢) be such that if n > K (¢), then |x, — x| < e.
Sincen; < n, <--- <n, < ---isanincreasing sequence of natural numbers, it is easily
proved (by Induction) that n, > k. Hence, if k > K (¢), we also have n, > k > K(¢) so
that |xnk — x| < &. Therefore the subsequence (xnk) also converges to x. QED.

3.4.3 Example (a) lim(»") =0if0 <’b < 1.

We have already seen, in Example 3.1.11(b), that if 0 < b < 1 and if X, = b", then
it follows from Bernoulli’s Inequality that lim(x,) = 0. Alternatively, we see that since
0<b<1,then x, , = bt < b = x, so that the sequence (x,) is decreasing. It is
also clear that 0 < x, <1, so it follows from the Monotone Convergence Theorem 3.3.2
that the sequence is convergent. Let x :=limx,. Since (x,,) is a subsequence of (x,)
it follows from Theorem 3.4.2 that x = lim(x,,). Moreover, it follows from the relation
X,, = b = (") = xf and Theorem 3.2.3 that

x = lim(x,,) = (lim(x,)) = x%.
Therefore we must eitherhave x = 0 or x = 1. Since the sequence (x,) is decreasing and
bounded above by b < 1, we deduce that x = 0.
(b) lim(c"/") =1forc > 1.

This limit has been obtained in Example 3.1.11(c) for ¢ > 0, using a rather ingenious
argument. We give here an alternative approach for the case ¢ > 1. Note thatif z, = cl/n,
then z, > 1 and z,,, < z, for all n € N. (Why?) Thus by the Monotone Convergence
Theorem, the limit z := lim(z,) exists. By Theorem 3.4.2, it follows that z = lim(z,,). In
addition, it follows from the relation

z, = cl/am — (cm1z — Z’l’/2
and Theorem 3.2.10 that
z=1im(z,,) = (lim(zn))l/2 = Z/2

Therefore we have z2 = zwhence it follows thateither z = 0 or z = 1. Since z, > 1forall
n € N, we deduce that z = 1.
We leave it as an exercise to the reader to consider the case 0 < ¢ < 1. O

The following result is based on a careful negation of the definition of lim(x,) = x. It
leads to a convenient way to establish the divergence of a sequence.

3.4.4 Theorem Let X = (x,) be a sequence of real numbers. Then the following are
equivalent:

(i) The sequence X = (x,) does not converge tox € R.
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(i) Thereexists an ¢, > 0 such that for any k € N, there existsn, € N such thatn, > k
and Ixnk —x| = g,

(iii) There exists an g, > 0 and a subsequence X f= (x"k) of X such that Ix"k —x| > g
forallk € N.

Proof. (i) = (i) If (x,) does not converge to x, then for some g, > 0 it is impossible to
find a natural number k such that for all n > k the terms x, satisfy |x, — x| < ¢,. That is,
for each k € N it is not true that for all n > k the inequality |x, — x| < g, holds. In other
‘words, for each k € N there exists a natural number n > k such that |x, —x|>¢,

(ii) = (iii) Leteybe asin (i) and let n; € N be suchthatn, > 1 and lx, — xl > &g
Now let n, € N be such that n, > n, and lxn2 — x| > gy; let n; € N be such thatn, > n,
and Ix — x| > ¢,. Continue in this way to obtain a subsequence X' = (xnk) of X such
that |x, —x| > g, forallk € N.

(111) = (i) Suppose X = (x,) has a subsequence X "= (xnk) satisfying the condition
in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence
X’ would also converge to x. But this is impossible, since none of the terms of X’ belongs
to the -neighborhood of x. QED.

Since all subsequences of a convergent sequence must converge to the same limit,
we have part (i) in the following result. Part (ii) follows from the fact that a convergent
sequence is bounded.

3.4.5 Divergence Criteria If a sequence X = (xn) of real numbers has either of the
following properties, then X is divergent.

(i) X has two convergent subsequences X' = (xnk) and X" = (xrk) whose limits are not
equal.

(ii) X is unbounded.

3.4.6 Examples (a) The sequence X := ((—1")) is divergent.

The subsequence X' := (=D =(1,1,---) converges to 1, and the subsequence
X" :=((-1)*" = (-1, -1, - --) converges to —1. Therefore, we conclude from Theo-
rem 3.4.5(i) that X is divergent.

(b) The sequence (1, 3,3, }, - - ) is divergent.

This is the sequence Y = (y,), where y, = n if n is odd, and y, = 1/n if n is even.
It can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is
divergent.

() The sequence S := (sinn) is divergent.

This sequence is not so easy to handle. In discussing it we must, of course, make use
of elementary properties of the sine function. We recall that sin(r/6) = % = sin(57/6)
and that sinx > % for x in the interval I, := (7/6, 57 /6). Since the length of I, is 57 /6 —
7]6 = 27/3 > 2, there are at least two natural numbers lying inside /; we let n, be the
first such number. Similarly, for each k¥ € N, sinx > % for x in the interval

I, = (n/6 27k — 1), 57/6 + 2wk — 1)).

Since the length of I, is greater than 2, there are at least two natural numbers lying inside
I; we let n, be the first one. The subsequence S := (sinn ) of § obtained in this way has
the property that all of its values lie in the interval [, 1].
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Similarly, if k € N and J, is the interval

Jo= (Tn/6+ 27 (k = 1), 117 /6 + 27(k — 1)),
then it is seen that sinx < —% for all x € J, and the length of J, is greater than 2. Let ni,
be the first natural number lying in J,. Then the subsequence S” := (sinm,) of S has the
property that all of its values lie in the interval [— 1, —%]

Given any real number c, it is readily seen that at least one of the subsequences S’
and S” lies entirely outside of the 1-neighborhood of c. Therefore c cannot be a limit of S.

2
Since ¢ € R is arbitrary, we deduce that S is divergent. |

The Existence of Monotone Subsequences

While not every sequence is a monotone sequence, we will now show that every sequence
has a monotone subsequence.

3.4.7 Monotone SubsequenceTheorem IfX = (x,) is a sequence of real numbers, then
there is a subsequence of X that is monotone.

Proof. For the purpose of this proof, we will say that the mth term x,, is a “peak” if
x,, > x, forall n suchthat n > m. (That is, x,, is never exceeded by any term that follows
it in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an
increasing sequence, no term is a peak.

We will consider two cases, depending on whether X has infinitely many, or finitely
many, peaks.

Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing

subscripts: )cml R xmz, cee, xmk, - +. Since each term is a peak, we have

X > x >...>x > ..
m = "m, — = "m, =

Therefore, the subsequence (xmk) of peaks is a decreasing subsequence of X.

Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by
increasing subscripts: xm] 5 ZUPEEEN x'",' Lets, := m_+ 1 be the first index beyond the last
peak. Since X, is not a peak, there exists s, > s, such that X <X Since Xy is not a peak,
there exists s; > s, such that X, < X Continuing in this way, we obtain an increasing
subsequence (xsk) of X. QED.

It is not difficult to see that a given sequence may have one subsequence that is
increasing, and another subsequence that is decreasing.

The Bolzano-Weierstrass Theorem

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass
Theorem, whichstates that every bounded sequence has a convergent subsequence. Because
of the importance of this theorem we will also give a second proof of it based on the Nested
Interval Property.

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a
convergent subsequence.

First Proof. 1t follows from the Monotone Subsequence Theorem that if X = (x,) is
a bounded sequence, then it has a subsequence X' = (xnk) that is monotone. Since this
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subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2
that the subsequence is convergent. QE.D.

Second Proof.  Since the set of values {x, : n € N} is bounded, this set is contained in an
interval I, := [a, b]. We take n, :=1.

We now bisect I, into two equal subintervals /; and I}, and divide the set of indices
{n € N:n > 1} into two parts:

Ay ={neN:n>n,x, el Bj={neN:n>n,x, €}

If A, is infinite, we take I, := I{ and let n, be the smallest natural number in A,. (See
1.2.1.) If A, is a finite set, then B, must be infinite, and we take I, := I{" and let n, be the
smallest natural number in B,.

We now bisect I, into two equal subintervals I; and I, and divide the set {n € N :
n > n,} into two parts:

Ay={neN:n>n,x, €}, B,:={neN:n>nyx, €I}

If A, is infinite, we take I, := [ ._j andlet n, be the smallest natural number in A,. If A,isa
finite set, then B, must be infinite, and we take I, := I , and let n, be the smallest natural
number in B,.

We continue in this way to obtain a sequence of nested intervals I, 2 I, 2 --- 2 I, 2
--- and a subsequence (xnk) of X such that x"lc el for k € N. Since the length of I, is

equalto (b —a)/ k-1 , it follows from Theorem 2.5.3 that there is a (unique) common point
¢ € I forall k € N. Moreover, since xnk and £ both belong to I,, we have

k—1
I, — &< (b—a)/2,
whence it follows that the subsequence (xnk) of X converges to &. Q.E.D.

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theorem for sequences,
because there is another version of it that deals with bounded sets in R (see Exercise 11.2.6).

Itis readily seen that a bounded sequence can have various subsequences that converge
to different limits or even diverge. For example, the sequence ((—1)") has subsequences
that converge to —1, other subsequences that converge to +1, and it has subsequences that
diverge.

Let X be a sequence of real numbers and let X’ be a subsequence of X. Then X' is a
sequence in its ownright, and so it has subsequences. We note that if X” is a subsequence
of X’, then it is also a subsequence of X.

3.49 Theorem LetX = (x,,) be a bounded sequence of real numbers and let x € R have
the property that every convergent subsequence of X converges to x. Then the sequence X
converges to x.

Proof. Suppose M > 0 is a bound for the sequence X so that |x,| < M for all n € N.
If. X does not converge to x, then Theorem 3.4.4 implies that there exist &, > 0 and a
subsequence X' = (xnk) of X such that

1) Ixnk —x| > ¢, forall ke N.

Since X' is a subsequence of X, the number M is also a bound for X'. Hence the Bolzano-
Weierstrass Theorem implies that X’ has a convergent subsequence X”. Since X" is also a
subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the
£,-neighborhood of x, contradicting (1). Q.E.D.
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Exercises for Section 3.4

10.

11.
12.

13.

14.

15.

16.

Give an example of an unbounded sequence that has a convergent subsequence.
Use the method of Example 3.4.3(b) to show thatif 0 < ¢ < 1, then lim(c'/") = 1.

Let (f,) be the Fibonacci sequence of Example 3.1.2(d), and let x, := f, ., /f,. Given that
lim(x,) = L exists, determine the value of L.

Show that the following sequences are divergent.

@ (1-(-D"+1/n), (b) (sinnm/4).
Let X = (x,) and Y = (y,) be given sequences, and let the “shuffled” sequence Z = (z,) be
definedby z, :=x,,2z, =y, -, 2, | ‘= X,,2,, :=,,- - Show that Z is convergent if and
only if both X and Y are convergent and lim X = lim Y.
Letx, :=n'/"forn e N.
(a) Show thatx, | < x, if and only if (1+1/n)" < n, and infer that the inequality is valid

for n > 3. (See Example 3.3.6.) Conclude that (x,) is ultimately decreasing and that

x := lim(x,) exists.
(b) Use the fact that the subsequence (x,,) also converges to x to conclude that x = 1.
Establish the convergence and find the limits of the following sequences:

2
(@) ((1 +1/n?)" ) ) ((1+1/2n)"),
2
© (a+ym), @ (1 +2/m)").
Determine the limits of the following.
@ (BGn)'™), ® (+1/2n)).
Suppose that every subsequence of X = (x,) has a subsequence that converges to 0. Show that
lim X =0.
Let (x,) be a bounded sequence and for each n € Nlet s, := sup{x,: k > n} and § := inf{s}.
Show that there exists a subsequence of (x,) that converges to S.
Suppose that x, > 0 for all n € N and that lim ((— l)"x") exists. Show that (x, ) converges.
Show that if (x,) is unbounded, then there exists a subsequence (x"k) such that lim(1/x, ) = 0.
k

If x, .= (—1)"/n, find the subsequence of (x,) that is constructed in the second proof of the
Bolzano-Weierstrass Theorem 3.4.8, when we take [, :=[-1, 1].
Let (x,) be a bounded sequence and let s := sup{x,: n € N}. Show thatifs ¢ (x,: n € N}, then
there is a subsequence of (x,) that converges to s.
Let (/,) be a nested sequence of closed bounded intervals. For each n € N, let x, € I . Use the
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2.
Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence

is dropped.

Section 3.5 The Cauchy Criterion

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the
significant drawback that it applies only to sequences that are monotone. It is important for
us to have a condition implying the convergence of a sequence that does not require us to
know the value of the limit in advance, and is not restricted to monotone sequences. The
Cauchy Criterion, which will be established in this section, is such a condition.
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3.5.1 Definition A sequence X = (x,) of real numbers is said to be a Cauchy sequence
if for every € > O there exists a natural number H(e) such that for all natural numbers
n, m > H(e), the terms x,, x,, satisfy |x, — x, | < €.

The significance of the concept of Cauchy sequence lies in the main theorem of this
section, which asserts that a sequence of real numbers is convergent if and only if it is a
Cauchy sequence. This will give us a method of proving a sequence converges without
knowing the limit of the sequence.

However, we will first highlight the definition of Cauchy sequence in the following
examples.

3.5.2 Examples (a) The sequence (1/n) is a Cauchy sequence.

If ¢ > O is given, we choose a natural number H = H (¢) such that H > 2/¢. Then
if m,n> H, wehave 1/n < 1/H < ¢/2 and similarly 1/m < ¢ /2. Therefore, it follows
thatif m, n > H, then

1 1

n m

<1+1<€+€_8
“n m 2 27 7

Since ¢ > 0 is arbitrary, we conclude that (1/n) is a Cauchy sequence.

(b) The sequence (1 4+ (—1)") is not a Cauchy sequence.

The negation of the definition of Cauchy sequence is: There exists ¢, > 0 such that for
every H there exist at least one n > H and at least one m > H such that [x, — x, | > &,.
For the terms x, := 1+ (—1)", we observe that if n is even, then x,=2andx,  =0.If
we take ¢, = 2, then forany H we can choose an evennumbern > H andletm :=n +1
to get

% = Syl =2= ¢

We conclude that (x,) is not a Cauchy sequence. O

Remark We emphasize that to prove a sequence (x,) is a Cauchy sequence, we may
not assume a relationship between m and n, since the required inequality |x, — x| < &
must hold for all n, m > H (¢). But to prove a sequence is not a Cauchy sequence, we may
specify a relation between n and m as long as arbitrarily large values of n and m can be
chosen so that |x, — x| > ¢,.

Our goal is to show that the Cauchy sequences are precisely the convergent sequences.
We first prove that a convergent sequence is a Cauchy sequence.

3.5.3 Lemma IfX = (x,) is a convergent sequence of real numbers, then X is a Cauchy
sequence.

Proof. If x :=1lim X, then given ¢ > O there is a natural number K (¢/2) such that if
n-> K(e/2) then |x, — x| < /2. Thus, if H(e) .= K(g/2) and if n, m > H(e), then we
have
lx, = x,| = (x, — %) + (x —x,)|
Slx, —xl+Ix, —xl<e/2+¢e/2=¢.

Since £ > 0 is arbitrary, it follows that (x,) is a Cauchy sequence. QED.
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In order to establish that a Cauchy sequence is convergent, we will need the following
result. (See Theorem 3.2.2.)

3.54 Lemma A Cauchy sequence of real numbers is bounded.

Proof. Let X := (x,) be a Cauchy sequence and let ¢ := 1. If H := H(l) and n > H,
then |x, — x,| < 1. Hence, by the Triangle Inequality, we have |x,| < |x4| + 1 for all
n > H.If we set

M :=sup {Ix, |, Ix,), -+, Ixg_y |, Xl + 1},
then it follows that |x,| < M foralln € N. QED.
We now present the important Cauchy Convergence Criterion.

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and
only if it is a Cauchy sequence.

Proof. Wehave seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence.

Conversely, let X = (x,,) be a Cauchy sequence; we will show that X is convergent to
some real number. First we observe from Lemma 3.5.4 that the sequence X is bounded.
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (xnk)

of X that converges to some real number x*. We shall complete the proof by showing that
X converges to x*.

Since X = (x,) is a Cauchy sequence, given & > 0 there is a natural number H(&/2)
such that if n, m > H(e/2) then

1) |x, —x,| <&/2.

Since the subsequence X' = (x,,k) converges to x*, there is a natural number K > H(¢/2)
belonging to the set {n,, ny, - -} such that

lxg — x*| < ¢g/2.
Since K > H(g/2), it follows from (1) with m = K that
Ix, — x| < €/2 for n> H(g/2).

Therefore, ifn > H(e/2), we have

|-7C,l —x* = I(x,, —Xg) + (xg - x|
=< lx,, _xKl + |x]( _X*l
<ef2+¢e/2=c¢.

Since ¢ > 0Ois arbitrary, we infer thatlim(x,) = x*. Therefore the sequence X is convergent.
QED.

We will now give some examples of applications of the Cauchy Criterion.
3.5.6 Examples (a) Let X = (x,) be defined by

x, =1, Xy =2, and x = 5 (Xpp + X,_1) for n>2.
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Itcanbe shownby Inductionthat1 < x, < 2foralln € N. (Do so.) Some calculation shows
that the sequence X is not monotone. However, since the terms are formed by averaging, it
is readily seen that

1

xn+1|=5’: for neN.

(Prove thisby Induction.) Thus,if m > n, we may employ the Triangle Inequality to obtain

Ix, —

lxn - xml = |xn _‘xn+1| + |xn+1 _xn+2| toe Tt |xm—l _xml

11 1
Sttt s
1

1 1

= 1(1+ +- +W_—1)<§n?z-
Therefore, given ¢ > 0, if n is chosen so large that 1/2" < ¢/4 and if m > n, then it follows
that|x, — x, | < & Therefore, X is a Cauchy sequence in R. By the Cauchy Criterion 3.5.5
we infer that the sequence X converges to a number x.

To evaluate the limit x, we might first “pass to the limit” in the rule of definition
x, = %(xn_l + x,_,) to conclude that x must satisfy the relation x = %(x =+ x), which is
true, but not informative. Hence we must try something else.

Since X converges to x, so does the subsequence X’ with odd indices. By Induction,
the reader can establish that [see 1.2.4(f)]

1 1 1
X1 = 1+2+23+ +22nl

2 1
=1+5(1-=).
+3(-¥)

It follows from this (how?) thatx = limX =1limX' =1+ % =3
(b) LetY = (y,) be the sequence of real numbers given by

1 11 11 (-t
yl'_ﬁ’ yz‘_-ﬁ_i!-’...’ yn'“F_i.}-_i_ n' R
Clearly, Y is not a monotone sequence. However, if m > n, then
(_1)n+2 (_1)n+3 (_1)m+l
O PR T ) T T A
Since 277! < r! [see 1.2.4(e)], it follows that if m > n, then (why?)
Y =3l < R
T+ (n+2)! m!
1 1 1 1
= 2_" Ry 2n+1 +t+ 2m 271—-1.

Therefore, it follows that (y, ) is a Cauchy sequence. Hence it converges to a limit y. At the
present moment we cannot evaluate y directly; however, passing to the limit (with respect
to m) in the above inequality, we obtain

ly, —yl <1/2"%.

Hence we can calculate y to any desired accuracy by calculating the terms y, for sufficiently
large n. The reader should do this and show that y is approximately equal to 0.632 120 559.
(The exact valueof yis 1 — 1/e.)
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1 1 1
(c) The sequence (T + 2 +---+ ;) diverges.
Let H := (h,) be the sequence defined by
1 1 1
hn.—I+§+"'+; for neN,
which was considered in 3.3.3(b). If m > n, then
1 1
h —h, = R
m " n+1 toot m

Since each of these m — n termsexceeds 1/m,thenh,, —h, > (m —n)/m =1—n/m.In
particular, if m = 2n we have h, —h, > % This shows that H is not a Cauchy sequence
(why?); therefore H is not a convergent sequence. (In terms that will be introduced in
Section 3.7, we have just proved that the “harmonic series” ) oc | 1/n is divergent) O

3.5.7 Definition We say thatasequence X = (x,) of real numbers is contractive if there
exists a constant C, 0 < C < 1, such that

Xpyp = Xpql = Clx X

n+l T nl

forall n € N. The number C is called the constant of the contractive sequence.

3.5.8 Theorem Every contractive sequence is a Cauchy sequence, and therefore is con-
vergent.

Proof. If we successively apply the defining condition for a contractive sequence, we can
work our way back to the beginning of the sequence as follows:

2
Ixn+2 _xn+1| = Clxn+l _xnI =C |xn - xn—-ll

<Cx, =X, 5l < < CMxy — x4l
Form > n, we estimate |x, — x, | by first applying the Triangle Inequality and then using
the formula for the sum of a geometric progression (see 1.2.4(f)). This gives
1X,, = X, | < |x,, =X, 1| +1x,_; =%, o1+ +|x, —x
(24P 4+ 0 Y Ixy — x|

l — Cm—n
-1
=C" <—1—_C> lx, — x|

1
<c™! (m) lx, — x,1.

Since 0 < C < 1, we know 1im(C") = O [see 3.1.11(b)]. Therefore, we infer that (x,)is a
Cauchy sequence. It now follows from the Cauchy Convergence Criterion 3.5.5. that (x,)
is a convergent sequence. QED.

ol

In the process of calculating the limit of a contractive sequence, it is often very
important to have an estimate of the error at the nth stage. In the next result we give two
such estimates: the first one involves the first two terms in the sequence and n; the second
one involves the difference x, — x,_;.

3.5.9 Corollary IfX := (x,) is a contractive sequence with constant C,0 < C < 1, and
ifx* := lim X, then
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n—1
M 15— x| < Tk —xh
. C
() |x*—x,|=< I_Clxn—x,,_ll.

Proof. From the preceding proof, if m > n, then |x, —x, | < c*7a - C)lxy — x; .
If we let m — oo in this inequality, we obtain (i).
To prove (ii), recall that if m > n, then

X, =X, < x, = X1+ -+ lx, ) —x,l
Since it is readily established, using Induction, that
k
|xn+k - xn+k—1| = c ‘xn —xn—l ’
we infer that

x, —x,| <(C"™"+---+C*+O)lx, — x,_,

= b, — x4

1-C
We now let m — oo in this inequality to obtain assertion (ii). QE.D.

3.5.10 Example We are told that the cubic equation x> — 7x + 2 = 0 has a solution
between 0 and 1 and we wish to approximate this solution. This can be accomplished by
means of an iteration procedure as follows. We first rewrite the equation as x = (x3 + 2)/7
and use this to define a sequence. We assign to x,; an arbiwary value between 0 and 1, and
then define

X, =3(x)+2) for neN.
Because 0 < x; < 1, it follows that 0 < x, <1 forall n € N. (Why?) Moreover, we have
Warz = Xyl = [5Gp1 +2) = 33 +2)| = §1x,, — x|
= $x i+ Xppr X T XXy = X,] < FHx, X

Therefore, (x,) is a contractive sequence and hence there exists 7 suchthatlim(x,) = r.Ifwe
pass to the limit on both sides of the equality x, , , = (xs + 2)/7, we obtain r = (r> +2)/7
and hence r* — 7r 4+ 2 = 0. Thus  is a solution of the equation.

We can approximate r by choosing x,; and calculating x,, x,, - - - successively. For
example, if we take x, =0.5, we obtain (to nine decimal places):

x, = 0303571429, x, =0.289710830,
x, = 0289188016, x; =0.289 169244,
x = 0289168571, etc.

To estimate the accuracy, we note that |x, — x,| < 0.2. Thus, after n steps it follows from

Corollary 3.5.9(i) that we are sure that |x* —x, | < 3"=1(7"=2. 20). Thus, when n = 6,
we are sure that

lx* — x¢| < 3°/(7* - 20) = 243/48 020 < 0.0051.

Actually the approximation is substantially better than this. In fact, since |x; — x5| <
0.000 0005, it follows from 3.5.9(ii) that |x* — x¢| < %Ix6 — x5| < 0.0000004. Hence the
first five decimal places of x, are correct. g
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Exercises for Section 3.5

10.

11.

12.

13.

14.

Give an example of a bounded sequence that is not a Cauchy sequence.

Show directly from the definition that the following are Cauchy sequences.

1 1 1
@ (1), ® (1+4+..+1).
n 2! n!
Show directly from the definition that the following are not Cauchy sequences.
n - l)n
(@) ((—1) ) (b) (n + ( ) (c) (nn).
n

Show directly from the definition that if (x,) and (y,) are Cauchy sequences, then (x, + y,) and
(x,y,) are Cauchy sequences.

If x := \/n, show that (x ) satisfies lim |x

»+1 — X,] = 0, but that it is not a Cauchy sequence.

Let p be a given natural number. Give an example of a sequence (x,) that is not a Cauchy

sequence, but that satisfies lim |x,, , —x,[ =0.

Let (x,) be a Cauchy sequence such that x, is an integer for every n € N. Show that (x,) is
ultimately constant.

Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.

If0<r <landlx,  —x,| <r"foralln € N, show that (x,) is a Cauchy sequence.

n+l1
If x, < x, are arbitrary real numbers and x, := %(x”_:,_ +x,_,) for n > 2, show that (x,) is
convergent. What is its limit?

If y, <y, are arbitrary real numbers and y, := % Voot + % Y,_, for n > 2, show that (y,) is
convergent. What is its limit?

Ifx, >0andx, =02+ xn)‘l forn > 1, show that (x,) is a contractive sequence. Find the
limit.
Ifx :=2andx, =2+ 1/x, forn > 1, show that (x,) is a contractive sequence. Whatis its
limit?

The polynomial equation x> — 5x 4+ 1 = 0 has a root r with 0 < r < 1. Use an appropriate
contractive sequence to calculate r within 107*,

Section 3.6 Properly Divergent Sequences

For certain purposes it is convenient to define what is meant for a sequence (x,) of real
numbers to “tend to 00”.

3.6.1 Definition Let (x,) be a sequence of real numbers.

@

(ii)

We say that (x,) tends to +00, and write lim(x,) = +o00, if forevery a € R there
exists a natural number K («) such that if n > K (e), then x, > «.

We say that (x,) tends to —oo, and write lim(x,) = —o0, if for every 8 € R there
exists a natural number K (B8) such thatif n > K(B), then x, < B.

We say that (x,) is properly divergent in case we have either lim(x,) = +00 or

lim(x,) = —oo0.
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The reader should realize that we are using the symbols +o0o and —oo purely as a con-
venient notation in the above expressions. Results that have been proved in earlier sections
for conventional limits lim(x,) = L (for L € R) may not remain true when lim(x,) = %o0.

3.6.2 Examples (a) lim(n) =

In fact, if @ € R is given, let K (&) be any natural number such that K (@) > «.
(b) lim(n?) = +oo.

If K(«) is a natural number such that K(«) > «, and if n > K(«) then we have
n?>n>a.
(¢) Ifc > 1,thenlim(c") = +o0.

Letc =1+ b, where b > 0. If ¢ € R is given, let K (&) be a natural number such that
K(a) > a/b.If n > K (@) it follows from Bernoulli’s Inequality that

"=0+b)">14+nb>14a>a.
Therefore lim(c") = +o0. O

Monotone sequences are particularly simple in regard to their convergence. We have
seen in the Monotone Convergence Theorem 3.3.2 that a monotone sequence is convergent
if and only if it is bounded. The next result is a reformulation of that result.

3.6.3 Theorem A monotone sequence of real numbers is properly divergent if and only
if it is unbounded.

(a) If (x,) is an unbounded increasing sequence, then lim(x,) = +o0.

(b) If (x,) isan unbounded decreasing sequence, then lim(x,) = —oo.

Proof. (a) Suppose that (x,) is an increasing sequence. We know thatif (x,) is bounded,
then it is convergent If (x,) is unbounded, then for any a € R there exists n(a) € N such
that @ < x, n(a) But since (x,) is increasing, we have a < x,, for all n > n(a). Since « is
arbitrary, it follows that lim(x,) = +oo.

Part (b) is proved in a similar fashion. QED.

The following “comparison theorem” is frequently used in showing that a sequence is
properly divergent. [In fact, we implicitly used it in Example 3.6.2(c).]
3.6.4 Theorem Let (x,) and (y,) be two sequences of real numbers and suppose that
1 x,<y, forall neN.

(a) If lim(x,) = +oo, thenlim(y,) = +oo.
(b) If lim(y,) = —oo, thenlim(x,) = —oo

Proof. (a) If lim(x,) = +oo, and if @ € R is given, then there exists a natural number
K(a) such that if n > K (), then @ < x,. In view of (1), it follows that a < y, for all
n > K(a). Since « is arbitrary, it follows that lim(y,) = +oo.

The proof of (b) is similar. QED.

Remarks (a) Theorem 3.6.4 remains wrue if condition (1) is ultimately true; that is, if
there exists m € N such that x, <y,foralln > m.
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(b) If condition (1) of Theorem 3.6.4 holds and if lim(y") = 400, it does not follow
that lim(x,) = +o0. Similarly, if (1) holds and if lim(x,) = —oo0, it does not follow that
lim(y,) = —o0. Inusing Theorem 3.6.4 to show that a sequence tends to +0c0 [respectively,
—oo] we need to show that the terms of the sequence are ultimately greater [respectively,
less] than or equal to the corresponding terms of a sequence that is known to tend to +¢o
[respectively, —oo].

Since it is sometimes difficult to establish an inequality such as (1), the following “limit
comparison theorem” is often more convenient to use than Theorem 3.6.4.

3.6.5 Theorem Let(x,) and (y,) be two sequences of positive real numbers and suppose
that for some L € R, L > 0, we have

@ lim(x,/y,) = L.
Then lim(x,) = +oo if and only if lim(y,) = +o00.

Proof. If (2) holds, there exists K € N such that
%L<xn/yn<—g-L forall n>K.

Hence we have (%L) Y, <x, < (%L) Vu for all n > K. The conclusion now follows from
a slight modification of Theorem 3.6.4. We leave the details to the reader. QED.

The reader can show that the conclusion need not hold if either L =0 or L = 400.
However, there are some partial results that can be established in these cases, as will be
seen in the exercises.

Exercises for Section 3.6

1. Show thatif (x,) is an unbounded sequence, then there exists a properly divergent subsequence.

2. Give examples of properly divergent sequences (x,) and (y,) with y, # 0 for all n € N such
that:
(@ (x,/y,) is convergent, (b) (x,/y,) is properly divergent.

Show thatif x, > 0 foralln € N, thenlim(x,) = 0 if and only if lim(1/x,) = +o0.

4. Establish the proper divergence of the following sequences.

@ (vn), ® (Va+i),
© (Vn-1), @ (n/v/n+1).
Is the sequence (n sin n) properly divergent?

6. Let (x,) be properly divergent and let (y,) be such thatlim(x, y,) belongs to R. Show that (y,)
converges to 0.

7. Let(x,) and (¥,) be sequences of positive numbers such that lim(x, /y,) = 0.
(@) Show thatif lim(x,) = +o0, thenlim(y,) = +o0.
(b) Show that if (y,) is bounded, then lim(x,) = 0.

8. Investigate the convergence or the divergence of the following sequences:
@ (Vai+2), ® (va/ (n*+1)),
© (\/n2 +1 /ﬁ), @ (sin /7).

9. Let(x,) and (y,) be sequences of positive numbers such thatlim(x, /y,) = +oo,
(@) Show thatif lim(y,) = +00, then lim(x,) = +o00.
(b) Show thatif (x,) is bounded, then lim(y,) = 0.

10. Show thatiflim(a,/n) = L, where L > 0, then lim(a,) = +o0.
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Section 3.7 Introduction to Infinite Series

We will now give a brief introduction to infinite series of real numbers. This is a topic
that will be discussed in more detail in Chapter 9, but because of its importance, we will
establish a few results here. These results will be seen to be immediate consequences of
theorems we have met in this chapter.

In elementary texts, an infinite series is sometimes “defined” to be “an expression of
the form”

1) X x4t x, e

However, this “definition” lacks clarity, since there is a priori no particular value that we
can attach to this array of symbols, which calls for an infinite number of additions to be
performed.

3.7.1 Definition If X := (x,) is a sequence in RR, then the infinite series (or simply the
series) generated by X is the sequence S := (s,) defined by

5 =X
s, =85,+x, (=x+x)

S, =8+ x, (:x1+x2+...+xk)

The numbers x, are called the terms of the series and the numbers s, are called the partial
sums of this series. If lim S exists, we say that this series is convergent and call this limit
the sum or the value of this series. If this limit does not exist, we say that the series § is
divergent.

It is convenient to use symbols such as

? Z (x,) or Z x,  or i x,
n=1

to denote both the infinite series S generated by the sequence X = (x,) and also to denote
the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely as
away of exhibiting an infinite series whose convergence or divergence is to be investigated.
In practice, this double use of these notations does not lead to any confusion, provided it is
understood that the convergence (or divergence) of the series must be established.

Just as a sequence may be indexed such that its first element is not x,, but is x, or x4
or x4, we will denote the series having these numbers as their first element by the symbols

00 00 0
E xn or E xn or E xn.
n=0 n=5

n=99

It should be noted that when the first term in the series is x > then the first partial sum is
denoted by s,.

Warning The reader should guard against confusing the words “sequence” and “series”.
In nonmathematical language, these words are interchangeable; however, in mathematics,
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these words are not synonyms. Indeed, a series is a sequence S = (s,) obtained from a
given sequence X = (x,) according to the special procedure given in Definition 3.7.1.

3.7.2 Examples (a) Considerthesequence X := (r")zo=0 wherer € R, which generates
the geometric series:

00
(3) Zr"=1+r+r2+---+r”+---.
n=0

We will show thatif |r| < 1, then this series convergesto 1/(1 — r). (See also Example
1.2.4(f).) Indeed, if s, :=1+r + r*+ ...+ r"forn > 0, and if we multiply s, by » and
subtract the result from s,, we obtain (after some simplification):

s,(1—r)=1—r""

Therefore, we have

1 prtl
ST T 1=
from which it follows that
. 1 Hag
"o l—r| T 1=r|

Since |r|"™! — 0 when |r| < 1, it follows that the geometric series (3) converges to
1/(1 — r) when |r| < 1.

(b) Consider the series generated by ((— D" ):10; that is, the series:

@ Y =D A D D+ (D A+
n=0

It is easily seen (by Mathematical Induction) thats, = 1 ifn > Oisevenands, =0
if n is odd; therefore, the sequence of partial sums is (1,0, 1, 0, - - -). Since this sequence is
not convergent, the series (4) is divergent.

(¢) Consider the series

(5) i _L+L+L
o (n+l) 1-2 2. 3.4

By a stroke of insight, we note that
1 1 1

kk+1) k k+1

Hence, on adding these terms from k = 1 to k = n and noting the telescoping that takes
place, we obtain

_ 1 1
"7 1 n41
whence it follows that s, —> 1. Therefore the series (5) converges to 1. O

We now present a very useful and simple necessary condition for the convergence of
a series. It is far from being sufficient, however.
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3.7.3 The nth Term Test If the series ) x, converges, then lim(x,) = 0.

Proof. By Definition 3.7.1, the convergence of ) x, requires that lim(s,) exists. Since
x, =S, —S,_;,thenlim(x,) = lim(s,) — lim(s,_,) = 0. QED.

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5.5,
we will omit its proof.

3.7.4 Cauchy Criterion for Series The series ) x, converges if and only if for every
& > 0 there exists M(e) € N such that ifm > n > M(g), then
©® 15 = Sul = Xy + Epig oo 5] <
The next result, although limited in scope, is of great importance and utility.
3.7.5 Theorem Let (x,) be a sequence of nonnegative real numbers. Then the series

Y x, converges if and only if the sequence S = (s,) of partial sums is bounded. In this
case,

an = lim(s,) = sup{s, : k € N}.
n=1

Proof. Since x, > 0, the sequence S of partial sums is monotone increasing:
sl $s2_<_...§sk5..._

By the Monotone Convergence Theorem 3.3.2, the sequence S = (s,) converges if and
only if it is bounded, in which case its limit equals supfs, }. QED.

3.7.6 Examples (a) The geometric series (3) diverges if || > 1.
This follows from the fact that the terms »” do not approach 0 when |r| > 1.

[e¢]
1
(b) The harmonic series Z > diverges.

Since the terms 1/n 1) 10, we cannot use the nth Term Test 3.7.3 to establish this
divergence. However, it was seen in Examples 3.3.3(b) and 3.5.6(c) that the sequence (s,)
of partial sums is not bounded. Therefore, it follows from Theorem 3.7.5 that the harmonic
series is divergent.

00
. 1.
(¢) The 2-series E — is convergent.
n
n=l1
Since the partial sums are monotone, it suffices (why?) to show that some subsequence

of (5,) is bounded. If k; == 2' —1=1,thens, = 1.Ifk, == 2* —1 =3, then

1 1 1 2 1
sk2=T+(?+?)<l+?=l+§,
and if k, := 23 — 1 =17, then we have
1 1 1 1
sk3=sk2+(4—2+;+6—2+7—2
By Mathematical Induction, we find that if k]. =2/ — 1, then

4 1 1
<Sk2+z<l+§+?.

O<s, <l+i+(@)2++(d)Y ™.
J
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Since the term on the right is a partial sum of a geomerric series with r = % it is dominated
by 1/(1 — %) = 2, and Theorem 3.7.5 implies that the 2-series converges.

o)
1
(d) The p-series Z — converges when p > 1.
n=1 h

Since the argur;nent is very similar to the special case considered in part (c), we will
leave some of the details to the reader. As before, if &, := 2! = 1=1, then sk] =11
ky = 22 — 1 = 3, then since 27 < 3”7, we have

_ 1 1 1 1 2 ] 1
s"z—l—p+ 2_p+3_p < +2_p_ +—~—2p_1-
Further, if &, := 23 — 1, then (how?) it is seen that
1
gr-1

Finally, we let r := 1/2771; since p > 1, we have 0 < r < 1. Using Mathematical Induc-
tion, we show that if kj =2/ —1, then

4
8y <sk+—<1+ +
3 2

4P 2p—1

1

1—r’

0<s, <ldr+ri4...4ri1<
J
Therefore, Theorem 3.7.5 implies that the p-series converges when p > 1.
00
1
(e) The p-series Z — diverges when0 < p < 1.
n=1 n

We will use the . elementary inequality n” < n whenn € Nand 0 < p < 1. It follows
that

1 1
- <= for neN.
n_n

Since the partial sums of the harmonic series are not bounded, this inequality shows that the
partial sums of the p-series are not bounded when 0 < p < 1. Hence the p-series diverges
for these values of p.

(f) The alternating harmonic series, given by
00 n+1 n+1
(-1 1 1 1 -1
.o +

@ ) B A Rl

n=1

is convergent.

The reader should compare this series with the harmonic series in (b), which is
divergent. Thus, the subtraction of some of the terms in (7) is essential if this series is to
converge. Since we have

(oD (AT 1
S =\17 2 374 m—1_21)°

itis clear that the “even” subsequence (s,,) is increasing. Similarly, the “odd” subsequence
($,41) 1s decreasing since

s 1 (1 1 1 1 1 1
1T 2 3 4 5 2n 2n+1)°
Since 0 < s,, <5y, +1/2n+1) =s5,,,; <1, both of these subsequences are bounded
below by 0 and above by 1. Therefore they are both convergent and to the same value. Thus
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the sequence (s,) of partial sums converges, proving that the alternating harmonic series
(7) converges. (It is far from obvious that the limit of this series is equal to In2.) O

Comparison Tests

Our first test shows that if the terms of a nonnegative series are dominated by the corre-
sponding terms of a convergent series, then the first series is convergent.

3.7.7 Comparison Test LetX := (x,) andY = (y,) be real sequences and suppose that
for some K € N we have
(®) 0<x,<y, for n>K.

(@) Then the convergence of )y, implies the convergence of 3 x,,.
(b) The divergence of ) x, imples the divergence of ) y,.

Proof. (a) Suppose that )y, converges and, given ¢ > 0, let M (¢) € N be such that if
m > n > M(g), then

yn+1+...+ym < E.
If m > sup{K, M(¢)}, then it follows that
Os‘xn+l+"'+xmSyn+l+'”+ym <&

from which the convergence of } _ x, follows.
(b) This statement is the contrapositive of (a). QE.D.
Since it is sometimes difficult to establish the inequalities (8), the next result is fre-

quently very useful.

3.7.8 Limit Comparison Test Suppose that X := (x,) andY := (y,) are strictly positive
sequences and suppose that the following limit exists in R:

) r :=lim (x—> .
Y

(a) Ifr #0then)_ x, is convergent if and only if )y, is convergent.
(b) Ifr =0andif )y, is convergent, then ) x, is convergent.

Proof. (a) It follows from (9) and Exercise 3.1.17 that there exists K € N such that
%r <x,/y, < 2rforn > K, whence

(37) ¥, <x, < 20y, for n>K.

If we apply the Comparison Test 3.7.7 twice, we obtain the assertion in (a).
(b) If r = 0, then there exists K € N such that

O0<x,<v, for n> K,

so that Theorem 3.7.7(a) applies. QED.

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that
one knows to be convergent (or divergent). The reader will find that the p-series is often
useful for this purpose.
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[0}
3.7.9 Examples (a) The series converges.
P nz_: n? +n g
It is clear that the inequality
1 1
0<5—<5 for neN

n“+n n?

is valid. Since the series ) 1/ n? is convergent (by Example 3.7.6(c)), we can apply the
Comparison Test 3.7.7 to obtain the convergence of the given series.

1
b) The series —>———— is convergent.
(b) Z n—n+1 8

If the 1nequa11ty
(10) 1 1
n?—n+ 1 n?
were true, we could argue as in (a). However, (10) is false for all n € N. The reader can
probably show that the inequality
1 2
0<—5—— —2
n—-n+1"
is valid for all n € N, and this inequality will work just as well. However, it might take
some experimentation to think of such an inequality and then establish it.
Instead, if we take x, =1 / (n2 —n+1)andy, =1/ n?, then we have

X n? 1

= 2 = 5 - 1

Yy, n°—n+1 1-(1/n)+(1/n%)

Therefore, the convergence of the given series follows from the Limit Comparison Test
3.7.8(a).

[e¢]
1
(¢) The series
,,2:1 vn+1

This series closely resembles the series Y 1/./n which is a p-series with p = %; by
Example 3.7.6(e), it is divergent. If we letx, :=1/+/n+1and y, == 1/ /n, then we have

icl_ﬁ_l

= = -1
Vo ntl JIT1/n

Therefore the Limit Comparison Test 3.7.8(a) applies.

is divergent.

(d) The series Z — is convergent.

It would be poss1ble to establish this convergence by showing (by Induction) that
n® < n! for n > 4, whence it follows that

1
0<—=<= for n>4.

Alternatively, if we let x :== 1/n!and y, := 1/ n?, then (when n > 4) we have

0<2=" o . <L o
_yn_n!_l-Z---(n—l) n—2 ’
Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit trou-
blesome to apply since we do not presently know the convergence of any series for which
the limit of x,/y, is really easy to determine.) O
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Exercises for Section 3.7

10.

11.

12.

13.

i4.

15.

Let ) a_ be a given series and let }_ b, be the series in which the terms are the same and in
the same order as in ) a, except that the terms for which a, = 0 have been omitted. Show that
3" a, converges to A if and only if b, converges to A.

Show that the convergence of a series is not affected by changing a finite number of its terms.
(Of course, the value of the sum may be changed.)

By usmg partial fractions, show that

1
—>0,ifa > 0.
o

@ Z:(n+1>(n+2) L Z(a+n)(a+n+l)

n=0
°° 1 1
© ;n(n+l)(n+2) %

If )" x and Yy, are convergent, show that ) (x, + y,) is convergent.

Can you give an example of a convergent series Y x, and a divergent series ) y, such that
Y (x, +y,) is convergent? Explain.

o0
(a) Show thatthe series Z cosn is divergent.

n=1

o0
(b) Show thatthe series Z(cos n)/ n?is convergent.
n=1 [ n
-1
Use an argument similar to that in Example 3.7.6(f) to show that the series Z ( «/7_3 is

convergent.

If 3" a, with a, > 0 is convergent, then is ) a,2l always convergent? Either prove it or give a
counterexample.

If " a, witha, > 0 is convergent, thenis Y \/a, always convergent? Eitherprove it or give a
counterexample.

If 3" a, with a, > 0 is convergent, then is ) \/a_a,, always convergent? Either prove it or
give a counterexample.

If }"a, with a, > 0 is convergent, and if b, := (a, +---+a,)/n for n € N, then show that
3" b, is always divergent.

oo
Let Z a(n) be such that (a(n)) is a decreasing sequence of swrictly positive numbers. If s(n)
n=1

denotes the nth partial sum, show (by grouping the terms in s(2") in two different ways) that

3 (a) +2a2) + -+ +2"a@") <527 < (a() +2a) +--- + 2" 'a2"h)) +a@").

(o] [e ]
Use these inequalities to show that Za(n) converges if and only if Z 2"a(2") converges.

n=1

This result is often called the Cauchy Condensatlon Test; 1t is very powerful.

Use the Cauchy Condensation Test to discuss the p-series Z(l /n?) forp > 0.
n=1

Use the Cauchy Condensation Test to establish the divergence of the series:

v
(@ annn’ ® 2

© Z n(na)(Ininz)(Inlnlnn)’

Show that if ¢ > 1, then the following series are convergent:

1 1
@ Zr.(lnn)f’ ®) Zn(lnn)(lnlnn)c'



CHAPTER 4

e ——— A —————

LIMITS

———

“Mathematical analysis” is generally understood to refer to that area of mathematics in
which systematic use is made of various limiting concepts. In the preceding chapter we
studied one of these basic limiting concepts: the limit of a sequence of real numbers. In this
chapter we will encounter the notion of the limit of a function.

The rudimentary notion of a limiting process emerged in the 1680s as Isaac Newton
(1642-1727) and Gottfried Leibniz (1646—-1716) swruggled with the creation of the Cal-
culus. Though each person’s work was initially unknown to the other and their creative
insights were quite different, both realized the need to formulate a notion of function and the
idea of quantities being “close to” one another. Newton used the word “fluent” to denote a
relationship between variables, and in his major work Principia in 1687 he discussed limits
“to which they approach nearer than by any given difference, but never go beyond, nor in
effect attain to, till the quantities are diminished in infinitum”. Leibniz introduced the term
“function” to indicate a quantity that depended on a variable, and he invented “infinites-
imally small” numbers as a way of handling the concept of a limit. The term “function”
soon became standard terminology, and Leibniz also introduced the term “calculus” for
this new method of calculation.

In 1748, Leonhard Euler (1707-1783) published his two-volume treatise Introductio in
Analysin Infinitorum, in which he discussed power series, the exponential and logarithmic
functions, the trigonometric functions, and many related topics. This was followed by Insti-
tutiones Calculi Differentialis in 1755 and the three-volume Institutiones Calculi Integralis
in 1768-70. These works remained the standard textbooks on calculus for many years. But
theconcept of limit was very intuitive and its looseness led to a number of problems. Verbal
descriptions of the limit concept were proposed by other mathematicians of the era, but
none was adequate to provide the basis for rigorous proofs.

In 1821, Augustin-Louis Cauchy (1789-1857) published his lectures on analysis in his
Cours d’Analyse, which set the standard for mathematical exposition for many years. He
was concerned with rigor and in many ways raised the level of precision in mathematical
discourse. He formulated definitions and presented arguments with greater care than his
predecessors, but the concept of limit still remained elusive. In an early chapter he gave the
following definition:

If the successive values attributed to the same variable approach indefinitely a
fixed value, such that they finally differ from it by as little as one wishes, this latter
is called the limit of all the others.

The final steps in forinulating a precise definition of limit were taken by Karl Weier-
strass (1815-1897). He insisted on precise language and rigorous proofs, and his definition
of limit is the one we use today.

96
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Gottfried Leibniz

Gottfried Wilhelm Leibniz (1646—-1716) was born in Leipzig, Germany. He
was six years old when his father, a professor of philosophy, died and left his
sonthekey to his library and alife of books and learning. Leibnizentered the
University of Leipzig at age 15, graduated at age 17, and received a Doctor
of Law degree from the University of Altdorf four years later. He wrote
on legal matters, but was more interested in philosophy. He also developed
original theories about language and the nature of the universe. In 1672, he
went to Paris as a diplomat for four years. While there he began to study
mathematics with the Dutch mathematician Christiaan Huygens. His travels to London to visit the
Royal Academy further stimulated his interest in mathematics. His background in philosophy led
him to very original, though not always rigorous, results.

Unaware of Newtons’s unpublished work, Leibniz published papers in the 1680s that pre-
sented a method of finding areas that is known today as the Fundamental Theorem of Calculus. He
coined the term “calculus” and invented the dy/dx and elongated S notations that are used today.
Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a dispute
that lasted until Leibniz’s death. Their approaches to calculus were quite different and it is now
evident that their discoveries were made independently. Leibniz is now renowned for his work in
philosophy, but his mathematical fame rests on his creation of the calculus.

Section 4.1 Limits of Functions

In this section we willintroduce the important notion of the limit of a function. The intuitive
idea of the function f having a limit L at the point c is that the values f(x) are close to
L when x is close to (but different from) c. But it is necessary to have a technical way of
working with the idea of “close to” and this is accomplished in the &-6 definition given
below.

In order for the idea of the limit of a function f at a point ¢ to be meaningful, it is
necessary that f be defined at points near c. It need not be defined at the point ¢, but it
should be defined at enough points close to ¢ to make the study interesting. This is the
reason for the following definition.

4.1.1 Definition Let A C R. A point ¢ € R is a cluster point of A if for every § > 0
there exists at least one point x € A, x # c such that |[x — c| < é.

This definition is rephrased in the language of neighborhoods as follows: A point ¢ is
a cluster point of the set A if every §-neighborhood V;(c) = (c — 8, ¢ + 8) of ¢ contains at
least one point of A distinct from c.

Note The point ¢ may or may not be a member of A, but even if it is in A, it is ignored
whendeciding whether it is a cluster point of A or not, since we explicitlyrequire that there
be points in V;(c) N A distinct from c in order for ¢ to be a cluster point of A.

For example, if A := {1, 2}, then the pofnt 1 is not a cluster point of A, since choosing
8= % gives a neighborhood of 1 that contains no points of A distinct from 1. The same is
true for the point 2, so we see that A has no cluster points.

4.1.2 Theorem A numberc € R is a cluster point of a subset A of R if and only if there
exists a sequence (a,) in A such that lim(a,) = c anda, # c foralln € N.
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Proof. 1f c is a cluster point of A, then for any n € N the (1/n)-neighborhood V, /n(c)
contains at least one pointa, in A distinct from c. Thena, € A,a, # c,and|a, —c| < 1/n
implies lim(a,) = c.
Conversely, if there exists a sequence (a,) in A\{c} with lim(a,) = c, then for any
8 > 0 there exists K such that if n > K, then a, € V;(c). Therefore the §- nelghborhood
V; (c) of ¢ contains the points a,, forn > K, Wthh belong to A and are distinct from c.
QED.

The next examples emphasize that a cluster point of a set may or may not belong to
the set.

4.1.3 Examples (a) Forthe openinterval A, := (0, 1), every point of the closed interval
[0,1] is a cluster point of A,. Note that the points 0,1 are cluster points of A,, but do not
belong to A,. All the points of A, are cluster points of A,.

(b) A finite set has no cluster points.
(¢c) The infinite set N has no cluster points.

(d) Theset A, := {1/n : n € N}has only the point 0 as a cluster point. None of the points
in A, is a cluster point of A ,.

(e) If I := [0, 1], then the set AS = I N Q consists of all the rational numbers in 1. It
follows from the Density Theorem 2.4.8 that every point in [ is a cluster point of A;. O

Having made this brief detour, we now return to the concept of the limit of a function
at a cluster point of its domain.

The Definition of the Limit

We now state the precise definition of the limit of a function f at a point c. It is important
to note that in this definition, it is immaterial whether f is defined at ¢ or not. In any case,
we exclude ¢ from consideration in the determination of the limit.

4.1.4 Definition Let A C R, and let ¢ be a cluster point of A. For a function f : A — R,
areal number L is said to be a limit of f at c if, givenany ¢ > 0 there existsa § > 0 such
thatifx € Aand 0 < |[x —¢| < §, then |f(x) — L| < ¢€.

Remarks (a) Since the value of § usually depends on &, we will sometimes write 6(¢)
instead of 4§ to emphasize this dependence.
(b) The inequality O < |x — | is equivalent to saying x # c.

If L is a limit of f at ¢, then we also say that f converges to L at c. We often write
L=1lmf(x) or L=1lim f.
X—C xX—c
We also say that “ f (x) approaches L as x approaches c”. (But it should be noted that the
points do not actually move anywhere.) The symbolism
fx)—> L as x —>c¢

is also used sometimes to express the fact that f has limit L at c.

If the limit of f at ¢ does not exist, we say that f diverges at c.

Our first result is that the value L of the limit is uniquely determined. This uniqueness
is not part of the definition of limit, but must be deduced.
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4.1.5 Theorem If f: A — R and if c is a cluster point of A, then f can have only one
limit at c.

Proof. Suppose thatnumbers L and L' satisfy Definition4.1.4. Forany ¢ > 0, there exists
8(e/2) > Osuchthatifx € Aand0 < |x — ¢| < §(e/2),then|f(x) — L| < /2. Also there
exists 8'(¢/2) such thatif x € Aand 0 < |x — c| < &'(g/2), then | f(x) — L'| < &/2. Now
let 8 := inf{8(¢/2), 8'(¢/2)}. Then if x € A and 0 < |x — c| < &, the Triangle Inequality
implies that

IL-L<|L—- f)|l+|fx)=L'l < e/2+¢e/2=e
Since ¢ > 0 is arbitrary, we conclude that L — L' = 0, so that L = L. Q.E.D.

The definition of limit can be very nicely described in terms of neighborhoods. (See
Figure 4.1.1.) We observe that because

Vi) =(c—8,c+8 ={x:|x—c <8},

the inequality O < |x — ¢| < § is equivalent to saying that x # ¢ and x belongs to the §-
neighborhood V;(c) of c. Similarly, the inequality | f (x) — L| < ¢ is equivalent to saying
that f(x) belongs to the e-neighborhood V, (L) of L. In this way, we obtain the following
result. The reader should write out a detailed argument to establish the theorem.

Given V,(L)-7%

\
There exists Vz(c)

Figure 4.1.1 The limit of f atcis L.

4.1.6 Theorem Let f: A — R and let ¢ be a cluster point of A. Then the following
statements are equivalent.

@ limf(x) = L.

(ii) Givenany &-neighborhood V (L) of L, there exists a §-neighborhood Vy(c) of ¢ such
that if x # c is any point in V(c) N A, then f(x) belongs V,(L).

We now give some examples that illuswrate how the definition of limit is applied.

4.1.7 Examples (a) limb =b.
X—=>C
To be more explicit, let f(x) := b forall x € R. We want to show that lim f(x) = b.
X=>C

If ¢ > 0 is given, we let § := 1. (In fact, any strictly positive § will serve the purpose.)
Then if 0 < [x — ¢| < 1, we have | f(x) — b| = |b — b| =0 < ¢. Since ¢ > 0 is arbitrary,
we conclude from Definition 4.1.4 that lim f(x) = b.

X—C
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(b) limx =c.
X—>C

Letg(x) := xforallx € R.Ife > 0, wechoose §(¢) := €. Thenif0 < |x — c| < 8(¢),
we have [g(x) —c| =[x — | < &. Since ¢ > 0 is arbitrary, we deduce that lim g = c.

X—>C

(©) limx? = ¢
X—=>C

Let h(x) := x for all x € R. We want to make the difference
|h(x) = *| = |[x* = &

less than a preassigned ¢ > 0 by taking x sufficiently close to c. To do so, we note that

x2 = c? = (x + ¢)(x — ¢). Moreover, if |x —¢| < 1, then

x| <lc| +1 so that x +cl <|x|+lcl <2]c| +1.
Therefore, if | x — c| < 1, we have
1) [X2=c=lx+ecllx—cl <Qlel+ D lx—cl.

Moreover this last term will be less than ¢ provided we take |x — ¢| < ¢/(2|c| + 1). Con-
sequently, if we choose

§(e) =inf {1, —— ¢,

© = { 2|c|+1}

then if 0 < |x — ¢| < 8(¢), it will follow first that |[x — c| < 1 so that (1) is valid, and
therefore, since |x — ¢| < ¢/(2|c| + 1) that

|x2-—c2|§(2|c|+1)lx—c| < e.

Since we have a way of choosing §(¢) > O for an arbitrary choice of ¢ > 0, we infer that
lim A(x) = lim x2 = ¢2.
x—=cC X—cC

1 1
(d) lim- =-ifc>0.
x=c X c

Let ¢(x) := 1/x forx > 0 and let ¢ > 0. To show that lim ¢ = 1/c we wish to make

X—=>C

the difference

X c

less than a preassigned ¢ > 0 by taking x sufficiently close to ¢ > 0. We first note that

I RN

1
=—|x —c|
x ¢ cx cx

for x > 0. It is useful to get an upper bound for the term 1/(cx) that holds in some
neighborhood of c. In particular, if |[x —c| < %c, then %c <x< %c (why?), so that
1 2
O<—<—2 for |x—c|<%c.
cx ¢

Therefore, for these values of x we have

1
A2) ’co(x) - -
c

<=|lx—-c.
2

In order to make this last term less than ¢ it suffices to take [x — ¢| < %czs. Consequently,
if we choose

8(e) = inf {c, 1c%e},
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then if 0 < |x — ¢| < 8(¢), it will follow first that |x — ¢| < c so that (2) is valid, and
therefore, since |x — c| < (- ?) e, that

1
<p(x)——|=
c

Since we have a way of choosing §(¢) > 0 for an arbitrary choice of ¢ > 0, we infer that
limg = 1/c.

xX—>C

3
-4 4
@ lim>—~=2
=2 x2 41 5
Let ¥ (x) = x3—4) / (x + 1) for x € R. Then a little algebraic manipulation gives
us
‘1//( ) 4’ |5x° — 4x? — 24|
xX)— —| = .—,
5(2+41)
|5x + 6x + 12| 2]
52+ 1) '

To get a bound on the coefficient of |x — 2|, we restrict x by the condition 1 < x < 3.
For x in this interval, we have 5x> + 6x +12<5-324+6-3+12=75and 5(x>+ 1) >
5(1 + 1) = 10, so that

75 15
=l H= -2

-
vix) =10

Now for given € > 0, we choose
8(e) = inf {1, 12—56‘} .

Thenif 0 < |x — 2| < 8(¢), we have |y (x) — (4/5)| < (15/2)|x — 2| < . Since ¢ > O is
arbitrary, the assertion is proved. a

Sequential Criterion for Limits

The following important formulation of limit of a function is in terms of limits of sequences.
This characterization permits the theory of Chapter 3 to be applied to the study of limits of
functions.

4.1.8 Theorem (Sequential Criterion) Let f: A — R and let ¢ be a cluster point of A.
Then the following are equivalent.
) limf=L.

X—C
(i) For every sequence (x,) in A that converges to c such that x, # ¢ for alln € N, the
sequence ( f (x”)) converges to L.

Proof. (i) = (ii). Assume f has limit L at c, and suppose (x,) is a sequence in A with
lim(x,) = ¢ and x,, # c for all n. We must prove that the sequence (f(x,)) converges to
L. Let ¢ > 0 be given. Then by Definition 4.1.4, there exists § > 0 such that if x € A
satisfies 0 < |x — c| < §, then f(x) satisfies | f(x) — L| < . Wenow apply the definition
of convergent sequence for the given § to obtain a natural number X (8) such thatifn > K (8)
then |x, — c| < &. But for each such x, we have | f(x,) — L| < &. Thusif n > K (§), then
| f (x,) — L| < & Therefore, the sequence ( f (xn)) convergesto L.
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(ii) = (i). [The proof is a contrapositive argument.] If (i) is not wrue, then there exists
an gj-neighborhood V, (L) such that no matter what é-neighborhood of ¢ we pick, there

will be at least one number x; in A N V,(c) with x; # c such that f(x;) ¢ VEO(L). Hence
forevery n € N, the (1/n)-neighborhood of ¢ contains a number x,, such that

0<|x,—c|<1/n and x, €A,
but such that
|fx)~L|>¢, forall ne N.

We conclude that the sequence (x,) in A\{c} converges to c, but the sequence (f(x,,)) does
not converge to L. Therefore we have shown that if (i) is not wrue, then (ii) is not true. We
conclude that (ii) implies (i). QE.D.

We shall see in the next section that many of the basic limit properties of functions can
be established by using corresponding properties for convergent sequences. For example,
we know from our work with sequences that if (x,) is any sequence that converges to a
number ¢, then (xf) converges to c2. Therefore, by the sequential criterion, we can conclude
that the function 4 (x) := x? has limit Jlgnc h(x) = c*.

Divergence Criteria

It is of ten important to be able to show (i) that a certain number is not the limit of a function
at a point, or (ii) that the function does not have a limit at a point. The following result
is a consequence of (the proof of) Theorem 4.1.8. We leave the details of its proof as an
important exercise.

4.1.9 Divergence Criteria Let A C R, let f: A — R and let c € R be a cluster point
of A.

(a) IfL e R, then f does not have limit L at c if and only if there exists a sequence (x,,)
in A withx, # c foralln € N such that the sequence (x,) converges to c but the sequence
(f (x,)) does not converge to L.

(b) The function f does not have a limit at c if and only if there exists a sequence (x,,)
in A withx, # c foralln € N such that the sequence (x,) converges to ¢ but the sequence
(f(x,)) does not converge in R.

We now give some applications of this result to show how it can be used.
4.1.10 Example (a) Iin(l) (1/x) does not exist in R.
x—>

Asin Example 4.1.7(d), let ¢(x) := 1/x forx > 0. However, here we consider ¢ = 0.
The argument given in Example 4.1.7(d) breaks down if ¢ = 0 since we cannot obtain a
bound such as that in (2) of that example. Indeed, if we take the sequence (x,) with x, :=
1/n for n € N, then lim(x,) = 0, but ¢(x,) = 1/(1/n) = n. As we know, the sequence
(¢(x,)) = (n) is not convergent in R, since it is not bounded. Hence, by Theorem 4.1.9(b),
}i_x}}) (1/x) does not exist in R.

(b) Iin(l) sgn(x) does not exist.
Let the signum function sgn be defined by

+1 for x>0,
sgn(x) := 0 for x =0,
-1 for x <O.
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Note that sgn(x) = x/|x| for x # 0. (See Figure 4.1.2.) We shall show that sgn does not
have a limit at x = 0. We shall do this by showing that there is a sequence (x,) such that
lim(x,) = 0, but such that (sgn(x,,)) does not converge.

1¢

9 -1

—

Figure 4.1.2 The signum function.

Indeed, let x, := (—1)"/n forn € N so that lim(x,) = 0. However, since
sgn(x,) = (—1)" for neN,

it follows from Example 3.4.6(a) that (sgn(x")) does not converge. Therefore lin}) sgn(x)
x—
does not exist.
©?! lin}) sin(1/x) does not exist in R.
x—

Let g(x) := sin(1/x) for x # 0. (See Figure 4.1.3.) We shall show that g does not
have a limit at ¢ = 0, by exhibiting two sequences (x,) and (y,) withx, #0and y, # 0
for alln € N and such that lim(x,) = 0 and lim(y,) = 0, but such that lim (g(x,)) #
lim (g(yn)). In view of Theorem 4.1.9 this implies that ll_f)% g cannot exist. (Explain why.)

1

Figure 4.1.3 The function g(x) = sin(1/x) (x # 0).

Indeed, we recall from calculus that sint = 0 if t = nw for n € Z, and that sint =
+1if t = %n + 27n for n € Z. Now let x, := 1/nm for n € N; then lim(x,) = 0 and
g(x,) =sinnx =0 for all n € N, so that lim (g(xn)) = 0. On the other hand, let y, :=
(%n + 27'm)_1 forn € N;thenlim(y,) = Oand g(y,) = sin (%rr + 2mn) = 1foralln € N,
sothatlim (g(y,)) = 1. We conclude that }I_I)I(l) sin(1/x) does not exist. O

"In order to have some interesting applications in this and later examples, we shall make use of well-known
properties of trigonomefric and exponential functions that will be established in Chapter 8.
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Exercises for Section 4.1

10.

11.

12.

13.

14.

15.

16.

Determine a condltlon on |x — 1| that will assure that:
@ KX -1<3, ®) |x* -1 <1/1073,
) |x? — 1l <1/n foragivenn € N, (d) |x3—1|<l/n foragivenn € N.

Determine a condition on |x — 4| that will assure that:

@ IVx-2/<3, () 1V/x—2| <1072
Let c be a cluster point of A C R and let f: A — R. Prove that lim f(x) = L if and only if
lim | f(x) — L] =
X—>>C
Let f : R — R and let ¢ € R. Show that lim f(x) = L if and only if lirr(l)f(x +c) =
X—>C X—>

Let I := (0, a) where a > 0, and let g(x) := x%forx € I. For any points x, ¢ € I, show that
|g(x) — ¢*| < 2alx — c|. Use this inequality to prove that lim x? =¢* for anyce I.

X—=C

Let 7 be anintervalin R, let f : ] — R, and let ¢ € /. Suppose there exist constants K and L
suchthat | f(x) — L| < K|x — ¢| for x € I. Show that lim f(x) =
x—>C

Show that lim x> = ¢ for any ¢ € R.
X—>C

Show that lim /x = /c for any ¢ > 0.
X—=>C

Use either the -6 definition of limit or the Sequential Criterion for limits, to establish the
following limits.

1 X 1
lim —— = —1, li = -
@ xl-+mz 1—x ®) xl—r>nl 1+x 2’
2 2
X x“—x+1 1
lim — =0, d lim ——— = -,
© bt | x| @ il x +1 2
Use the definition of limit to show that +5
im(x? + 4x) = 12 a
@l +40 =12 ® Jim 5
Show that the following limits do not exist.
1 . 1
(a) 113(1) s (x > 0), (b) )ltl_r)r(l) Wi (x > 0),
(c) lin})(x+ sgn(x)), (d) lin}) sin(l/xz).
x—> x>

Suppose the function f : R — R has limit L at 0, and let a > 0. If g : R — R is defined by
g(x) := f(ax) for x € R, show that lin(l)g(x) =
N xX—

2
Letc € Randlet f : R — R be such that lim (f(x)) =L
(a) Showthatif L =0, then 11m fx)=
(b) Show by example that if L ;é 0, then f may nothave a limit at c.

Let f : R — R be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.
(a) Show that f has a limit at x = 0.
(b) Use a sequential argument to show thatif ¢ # 0, then f does not have a limit at c.

Let f : R — R, let I be an open interval in R, and let ¢ € /. If f| is the restriction of f to I,
show that f, has a limit at c if and only if f has a limit at c, and that the limits are equal.

Let f : R — R, let J be a closedinterval in R, and let ¢ € J. If f, is the restriction of f to J,
show thatif f has a limit at c then f, has a limit at c. Show by example that it does not follow
that if £, has a limit at c, then f has a limit at c.
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Section 4.2 Limit Theorems

We shall now obtain results that are useful in calculating limits of functions. These results
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most
cases these results can be proved by using Theorem 4.1.8 and results from Section 3.2.
Alternatively, the results in this section can be proved by using - arguments that are very
similar to the ones employed in Section 3.2.

4.2.1 Definition Let A C R,let f: A — R, and let c € Rbea cluster point of A. We say
that f is bounded on a neighborhood of c if there exists a §-neighborhood V; (c) of ¢ and
aconstant M > 0 such that we have | f(x)| < M forall x € A N V,(c).

4.2.2 Theorem IfACRand f:A — Rhasalimitatc € R, then f is bounded on some
neighborhood of c.

Proof. IfL := llmf then for £ = 1, there exists § > O such thatif0 < |[x —¢| < §, then
|f(x) —L| <1 hence (by Corollary 2.2.4(a)),
IfG=ILI < If(x) - LI < 1.

Therefore,ifx € AN V;(c), x #c,then|f(x)| < |L|+1.1fc ¢ A,wetake M = |L| + 1,
while if c € A we take M := sup {| f(c)|, |L| + 1}}. It follows that if x € A N V,(c), then
| f(x)| < M. This shows that f is bounded on the neighborhood V; (c) of c. QED.

The next definition is similar to the definition for sums, differences, products, and
quotients of sequences given in Section 3.2:

4.2.3 Definition Let A € R and let f and g be functions defined on A to R. We define
the sum f + g, the difference f — g, and the product fg on A to R to be the functions
given by

(f +8)x) = f(x) +gkx), (f —8)(x) := f(x) —gx),
(fe)(x) := f(x)gx) :
for all x € A. Further,if b € R, we define the multiple bf to be the function given by
bf)x) :=bf (x) forall x € A.
Finally, if h(x) # Ofor x € A, we define the quotient f/h to be the function given by

f fx)
( )() h() forall x € A.

424 Theorem LetA CR,let f and g be functions on A toR, and letc € R be a cluster
point of A. Further, letb € R.

(a) If hm f =L andlimg = M, then:

lm(f+g)=L+M, lm(f-g=L-M,
lim (fg) =LM, lim (bf) = bL.
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(b) Ifh: A —> R,ifh(x) #0forallx € A, and if lim h = H # 0, then

X—=C

Proof. Oneproof of this theorem is exactly similar to that of Theorem 3.2.3. Alternatively,
it can be proved by making use of Theorems 3.2.3 and 4.1.8. For example, let (x,) be any
sequence in A such that x, # c forn € N, and ¢ = lim(x,,). It follows from Theorem 4.1.8
that

lim(f(x)) =L, lim(g(x,)) =M.
On the other hand, Definition 4.2.3 implies that

(fe)x,) = f(x,)gx,) for ne N.
Therefore an application of Theorem 3.2.3 yields
lim ((f8)(x,)) = lim (f(x,)g(x,)
= [lim (f(x,))] [lim (ex))] =LM.
Consequently, it follows from Theorem 4.1.8 that

lim(fg) = lim ((fg)(x,)) = LM.

The other parts of this theorem are proved in a similar manner. We leave the details to
the reader. QED.

Remarks (1) We note that, in part (b), the additional assumption that H = lim & # 0 is
X=>C
made. If this assumption is not satisfied, then the limit

fim £
x=>c h(x)

may or may not exist. But even if this limit does exist, we cannot use Theorem 4.2.4(b) to
evaluate it.

(2)Let A C R,andlet f,, f,, - - -, f, be functions on A to R, and let c be a cluster point of
A If

Lk:=}i_>rr£fk for k=1,---,n,
then it follows from Theorem 4.2.4 by an Induction argument that
Li+Ly+--+L, =lm(fi+ f,+---+ f),
and
L,-Ly---L =lm(f,- f,-- f,)-

In particular, we deduce thatif L = lim f and n € N, then
X—=>C

L" = lim (f@))".
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4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be
proved by using Theorem 4.2.4. For example, itfollows from this result thatsince lim x = c,
X—=>C

then lim x2 = ¢?, and that if ¢ > 0, then
X—>C

(b) lin%(xz + 1) - 4) = 20.

It follows from Theorem 4.2.4 that

lim(x® + D(x* — 4) = (}i_lg(xz - 1)) (lgn (x* - 4))

x—2
=5-4=20.
3
x°—4 4
li —_— ] = -
(© x$<x2+l) 5

If we apply Theorem 4.2.4(b), we have

: 3
limx3_4=}l“’n%(x 9 _a
=20 +1 lim(x*+1) 5

x>

Note that since the limit in the denominator [i.e., lin%(x2 + 1) = 5] is not equal to 0, then
x>
Theorem 4.2.4(b) is applicable.
2
x“—4 4

d) lim = = _,

@ lim = —6=3
If welet f(x) == x* — 4and h(x) = 3x — 6forx € R, then we cannot use Theorem
4.2.4(b) to evaluate lim2 (f(x)/h(x)) because
x>

H = lim h(x) = lim(3x — 6)
=31in%x—6=3-2—6=0.
However, if x # 2, then it follows that
2
-4 +2)(x —2 1
x _ G +2)x )=_(x+2).
3x —6 3(x —2) 3

Therefore we have
2

. -4 1 1/.. 4
31-13%3x—6_32“53(x+2)_§(}‘3%x+2)_'3"

Note that the function g(x) = (x> — 4)/(3x — 6) has a limit at x = 2 even though it is not
defined there.

.1 L
(¢) lim — does not exist in R.
x—0 Xx

Of course lin(l) 1=1and H := lin(l)x = 0. However, since H = 0, we cannot use
X—> xX—=>
Theorem 4.2.4(b) to evaluate liné(l /x). In fact, as was seen in Example 4.1.10(a), the
x—

function ¢ (x) = 1/x does not have a limit at x = 0. This conclusion also follows from
Theorem 4.2.2 since the function ¢ (x) = 1/x is not bounded on a neighborhood of x = 0.
(Why?)



108 CHAPTER4 LIMITS

(f) If p is a polynomial function, then hm p(x) = p(c).

Let p be a polynomial function on IR sothat p(x) =a,x" +a,_ lx"‘1 + ‘+ax+
a, forall x € R. It follows from Theorem 4.2.4 and the fact that lim x* = ¢*, that

X—=>C
. . _1
)1(1_)rrzp(x)=)lcl_§1[a " +a, x" -~-+ax+a0]
=11_r)13( )'ﬂ}_‘f}( EE DR +l‘_{‘}(“1x)+ll_)n§ao
=a,"+a,_ "'+ +ac+a,
=p(o).

Hence lim p(x) = p(c) forany polynomial function p.
X—>C

(g) If p and g are polynomial functions on R and if g(c) # O, then

px) _ plo)
im = .
—eqg(x)  g(c)
Since g(x) is a polynomial function, it follows from a theorem in algebra that there are
at most a finite number of real numbers ¢, - - -, «,, [the real zeroes of g(x)] such that
q(e;) = 0 and such that if x ¢ {c;, -- -, @}, then g(x) # 0. Hence, if x ¢ {}, -+, ,},
we can define

pwx)

q(x)

If ¢ is not a zero of gq(x), then g(c) # 0, and it follows from part (f) that lim g(x) =
g(c) # 0. Therefore we can apply Theorem 4.2.4(b) to conclude that e

r(x) :=

px)  Imp) 5

m - T - .
x—c g(x) )lcl_)rrzq(x) q(c)

The next result is a direct analogue of Theorem 3.2.6.

4.2.6 Theorem LetA CR,let f: A — Randletc € R be a cluster point of A. If
a<f(x)<b forall x € A, x #c,

and if lim f exists, thema < lim f < b.
X—=>cC X—>C

Proof. Indeed, if L = hm f, then it follows from Theorem 4.1.8 that if (x,) is any

sequence of real numbers such that ¢ # x, € A for all n € N and if the sequence (x,)
converges to c, then the sequence ( fx )) converges to L. Since a < f(x,) < b for all
n € N, it follows from Theorem 3.2.6 thata < L < b. QED.

We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the
reader.
4.2.7 Squeeze Theorem LetA C R, let f,g,h: A — R, and let c € R be a cluster point
of A. If
f(x) <gx) <hx) forall xe€ A,x #c,
and1f11m f=L= llmh thenlimg = L.
->C

X—>C
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4.2.8 Examples (a) limo =0 (x> 0).

Let f(x) := x¥? for x > 0. Since the inequality x < x!/? <1 holds for 0 < x < 1
(why?), it follows that x2 < f(x) =x** < xfor0 < x < 1. Since

limx?2=0 and lim x = 0,

x—0 x—0

it follows from the Squeeze Theorem 4.2.7 that lim ¥ =0.
(b) }1_1)% sinx = 0.
It will be proved later (see Theorem 8.4.8), that
—x <sinx <x forall x > 0.
Since ll_rf(l) (£x) =0, it follows from the Squeeze Theorem that }1_% sinx = 0.
(c) li_r’r(l)cosx =1
It will be proved later (see Theorem 8.4.8) that

@) 1- %xz <cosx <1 forall x € R.

Since lin%) (1- %xz) = 1, it follows from the Squeeze Theorem that lina cosx = 1.
x— x—>
@ lim (9”—_1) =0
x—=0 X
We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows
from the inequality (1) in part (c) that
—%xs(cosx—l)/xso for x>0
and that
Os(cosx—l)/xs—%x for x <O.
Now let f(x) := —x/2 for x > 0 and f(x) :=0forx <0, and let A(x) =0 for x >0
and h(x) := —x/2 for x < 0. Then we have
f(x) < (cosx —1)/x < h(x) for x #0.
Since it is readily seen that lir% f=0= lin(l) h, it follows from the Squeeze Theorem that
x—> x—

1in(1)(cosx —1/x=0.

e lim (S‘ﬁ) -1
x—0 X

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be
proved later (see Theorem 8.4.8) that

1.3

X —gx” <sinx <x for x>0
and that
x5sinx§x—%x3 for x <0.

Therefore it follows (why?) that
1-1x? <(sinx)/x <1  forall x #0.

But since lin})(l — éxz) =1- é . lin(l) X% = 1, we infer from the Squeeze Theorem that
X— x—

lir%(sinx)/x =1.

X—>!
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) lin}) (xsin(1/x)) = 0.
xX—>
Let f(x) = xsin(1/x) for x # 0. Since —1 <sinz < 1 for all z € R, we have the
inequality
—Ix| < f(x) =xsin(1/x) < |x|
for all x € R, x # 0. Since 11n(1) |x| =0, it follows from the Squeeze Theorem that
11m f =0. For a graph, see Figure 5.1.3 or the cover of this book. |

There are results that are parallel to Theorems 3.2.9 and 3.2.10; however, we will leave
them as exercises. We conclude this section with a result that is, in some sense, a partial
converse to Theorem 4.2.6.

4.2.9 Theorem Let A CR,let f: A — R and letc € R be a cluster point of A. If

lim f >0 [respective]y, ling f< 0],
x—

xX—>C

then there exists a neighborhood V,(c) of ¢ such that f(x) > O [respectively, f(x) < 0]
forallx e ANV,(c), x #c.

Proof. Let L := lim f and suppose that L > 0. We take ¢ = %L > 0 in Definition 4.1.4,
X—>C

and obtain anumber$ > Osuchthatif0 < |x —c| < §andx € A, then|f (x) — L| < %L.
Therefore (why?) it follows thatif x € A N V,(c), x # c, then fx) > %L > 0.
If L < 0O, asimilar argument applies. QED.

Exercises for Section 4.2

1. Apply Theorem 4.2.4 to determine the following limits:

2
@ lmGE+DQEx+3) ek, (b) lim = ha = >0,
x> x—>1 x° —
. 1 1 . ox+1
© }1_)1% (x 1 g) (x >0), (d) lim e (x €R).

2. Determine the following limits and state which theorems are used in each case. (You may wish
to use Exercise 14 below.)
2

. 2x +1 Loxc =
(@) J}I_)H; 13 (x > 0), (b) PL% o (x > 0),
12 -1 -
© 1im EFED =L o), @ 1im ¥ x > 0).
x—0 X x>l x —
V14+2x —/1+3
3. Find lim + x+2 5 +3x where x > 0.
x—0 X X

4. Prove that lin{l) cos(1/x) does not exist but that lim0 xcos(l/x) =
X—> X

5. Let f, g bedefinedon A C R to R, and let ¢ be a cluster point of A. Suppose that f is bounded
on a neighborhood of ¢ and that 11m g = 0. Prove that lim fg = 0.

X—C

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).

7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b).
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8. Letn € Nbesuch that n > 3. Derive the inequality —x? < x" < x* for —1 < x < 1. Then use
the fact that lim x* = 0 to show that lim x" = 0.
X x>

9. Let f, g be defined on A to R and let ¢ be a cluster point of A.
(a) Show thatif both lim f and lim(f + g) exist, then lim g exists.
X—>C X—>C X—>C

(b) Iflim f and lim f g exist, does it follow that lim g exists?
X-—>C X—=>C

X—=C
10. Give examples of functions f and g such that f and g do not have limits at a point c, but such
that both f + g and fg have limits at c.

11. Determine whether the following limits exist in R.
(@) lin}) sin(1/x2) (x # 0), (b) lir%x sin(1/x2)  (x #£0),
x— x—
(c) lirr(l) sgnsin(l/x) (x #0), (<)) lin})ﬁsin(l/xz) (x > 0).
12. Let f: R— Rbesuchthat f(x +y) = f(x) + f(y) for all x, y in R. Assume that lin(l] f=L
exists. Prove that L = 0, and then prove that f has a limit at every point ¢ € R. [Hint: First note
that f(2x) = f(x) + f(x) = 2f(x) for x € R. Also note that f(x) = f(x —c) + f(c) for x,
cinR.]
13. Let ACR,let f: A— R and let ¢c € R be a cluster point of A. If lim f exists, and if |f|
X—=C
denotes the function defined for x € A by |f | (x) := | f(x)|, prove that lim |f| = | lim f]|
X—=C X—=C

14. Let AC R, let f: A — R, and let c € R be a cluster point of A. In addition, suppose that
f(x) >0 forall x € A, and let /f be the function defined for x € A by (\/f ) (x) ==

V) L If £gl3 f exists, prove that J%1_)112 Vf = /}1_{2 f.

Section 4.3 Some Extensions of the Limit Concept'

In this section, we shall present three types of extensions of the notion of a limit of a
function that often occur. Since all the ideas here are closely parallel to ones we have
already encountered, this section can be read easily.

One-sided Limits

There are times when a function f may not possess a limit at a point ¢, yet a limit does
exist when the function is restricted to an interval on one side of the cluster point c.

For example, the signum function considered in Example 4.1.10(b), and illustrated
in Figure 4.1.2, has no limit at ¢ = 0. However, if we restrict the signum function to the
interval (0, 00), the resulting function has a limit of 1 at ¢ = 0. Similarly, if we restrict the
signum function to the interval (—oo, 0), the resulting function has a limit of —1 at ¢ = 0.
These are elementary examples of right-hand and left-hand limits at ¢ = 0.

4.3.1 Definition LetA € Randlet f: A — R.

(i) If c € Ris a cluster point of the set A N (c, 00) = {x € A: x > c}, then we say that
L € Ris aright-hand limit of f at c and we write

lim f=1L or 1im+ fx)=L

x—=c+

"This section can be largely omitted on a first reading of this chapter.
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if given any € > O there exists a § = § (¢) > O such that for all x € A with 0 <
x—c<d,then|f(x)—L| <e.
(ii) Ifc € Ris a cluster point of the set A N (—00, ¢) = {x € A: x < c}, then we say that
L € R is aleft-hand limit of f at ¢ and we write
lim f=1L or lim f(x) =
xX—>c— x—c—

if given any ¢ > O there exists a § > O such that for all x € A withO < c—x < §,
then |f(x) — L| < e.

Notes (1) The limits lim+ f and Jrlim f are called one-sided limits of f at c. It is
xX—>C —>c—
possible that neither one-sided limit may exist. Also, one of them may exist without the

other existing. Similarly, as is the case for f(x) := sgn(x) at ¢ = 0, they may both exist
and be different.

(2) If A is an interval with left endpoint c, then it is readily seen that f: A — R has a
limit at ¢ if and only if it has a right-hand limit at c. Moreover, in this case the limit lim f
X=>C

and the right-hand limit 1im+ f are equal. (A similar situation occurs for the left-hand limit
X—=>C
when A is an interval with right endpoint c.)

The reader can show that f can have only one right-hand (respectively, left-hand)
limit at a point. There are results analogous to those established in Sections 4.1 and 4.2 for
two-sided limits. In particular, the existence of one-sided limits can be reduced to sequential
considerations.

4.3.2 Theorem Let ACR, let f:A — R, and let c € R be a cluster point of AN
(c, 00). Then the following statements are equivalent:

O Jlim f=L.

(ii) Foreverysequence (x,) that converges toc such thatx, € A andx, > c foralln € N,
the sequence ( f (x,)) converges to L.

We leave the proof of this result (and the formulation and proof of the analogous result
for left-hand limits) to the reader. We will not take the space to write out the formulations
of the one-sided version of the other results in Sections 4.1 and 4.2.

The following result relates the notion of the limit of a function to one-sided limits.
We leave its proof as an exercise.

4.3.3 Theorem LetA CR,let f: A — R, andletc € R be a cluster point of both of the
sets AN(c,00)and AN (~00,c). Thenlim f =L IfaHdOHI_}’lf 11m f=L= lim f.

X—>C X—>»C—

4.3.4 Examples (a) Let f(x) := sgn(x).
We have seen in Example 4.1.10(b) that sgn does not have a limit at 0. It is clear that
11m sgn(x) = +1 and that 11m sgn(x) = —1. Since these one-sided limits are different,

1t also follows from Theorem 4. 3 3 that sgn(x) does not have a limit at 0.
(b) Let g(x) := e'/* forx # 0. (See Figure 4.3.1.)
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Figure 4.3.1 Graph of g(x) = ¢'/* (x # 0).

We first show that g does not have a finite right-hand limit at ¢ = 0 since it is not
bounded on any right-hand neighborhood (0, §) of 0. We shall make use of the inequality

(1) O<t<é for t>0,

which will be proved later (see Corollary 8.3.3). It follows from (1) that if x > 0, then
0<l1l/x < e'*. Hence, if we take X, = 1/n, then g(x,) > n for all n € N. Therefore

lim e!/* does not exist in R.
x—=0+

However, lim e!/* = 0. Indeed, if x < 0 and we take t = —1/x in (1) we obtain

x—0—
0 < —1/x < e '/*, Since x < 0, this implies that 0 < e!/* < —x for all x < 0. It follows
from this inequality that lim el* = 0.
x—0—

() Leth(x) = 1/("* +1)forx # 0. (See Figure 4.3.2.)
We have seen in part (b) that 0 < 1/x < e!/* for x > 0, whence

1 1

0<—el/x+l <617

<X,

which implies that lir(1)1+h =0.

Figure4.3.2 Graphof h(x) = 1/(e'* + 1) (x # 0).
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Since we have seen in part (b) that lim e!/* =0, it follows from the analogue of

x—>0—

Theorem 4.2.4(b) for left-hand limits that

1 1 1
lim = = =1
x—>0- (e‘/" + 1) lim e/*+1 041

x—>0—

Note that for this function, both one-sided limits exist in R, but they are unequal. O

Infinite Limits

The function f(x) =1 /x2 forx # 0 (see Figure 4.3.3) is not bounded on a neighborhood of
0, so it cannot have a limit in the sense of Definition 4.1.4. While the symbols co (= 400)
and —oo do not represent real numbers, it is sometimes useful to be able to say that
“f(x) = 1/x> tends to co as x — 0”. This use of +00 will not cause any difficulties,
provided we exercise caution and never interpret co or —oo as being real numbers.

Figure 4.3.3 Graph of Figure 4.3.4 Graph of
f(x) =1/x" (x #0) g(x) = 1/x (x #0)

4.3.5 Definition Let A C R, let f: A — R, and let c € R be a cluster point of A.

(i) Wesaythat f tendsto oo as x — c, and write

lim f = oo,
X—>C

if for every « ‘€ R there exists § = §(a) > 0 such that for all x € A with0 < |x — ¢|
< §,then f(x) > .

(i) Wesay that f tends to —oo as x — ¢, and write

lim f = —o0,

X—>cC

ifforevery B € Rthereexists§ = §(8) > Osuchthatforallx € AwithO < |x —¢| <
§, then f(x) < B.

4.3.6 Examples (a) lim (1/x?%) = oo.
x>
For,ifa > Ois given, let 8 := 1/ /a. It follows thatif0 < |x| < &, then x* < 1/a so
that1/x? > a.
(b) Letg(x):=1/x for x # 0. (See Figure 4.3.4.)
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The function g doesnottendto either oo or —oc asx — 0. For, ife > Othen g(x) < «
forall x < 0, so that g does not tend to oo as x — 0. Similarly, if 8 < 0 then g(x) > B for
all x > 0, so that g does not tend to —oo as x — 0. g

While many of the results in Sections 4.1 and 4.2 have extensions to this limiting
notion, not all of them do since oo are not real numbers. The following result is an
analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.)

4.3.7 Theorem Let ACR, let f,g: A — R, and let c € R be a cluster point of A.
Suppose that f(x) < g(x) forallx € A, x #c.
(@) Iflim f = oo, then lim g = oo.
X—C X—>»C
(b) Iflim g = —oo, then lim f = —oo0.
X->C xX—>C
Proof. (a) If lim f = oo and @ € R is given, then there exists §(«) > O such that if
X—>C

0<|x—c|<é(x)andx € A, then f(x) > a.Butsince f(x) < g(x)forallx € A,x #c,
it follows that if 0 < |x — ¢| < & (@) and x € A, then g(x) > «. Therefore )lcingg = 0.

The proof of (b) is similar. Q.E.D.

The function g(x) = 1/x considered in Example 4.3.6(b) suggests that it might be
useful to consider one-sided infinite limits. We will define only right-hand infinite limits.

4.3.8 Definition Let A C Randlet f: A — R. If c € R is a cluster point of the set
AN (c, 00) ={x € A: x > ¢}, then we say that f tends to oo [respectively, —oo] as
x — ¢+, and we write

lim f =00 |:respective1y, lim f = —oo],
x—>c+ X—»c+

if for every a € R there is § = §(a) > O suchthatforallx € A with0 < x — ¢ < §, then
f(x) > « [respectively, f(x) < «].

4.3.9 Examples (a) Let g(x) := 1/x for x # 0. We have noted in Example 4.3.6(b)
that lin(l) g does not exist. However, it is an easy exercise to show that

lim (1/x) = o0 and lim (1/x) = —o0.

x—0+ x—0—
(b) ItwasseeninExample 4.3.4(b) that the function g (x) := e'/* for x # 0is not bounded
on any interval (0, §), § > 0. Hence the right-hand limit of e'/* as x — 0+ does not exist
in the sense of Definition 4.3.1(i). However, since

1/x

I/x <e for x>0,

itis readily seen that lim e!/* = oo in the sense of Definition 4.3.8. g

x—0+

Limits at Infinity

It is also desirable to define the notion of the limit of a function as x — oco. The definition
as x — —oo is similar.
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4.3.10 Definition Let A € R and let f: A — R. Suppose that (a, o0) € A for some
a € R. Wesay that L € R is a limit of f as x — oo, and write

lim f=1L or lim f(x) =1L,

X—»00 X—»00

if given any & > 0 there exists K = K(¢) > a such that for any x > K, then
|[f(x)—L| <e.

The reader should note the close resemblance between 4.3.10 and the definition of a
limit of a sequence.

We leave it to the reader to show that the limits of f as x — oo are unique whenever
they exist. We also have sequential criteria for these limits; we shall only state the criterion
asx — oo. This uses the notion of the limit of a properly divergent sequence (see Definition
3.6.1).

4.3.11 Theorem Let ACR, let f: A — R, and suppose that (a,00) € A for some
a € R. Then the following statements are equivalent:

G L= lim f.

X—>»00
(i) For every sequence (x,) in A N (a, 0o) such that lim(x,) = oo, the sequence (f (x,))
converges to L.

We leave it to the reader to prove this theorem and to formulate and prove the companion
result concerning the limit as x — —oo.

4.3.12 Examples (a) Let g(x) := 1/x forx # 0.
It is an elementary exercise to show that lim (1/x) =0 = lim (1/x). (See Figure
X—>00 X=»—00
4.34.)
(b) Let f(x):=1/x*forx #0.
The reader may show that lim (1/x2) = 0= lim (1/x?). (See Figure 4.3.3.) One
X—>»00 X—>—00
way todo this isto show that if x > 1then0 < 1/x? < 1/x.In view of part (a), this implies
that lim (1 /x%) =0. O
paed

Just as it is convenient to be able to say that f(x) — oo asx — ¢ for c e R, itis
convenient to have the corresponding notion as x — *oc. We will treat the case where
X —> OQ.

4.3.13 Definition Let A C R and let f: A — R. Suppose that (a, co) C A for some
a € A We say that f tends to oo [respectively, —oo] as x — 00, and write

lim f = o0 [respectively, lim f = —oo]
X—>»00 X—>00

if given any o € R there exists K = K(«a) > a such that for any x > K, then f(x) > «
[respectively, f(x) < a].

As before there is a sequential criterion for this limit.

4.3.14 Theorem Let A€ R, let f: A — R, and suppose that (a,o0) € A for some
a € R. Then the following statements are equivalent:
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() lim f = oo [respectively, lim f = —oo].
(i) For every sequence (x,) in (a, 00) such that lim(x,) = oo, then lim (f(x,)) = oo
[respectively, lim(f(x,)) = —o0].

The next result is an analogue of Theorem 3.6.5.

4.3.15 Theorem Let A C R, let f, g: A — R, and suppose that (a, co) C A for some
a € R. Suppose further that g(x) > 0 for all x > a and that for some L € R, L # 0, we
have

m L
x—>00 g (x)
(i) IfL > O, then xl-i-)rgof = oo if and only if lim g = oo.

(i) IfL <O, then lim f = —oo if and only if lim g = oo.
X—>00 X—=>00

Proof. (i) Since L > 0, the hypothesis implies that there exists a, > a such that

0<%L§f(x)
g(x)

< %L for x > a,.

Therefore we have (L) g(x) < f(x) < (3L) g(x)forall x > a,, from which the conclu-
sion follows readily.

The proof of (ii) is similar. QE.D.

We leave it to the reader to formulate the analogous result as x — —oo.

4.3.16 Examples (a) lim x" =ooforn € N.
X—>00

Let g(x) := x" forx € (0, 00). Givena € R, let K := sup{l, a}. Thenforall x > X,
we have g(x) = x" > x > «. Since a € R is arbitrary, it follows that lir{.lo g = oo.
x—

(b) lim x" =ooforn € N,neven, and lim x" = —ooforn € N, n odd.

xX—=>—00 xX—>—00

We will treat the case n odd, say n =2k 41 with k =0, 1,---. Given a € R, let
K = inf{e, —1}. For any x < K, then since (xz)" > 1, we have x" = (xz)"x <x<a.
Since a € R is arbitrary, it follows that lim x" = —oo.

X—=>—00

(c) Let p: R — R be the polynomial function
p(x) =a,x" + an_lx"'1 +--4ax+a,
Then lim p =ooifa, > 0,and lim p = —ooifa, < 0.
X—>00

X—>00

Indeed, let g(x) := x”" and apply Theorem 4.3.15. Since

P _ Iy .. R 1
gy ot (x) ot (x"-1)+“° (x)

it follows that lim (p(x)/g(x)) = a,. Since lim g = oo, the assertion follows from The-
X—>00 X—>00
orem 4.3.15.
(d) Let p be the polynomial function in part (c). Then lim p = oo [respectively, —c0]
X —>—00

if n is even [respectively, odd] and a, > 0.
We leave the details to the reader. Od




118

CHAPTER 4 LIMITS

Exercises for Section 4.3

> L=

10.
11.

12.

13.

Prove Theorem 4.3.2.
Give an example of a function that has a right-hand limit but not a left-hand limit at a point.
Let f (x) := lx12 for x # 0. Show that lirgl+ flx) = lir(r)l fx=

x— x->0—

Let ¢ € R and let f be defined for x € (¢, 00) and f(x) > O for all x € (¢, o0). Show that
lim f = oo if and only if hm 1/f =0.

X=»C

Evaluate the following limits, or show that they do not exist.

(a) xl_igl+ ) (x#1, ®) lim— x#1D),

(© lim (x +2)/Vx (x> 0), @ lim (x + 2)/Vx (x>0,
() lim Wx+1)/x (x>-1), ® lim Wx+1)/x (x> 0),
® tm =2 o, @ Jim =X G0

Prove Theorem 4.3.11.
Suppose that f and g have limits in R as x — oo and that f(x) < g(x) for all x € (a, 00).
Prove that ]1m f < lim g.

X=»00
Let f be defined on (0, 00) to R. Prove that lim f(x) = L if and only if 1il(1)l+ fd/x) =
xX—»00 x>
Show that if f: (a, 00) — Ris such that lim xf(x) = L where L € R, then lim f(x) =0.
xX—00 X—>00
Prove Theorem 4.3.14.
Suppose that lim f(x) = L where L > 0, and that 11m g(x) = oo. Show that hm f(x)g(x) =
X—C
oo. If L = 0, show by example that this conclusmn may fail.
Find functions f and g defined on (0, oo) such that hm f =ooand 11m g = 0o,and llm f -
g) = 0. Can you find such functions, with g(x) > Ofor all x € (0, oo), such that hm f/g =0?

Let f and g be defined on (a, co0) and suppose 11m f =L and lim g = oo. Prove that
X—>00
lim fog=L.



CHAPTER 5

CONTINUOUS FUNCTIONS

We now begin the study of the most important class of functions that arises in real analysis:
the class of continuous functions. The term *“continuous” has been used since the time of
Newton to refer to the motion of bodies or to describe an unbroken curve, but it was not
made precise until the nineteenth century. Work of Bemhard Bolzano in 1817 and Augustin-
Louis Cauchy in 1821 identified continuity as a very significant property of functions and
proposed definitions, but since the concept is tied to that of limit, it was the careful work of
Karl Weierstrass in the 1870s that brought proper understanding to the idea of continuity.

We will first define the notions of continuity at a point and continuity on a set, and then
show that various combinations of continuous functions give rise to continuous functions.
Then in Section 5.3 we establishthe fundamental properties that make continuous functions
so important. For instance, we will prove that a continuous function on a closed bounded
interval must attain a maximum and a minimum value. We also prove that a continuous
function must take on every value intermediate to any two values it attains. These properties
and others are not possessed by general functions, as various examples illustrate, and thus
they distinguish continuous functions as a very special class of functions.

In Section 5.4 we introduce the very important notion of uniform continuity. The
distinction between continuity and uniform continuity is somewhat subtle and was not fully
appreciated until the work of Weierstrass and the mathematicians of his era, but it proved to

Karl Weierstrass

Karl Weierstrass (=Weierstra8) (1815-1897) was born in Westphalia, Ger- 2
many. His father, a customs officer in a salt works, insisted that he study §
law and public finance at the University of Bonn, but he had more interest
in drinking and fencing, and left Bonn withoutreceiving a diploma. He then
enrolled in the Academy of Miinster where he studied mathematics with
Christoph Gudermann. From 1841-1854 he taught at various gymnasia in
Prussia. Despite the fact that he had no contact with the mathematical world
during this time, he worked hard on mathematical research and was able
to publish a few papers, one of which attracted considerable attention. Indeed, the University of
Konigsberg gave him an honorary doctoral degree for this work in 1855. The next year, he secured
positions at the Industrial Institute of Berlin and the University of Berlin. He remained at Berlin
until his death.

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put
everything on a firm and logical foundation. He did fundamental work on the foundations of
arithmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry.
Due to his meticulous preparation, he was an extremely popular lecturer; it was not unusual for
him to speak about advanced mathematical topics to audiences of more than 250. Among his
auditors are counted Georg Cantor, Sonya Kovalevsky, Gosta Mittag-Leffler, Max Planck, Otto
Holder, David Hilbert, and Oskar Bolza (who had many American doctoral students). Through
his writings and his lectures, Weierstrass had a profound influence on contemporary mathematics.

119
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be very significant in applications. We present one application to the idea of approximating
continuous functions by more elementary functions (such as polynomials).

The notion of a “gauge” is introduced in Section 5.5 and is used to provide an alter-
native method of proving the fundamental properties of continuous functions. The main
significance of this concept, however, is in the area of integration theory where gauges are
essential in defining the generalized Riemann integral. This will be discussed in Chapter 10.

Monotone functions are an important class of functions with strong continuity proper-
ties and they are discussed in Section 5.6.

Section 5.1 Continuous Functions

In this section, which is very similar to Section 4.1, we will define what it means to say
that a function is continuous at a point, or on a set. This notion of continuity is one of the
central concepts of mathematical analysis, and it will be used in almost all of the following
material in this book. Consequently, it is essential that the reader master it.

5.1.1 Definition LetA C R,let f : A — R, and letc € A. We say that f is continuous
at c if, given any number ¢ > O there exists § > 0 such that if x is any point of A satisfying
[x —c| <6,then [f(x) — f(c)| < e.

If f fails to be continuous at c, then we say that f is discontinuous at c.

As with the definition of limit, the definition of continuity at a point can be formulated

very nicely in terms of neighborhoods. This is done in the next result. We leave the
verification as an important exercise for the reader. See Figure 5.1.1.

Ve(f () {f(C) Ve(f ()

[ S —

Velc)

Figure 5.1.1 Given V.(f(c)), aneighborhood V;(c) is to be determined.

$5.1.2 Theorem A function f : A > Riscontinuous at a pointc € A if and only if given
any e-neighborhood V,(f (c)) of f(c) there exists a §-neighborhood V(c) of ¢ such that if
x isany point of A N Vi(c), then f(x) belongs to V_( f(c)), that is,

FANVs() € V. (f ().

Remark (1) Ifc € Aisacluster point of A, then a comparison of Definitions 4.1.4 and
5.1.1 show that f is continuous at c if and only if

1) f (¢) = lim f(x).
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Thus, if ¢ is a cluster point of A, then three conditions must hold for f to be continuous
atc:

(i) f must be defined at ¢ (so that f(c) makes sense),

(ii) thelimit of f at ¢ must exist in R (so that lim f(x) makes sense), and
X—>C
(iii) these two values must be equal.

(2) If c € Ais not a cluster point of A, then there exists a neighborhood V;(c) of ¢ such
that A N V;(c) = {c}. Thus we conclude that a function f is automatically continuous at a
point ¢ € A thatis not a cluster point of A. Such points are often called “isolated points”
of A. They are of little practical interest to us, since they have no relation to a limiting
process. Since continuity is automatic for such points, we generally test for continuity only
at cluster points. Thus we regard condition (1) as being characteristic for continuity at c.

A slight modification of the proof of Theorem 4.1.8 for limits yields the following
sequential version of continuity at a point.

5.1.3 Sequential Criterion for Continuity A function f : A — R is continuous at the
point ¢ € A if and only if for every sequence (x,) in A that converges to c, the sequence
(f(x,)) converges to f(c).

The following Discontinuity Criterion is a consequence of the last theorem. It should
be compared with the Divergence Criterion 4.1.9(a) with L = f(c). Its proof should be
written out in detail by the reader.

5.1.4 Discontinuity Criterion Let ACR, let f: A — R, and let c € A. Then f is
discontinuous at c if and only if there exists a sequence (x,) in A such that (x,) converges
to c, but the sequence (f(x,)) does not converge to f(c).

So far we have discussed continuity at a point. To talk about the continuity of a function
on a set, we will simply require that the function be continuous at each point of the set. We
state this formally in the next definition.

5.1.5 Definition Let A C Randlet f: A — R. If B is a subset of A, we say that f is
continuous on the set B if f is continuous at every point of B.

5.1.6 Examples (a) The constant function f(x) := b is continuous on R.

It was seen in Example 4.1.7(a) that if ¢ € R, then lim f(x) = b. Since f(c) = b,
we have lim f(x) = f(c), and thus f is continuous at ev)t;;/cpoint ¢ € R. Therefore f is
continuous on R. '

(b) g(x) := x is continuous on R.
It was seen in Example 4.1.7(b) thatif ¢ € R, then we have }1_12 g =c.Since g(c) =c,

then g is continuous at every point ¢ € R. Thus g is continuous on R.
(¢) h(x) := x?is continuous on R.
It was seen in Example 4.1.7(c) that if ¢ € R, then we have lim h = 2. Since h(c)

X—=C

= ¢?, then h is continuous at every point ¢ € R. Thus 4 is continuous on R.
(d) ¢(x):=1/xiscontinuouson A := {x € R: x > 0}.
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It was seen in Example 4.1.7(d) that if ¢ € A, then we have lim ¢ = 1/c. Since
X—>C

¢(c) = 1/c, this shows that ¢ is continuous at every point ¢ € A. Thus ¢ is continuous
on A.

(e) ¢(x) :=1/x is not continuous at x = 0.
Indeed, if ¢(x) = 1/x for x > 0, then ¢ is not defined for x = 0, so it cannot be
continuous there. Alternatively, it was seen in Example 4.1.10(a) that linz) ¢ does not exist
X—>

in R, so ¢ cannot be continuous at x = 0.

(f) The signum function sgn is not continuous at 0.

The signum function was defined in Example 4.1.10(b), where it was also shown that
lin}) sgn(x) does not exist in R. Therefore sgn is not continuous at x = 0 (even though sgn 0
xX—>

is defined).
It is an exercise to show that sgn is continuous at every point ¢ # 0.

(@) Let A := R andlet f be Dirichlet’s “discontinuous function” defined by

flx) = 1 if x is rational,
" |0 if x isirrational.

We claim that f is not continuous at any point of R. (This function was introduced in 1829
by P. G. L. Dirichlet.)

Indeed, if ¢ is a rational number, let (xn) be a sequence of irrational numbers that
converges to c¢. (Corollary 2.44.9 to the Density Theorem 2.4.8 assures us that such a
sequence does exist.) Since f(x,) =0 for all n € N, we have lim (f(x,)) =0, while
f(c) = 1. Therefore f is not continuous at the rational number c.

On the other hand, if b is an irrational number, let (yn) be a sequence of rational
numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence
does exist.) Since f(y,) =1 for all n € N, we have lim (f(y")) =1, while f(b) =0.
Therefore f is not continuous at the irrational number b.

Since every real number is either rational or irrational, we deduce that f is not
continuous at any point in R.

(h) Let A :={x € R: x > 0}. For any irrational number x > 0 we define h(x) = 0. For
a rational number in A of the form m/n, with natural numbers m, n having no common
factors except 1, we define h(m/n) := 1/n. (Sometimes we also define h(0) := 1.)

0.8 |-

0.6 -

0.2 . . . . . . . .

0 0.5 1 1.5 2

Figure 5.1.2 Thomae’s function.
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We claim that 4 is continuous at every irrational number in A, and is discontinuous
at every rational number in A. (This function was introduced in 1875 by K. J. Thomae.)

Indeed, if a > O is rational, let (x,) be a sequence of irrational numbers in A that
converges to a. Then lim (h(x,)) = 0, while h(a) > 0. Hence h is discontinuous at a.

On the other hand, if b is an irrational number and ¢ > 0, then (by the Archimedean
Property) there is a natural number n, such that 1/n, < ¢. There are only a finite num-
ber of rationals with denominator less than n; in the interval (b — 1,5+ 1). (Why?)
Hence § > 0 can be chosen so small that the neighborhood (b — 8, b + §) contains no
rational numbers with denominator less than n,. It then follows that for lx —b| <8,x €
A, we have |h(x) — h(b)| = |h(x)| < 1/n, < &. Thus h is continuous at the irrational
number b.

Consequently, we deduce that Thomae’s function A is continuous precisely at the
irrational points in A. a

5.1.7 Remarks (a) Sometimes a function f: A — R is not continuous at a point ¢
because it is not defined at this point. However, if the function f has a limit L at the point
c and if we define F on AU {c} — R by

L for x =c,

F(x) =
f(x) for x €A,
then F is continuous at c. To see this, one needs to check that lim F = L, but this follows
X—>C
(why?), since lim f = L.
X—>C
(b) If a function g : A — R does not have a limit at c, then there is no way that we can
obtain a function G : A U {c} — R that is continuous at ¢ by defining

C for x =c,
Gx) =
g(x) for x € A.

To see this, observe that if lim G exists and equals C, then lim g must also exist and
xX—>C x—c

equal C.

5.1.8 Examples (a) The function g(x) := sin(1/x) for x # O (see Figure 4.1.3) does
not have a limit at x = 0 (see Example 4.1.10(c)). Thus there is no value that we can assign
at x = 0 to obtain a continuous extension of g at x = 0.

(b) Let f(x) = xsin(1/x) for x # 0. (See Figure 5.1.3.) Since f is notdefined at x = 0,

the function f cannot be continuous at this point. However, it was seen in Example 4.2.8(f)

that lirr(l) (x sin(1/x)) = 0. Therefore it follows from Remark 5.1.7(a) that if we define
x—>

E:R > Rby

{ for x =0,
F(x) :=
x sin(1/x) for x #0,

then F is continuous at x = 0. O



124

CHAPTERS5 CONTINUOUS FUNCTIONS

M
I

AN

Figure §.1.3 Graphof f(x) = xsin(1/x) (x #0).

Exercises for Section 5.1

10.
11.

12.

13.

Prove the Sequential Criterion 5.1.3.

Establish the Discontinuity Criterion 5.1.4.

Leta < b < c. Suppose that f is continuous on [a, b], that g is continuous on [b, c], and that
f(b) = g(b). Define h on [a, c]by h(x) = f(x)forx € [a, b] and h(x) = g(x) for x € (b, c].
Prove that h is continuous on [a, c].

If x € R, we define [x] to be the greatest integer n € Z such that n < x. (Thus, for exam-
ple, [8.3] = 8, [x] = 3, [—=] = —4.) The function x > [x] is called the greatest integer
function. Determine the points of continuity of the following functions:

(@ f@x):=1Ix] (b) g(x):=x[x],

(¢) h(x):=[sinx], d) k(x):=M01/x1 (x#0).

Let f be defined for all x € R, x # 2, by f(x) = (x? +x —6)/(x — 2). Can f be defined at
x = 2 in such a way that f is continuous at this point?

Let A< Randlet f: A — R be continuous at a point ¢ € A. Show that for any ¢ > 0, there
exists a neighborhood V;(c) of ¢ such thatif x, y € A N V,(c), then | f(x) — f(¥)| < &.

Let f : R — R be continuous at ¢ and let f(c) > 0. Show that there exists a neighborhood
V;(c) of c such that if x € V,(c), then f(x) > 0.

Let f : R — R be continuous on R andlet S := {x € R : f(x) = 0} be the “zero set” of f. If
(x,)isin § and x = lim(x,), show that x € §.

Let AC B C R, let f: B — R and let g be the restriction of f to A (thatis, g(x) = f(x) for
x € A).

(a) If f iscontinuous at ¢ € A, show that g is continuous at c.

(b) Show by example that if g is continuous at c, it need not follow that f is continuous at c.
Show that the absolute value function f(x) := |x| is continuous at every point ¢ € R.

LetK > Oandlet f : R — R satisfy the condition | f (x) — f(¥)| < K|x — y|forallx,y e R.
Show that f is continuous at every point ¢ € R.

Suppose that f : R — R is continuous on R and that f(r) = 0 for every rational number r.
Prove that f(x) = 0 for all x € R.

Define g : R — R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational. Find all
points at which g is continuous.
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14. Let A := (0,00) and let k : A — R be defined as follows. For x € A, x irrational, we define
k(x) = 0; for x € A rational and of the form x = m/n with natural numbers m, n having no
common factors except 1, we define k(x) := n. Prove that k is unbounded on every open interval
in A. Conclude that & is not continuous at any point of A. (See Example 5.1.6(h).)

15. Let f:(0,1) — R be bounded but such that lil'I(I) f does not exist. Show that there are two

sequences (x,) and (y,) in (0, 1) with lim(x,) = 0 = lim(y, ), but such that lim ( f (x")) and
lim (f (y,)) exist but are not equal.

Section 5.2 Combinations of Continuous Functions

Let ACR and let f and g be functions that are defined on A to R and let b € R. In
Definition 4.2.3 we defined the sum, difference, product, and multiple functions denoted
by f+g, f —g, fg bf.In addition, if h : A — R is such that h(x) # 0 for all x € A,
then we defined the quotient function denoted by f/h.

The next result is similar to Theorem 4.2.4, from which it follows.

5.2.1 Theorem LetA C R, let f and g be functions on A toR, and letb € R. Suppose
that c € A and that f and g are continuous at c.

(@) Then f +g,f —g, fg andbf are continuous at c.

(b) Ifh: A — Riscontinuous atc € A and if h(x) # 0 for all x € A, then the quotient
f/ h is continuous at c.

Proof. If c € A is not a cluster point of A, then the conclusion is automatic. Hence we
assume that c is a cluster point of A.

(a) Since f and g are continuous at ¢, then

fle=limf and  g(c) =limg.
Hence it follows from Theorem 4.2.4(a) that

(f +8)) = f(o) +g(c) = lim(f + g).

Therefore f + g is continuous at ¢. The remaining assertions in part (a) are proved in a
similar fashion.

(b) Since ¢ € A, then h(c) # 0. But since h(c) = lim A, it follows from Theorem 4.2.4(b)
that

=30 = Tmr —im\ 5

X—=>C

£ flo_ imf (1)
! .

Therefore f/h is continuous at c. QED.

The next result is an immediate consequence of Theorem 5.2.1, applied to every point
of A. However, since it is an extremely important result, we shall state it formally.
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5.2.2 Theorem LetA C R, let f and g be continuouson A to R, and letb € R.

(a) The functions f + g, f — g, fg, and bf are continuous on A.

(b) Ifh: A — R is continuous on A and h(x) # O for x € A, then the quotient f/h is
continuous on A.

Remark To define quotients, itis sometimes more convenient to proceed as follows. If
p:A—> R let A :={x € A: ¢ (x) # 0}. We can define the quotient f/¢ on the set A,
by

(1) (f) W=1%" fr rea,
¢ ¢ (x)

If ¢ is continuous at a point ¢ € A, it is clear that the restriction ¢, of ¢ to A, is also
continuous at c. Therefore it follows from Theorem 5.2.1(b) applied to ¢, that f/¢p,
is continuous at ¢ € A. Since (f/@)(x) = (f/p,)(x) for x € A, it follows that f/p is
continuous at ¢ € A,. Similarly, if f and ¢ are continuous on A, then the function f/g,
defined on A, by (1), is continuous on A4, .

5.2.3 Examples (a) Polynomial functions.
If p is a polynomial function, so that p(x) = anx" + an_lx"_1 +---+ax + a, for
all x € R, then it follows from Example 4.2.5(f) that p(c) = lim p for any ¢ € R. Thus
X—>C
a polynomial function is continuous on R.

(b) Rational functions.

If p and g are polynomial functions on R, then there are at most a finite number
a,---,a, of real roots of . If x ¢ {ay, -, @, } then g(x) # 0 so that we can define the
rational function r by

_p®
q (x)
It was seen in Example 4.2.5(g) that if g(c) # O, then

r(x):

for x ¢ {a, R B

r(c)

_plo . px® .
S g0 iRgm e

In other words, r is continuous at c. Since c is any real number that is not a root of g, we
infer that a rational function is continuous at every real number for which it is defined.

(c) We shall show that the sine function sin is continuous on R.
To do so we make use of the following properties of the sine and cosine functions.
(See Section 8.4.) Forall x, y, z € R we have:

|sinz| < |z|, |cosz| <1,
sinx —siny = 2sin [{(x — y)] cos [1(x + y)].
Hence if ¢ € R, then we have
|sinx —sinc| <2 3x —c|-1=|x —cl.

Therefore sin is continuous at c. Since ¢ € R is arbitrary, it follows that sin is continuous
on R.

(d) The cosine function is continuous on R.
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We make use of the following properties of the sine and cosine functions. For all
x,y,z€ R we have:

|sinz| < |z|, |sinz| <1,
cosx —cosy = —2 sin[%(x + )] sin[%(x -l
Hence if ¢ € R, then we have
lcosx —cosc| <2-1-4jc—x|=|x—cl|
Therefore cos is continuous at c. Since ¢ € R is arbitrary, it follows that cos is continuous

on R. (Alternatively, we could use the relation cos x = sin(x + 7/2).)

(e) The functions tan, cot, sec, csc are continuous where they are defined.
For example, the cotangent function is defined by

Cos x
cotx :=

sinx
provided sinx # O (that is, provided x # nm, n € Z). Since sin and cos are continuous
on R, it follows (see the Remark before Example 5.2.3) that the function cot is continuous
on its domain. The other wigonometric functions are treated similarly. a

5.2.4 Theorem Let ACR, let f: A — R, and let | f| be defined by | f|(x) = | f(x)|
forx € A.

(a) If f is continuous at a point ¢ € A, then | f| is continuous at c.
(b) If f is continuous on A, then | f| is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.13. QED.

5.2.5 Theorem LetA CR,letf:A — R, andlet f(x) >0 forallx € A. We let \/f
be defined for x € A by (v/f) (x) := /f (x).

(@) If f is continuous at a pointc € A, then / f is continuous at c.
(b) If f is continuous on A, then ./ f is continuous on A.

Proof. This is an immediate consequence of Exercise 4.2.14. QED.

Composition of Continuous Functions

We now show that if the function f : A — R is continuous at a point c andif g : B —> R
is continuous at b = f(c), then the composition g o f is continuous at c. In order to assure
that g o f is defined on all of A, we also need to assume that f(A) C B.

5.2.6 Theorem LetA,B CRandlet f:A — R and g: B — R be functions such that
f(A) € B. If f is continuous at a point ¢ € A and g is continuous atb = f(c) € B, then
the composition g o f : A — R is continuous at c.

Proof. Let W be an e-neighborhood of g(b). Since g is continuous at b, there is a §-
neighborhood V of b = f(c) suchthatify € BN V then g(y) € W. Since f is continuous
at c, there is a y-neighborhood U of ¢ such that if x € ANU, then f(x) € V. (See
Figure 5.2.1.) Since f(A) C B, it follows that if x € AN U, then f(x) € BNV so that
go f(x) =g(f(x)) € W.But since W is an arbitrary e-neighborhood of g(b), this implies
that g o f is continuous at c. QE.D.
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Figure5.2.1 The composition of f and g.

5.2.7 Theorem LetA,B CR,letf : A — R be continuous on A, andlet g: B — R be
continuous on B. If f(A) C B, then the composite function g o f : A — R is continuous
onA.

Proof. The theorem follows immediately from the preceding result, if f and g are con-
tinuous at every point of A and B, respectively. QED.

Theorems 5.2.6 and 5.2.7 are very useful in establishing that certain functions are
continuous. They can be used in many situations where it would be difficult to apply the
definition of continuity directly.

5.2.8 Examples (a) Let g, (x) = |x|forx € R. It follows from the Triangle Inequality
that

|g,(0) — ,(0)] < Ix —cl

for all x, c € R. Hence g, is continuous at c € R. If f: A — R is any function that is
continuous on A, then Theorem 5.2.7 implies that g, o f = | f| is continuous on A. This
gives another proof of Theorem 5.2.4.

(b) Let g,(x) := /x for x > 0. It follows from Theorems 3.2.10 and 5.1.3 that g, is
continuous at any number ¢ > 0. If f: A — R is continuous on A and if f(x) > 0 for
all x € A, then it follows from Theorem 5.2.7 that g, o f = A/ f is continuous on A. This
gives another proof of Theorem 5.2.5.

(c) Let g5(x) :=sinx for x € R. We have seen in Example 5.2.3(c) that g, is continuous
onR.If f: A — Ris continuous on A, then it follows from Theorem 5.2.7 that g, o f is
continuous on A.

In particular, if f(x):= 1/x for x # 0, then the function g(x) := sin(1/x) is contin-
uous at every point ¢ # 0. [e have seen, in Example 5.1.8(a), that g cannot be defined
at 0 in order to become continuous at that point.] g

Exercises for Section 5.2

1. Determine the points of continuity of the following functions and state which theorems are used
in each case.

2+2x +1
® f0="T Gem), ® g0 :=VitJr (20,
(c) h(x):= ‘/——IT}M (x #0), (d) k(x):=cosv1+ x2 (x € R).
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13.

14.

15.
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Show that if f : A — R is continuous on A € R and if n € N, then the function f" defined by
F"(x) = (f(x))" for x € A, is continuous on A.

Give an example of functions f and g that are both discontinuous at a point ¢ in R such that
(a) the sum f + g is continuous at ¢, (b) the product fg is continuous at c.

Let x — [x] denote the greatest integer function (see Exercise 5.1.4). Determine the points of
continuity of the function f(x) := x — [x], x € R.

Let g be defined on Rby g(1) := 0,and g(x) := 2ifx # 1,andlet f(x) := x + 1forallx € R.
Show that lim 180 f # (g o £)(0). Why doesn't this contradict Theorem 5.2.6?

Let f, g be defined on R and let ¢ € R. Suppose that 11m f =b and that g is continuous
at b. Show that hm g o f = g(b). (Compare this result w1th Theorem 5.2.7 and the preceding
exercise.)

Give an example of a function f : [0, 1] — R that is discontinuous at every point of [0, 1] but
such that | f| is continuous on [0, 1].

Let f, g be conkinuous from R to R, and suppose that f(r) = g(r) for all rational numbers r.
Is it true that f(x) = g(x) for all x € R?

Let h: R — R be continuous on R satisfying h(m/2") = 0 for all m € Z, n € N. Show that
h(x) =O0forall x € R.

Let f: R — R be continuouson R, and let P := {x € R: f(x) > 0}. If c € P, show that there
exists a neighborhood V(c) C P.

If f and g are continuous on R, let S := {x € R: f(x) > g(x)}.If (s,) € S and lim(s,) =5,
show that s € S.

A function f : R — Rissaidtobe additiveif f(x + y) = f(x) + f(y) forall x, yin R. Prove
that if f is continuous at some point x, then it is continuous at every point of R. (See Exercise
42.12.)

Suppose that f is a continuous additive function on R. If ¢ := f (1), show that we have
f(x) =cx forall x € R. [Hint: First show that if r is a rational number, then f(r) = cr.]

Let g : R — R satisfy the relation g(x + y) = g(x)g(y) for all x, y in R. Show that if g is
continuous at x = 0, then g is continuous at every point of R. Also if we have g(a) = 0 for
some a € R, then g(x) =0 for all x € R.

Let f,g:R — R be continuous at a point ¢, and let h(x) := sup {f(x), g(x)} for x € R.
Show that h(x) = %(f(x) + g(x)) + %]f(x) — g(x)| for all x € R. Use this to show that & is
continuous at c.

Section 5.3 Continuous Functions on Intervals

Functions that are continuous on intervals have a number of very important properties that
are not possessed by general continuous functions. In this section, we will establish some
deep results that are of considesable importance and that will be applied later. Alternative
proofs of these results will be given in Section 5.5.

5.3.1 Definition A function f : A — R is said to be bounded on A if there exists a
constant M > O such that | f(x)| < M forallx € A.

In other words, a function is bounded on a set if its range is a bounded set in R. To

say that a function is not bounded on a given set is to say that no particular number can
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serve as a bound for its range. In exact language, a function f is not bounded on the set
A if given any M > 0, there exists a point x,, € A such that | f(x,,)| > M. We often say
that f is unbounded on A in this case.

For example, the function f defined on the interval A := (0, 00) by f(x) := 1/x is
not bounded on A because for any M > 0 we can take the point x,, :=1/(M + 1) in A
toget f(x,) =1/x u =M +1 > M. Thisexample shows that continuous functions need
not be bounded. In the next theorem, however, we show that continuous functions on a
certain type of interval are necessarily bounded.
5.3.2 Boundedness Theorem' Let I = [a, b] be a closed bounded interval and let
f: I — R be continuous on I. Then f is bounded on I.

Proof. Suppose that f isnot bounded on /. Then, for any n € N there is a number x, € /
such that | f (x n) | > n. Since [ is bounded, the sequence X := (x") is bounded. Therefore,
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (x, )of X

that converges to anumber x. Since / is closed and the elements of X' belong to I, it follows
from Theorem 3.2.6 that x € /. Then f is continuous at x, so that (f(x, )) converges to

f(x). We then conclude from Theorem 3.2.2 that the convergent sequence (f(x, )) must
be bounded. But this is a contradiction since

|f(xn)‘>nr2r for r eN.

Therefore the supposition that the continuous function f is not bounded on the closed
bounded interval I leads to a contradiction. QED.

Toshow that each hypothesis of the Boundedness Theorem is needed, we can construct
examples that show the conclusion fails if any one of the hypotheses is relaxed.

(i) The interval must be bounded. The function f(x) := x for x in the unbounded,
closed interval A := [0, 00) is continuous but not bounded on A.

(ii) The interval must be closed. The function g(x) := 1/x for x in the half-open
interval B := (0, 1] is continuous but not bounded on B.

(iii) The function must be continuous. The function s defined on the closed interval
C :=[0,1] by h(x) = 1/x for x € (0, 1] and h(0) := 1 is discontinuous and unbounded
onC.

The Maximum-Minimum Theorem

5.3.3 Definition Let A C Randlet f : A — R. We say that f has an absolute maxi-
mum on A if there is a point x* € A such that

f&* > fx) forall x € A.
We say that f has an absolute minimum on A if there is a point x, € A such that
fx) < fkx) forall x € A.
We say that x* is an absolute maximum point for f on A, and that x_ is an absolute

minimum point for f on A, if they exist.

tThis theorem, as well as 5.3.4, is true for an arbitrary closed bounded set. For these developments, see Sections
11.2 and 11.3.
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We note that a continuous function on a set A does not necessarily have an absolute
maximum or an absolute minimum on the set. For example, f(x) := 1/x has neither an
absolute maximum nor an absolute minimum on the set A := (0, 0o). (See Figure 5.3.1).
There can be no absolute maximum for f on A since f is not bounded above on A, and
there is no point at which f attains the value 0 = inf{f (x) : x € A}. The same function has
neither an absolute maximum nor an absolute minimum when it is restricted to the set (0, 1),
while it has both an absolute maximum and an absolute minimum when itis restricted to
the set [1, 2]. In addition, f (x) = 1/x has an absolute maximum but no absolute minimum
when restricted to the set [1, 00), but no absolute maximum and no absolute minimum
when restricted to the set (1, 00).

It is readily seen that if a function has an absolute maximum point, then this point
is not necessarily uniquely determined. For example, the function g(x) := x? defined for
x € A :=[—1, +1] has the two points x = £1 giving the absolute maximum on A, and
the single point x = 0 yielding its absolute minimum on A. (See Figure 5.3.2.) To pick an
extreme example, the constant function h(x) := 1 for x € R is such that every point of R
is both an absolute maximum and an absolute minimum point for A.

]
|
1 i
1

—_—_—_——_——_—_ >

2 -1
Figure5.3.1 The function Figure5.3.2 The function
f@) =1/x (x > 0). g(x) = x> (Ix) < 1).

5.3.4 Maximum-Minimum Theorem Let! := [a, b] be a closed bounded interval and
let f : I — R be continuous on I. Then f has an absolute maximum and an absolute
minimumon I.

Proof. Consider the nonempty set f(I) := {f(x) : x € I} of values of f onI.In Theorem
5.3.2 it was established that f(I) is a bounded subset of R. Let s* :=sup f(/) and s, :=
inf f(I). We claim that there exist points x* and x, in I such that s* = f(x*) and 5, =
f(x,). We will establish the existence of the point x*, leaving the proof of the existence of
x, to the reader.

Since s* = sup f(I), if n € N, then the number s* — 1/n is not an upper bound of the
set f(I). Consequently there exists a number x,, € I such that

1
1) st —— < f(x,) <s* forall neN.
n

Since I is bounded, the sequence X := (x,) is bounded. Therefore, by the Bolzano-
Weierstrass Theorem 3.4.8, there is a subsequence X' = (x, ) of X that converges to some

number x*. Since the elements of X’ belong to I = [a, b], it follows from Theorem 3.2.6
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that x* € I. Therefore f is continuous at x* so that (lim fx, )) = f(x*). Since it follows
from (1) that

1
s*—n—<f(xn)§s* forall r e N,

we conclude from the Squeeze Theorem 3.2.7 that lim(f(x, )) = s™. Therefore we have

fG™) =1im(f(x,)) =s"=sup f ).
We conclude that x* is an absolute maximum point of f on /. QED.

The next result is the theoretical basis for locating roots of a continuous function by
means of sign changes of the function. The proof also provides an algorithm, known as
the Bisection Method, for the calculation of roots to a specified degree of accuracy and
can be readily programmed for a computer. It is a standard tool for finding solutions of
equations of the form f(x) = 0, where f is a continuous function. An alternative proof of
the theorem is indicated in Exercise 11.

5.3.5 Location of Roots Theorem Let = [a, b] and let f : I — R be continuous on
I1.If f(a) <0 < f(b),orif f(a) >0 > f(b), then there exists a number c € (a, b) such
that f(c) = 0.

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by
successive bisections. Let /| := [a,, b,], where a, := a, b, := b, and let p, be the midpoint
p; = %(a1 +b)).1f f(p,) =0, wetakec = p, and we are done. If f(p,) # O, theneither
f(p) >0or f(p)) <0.If f(p,) > 0,then we seta, :=a,, b, := p;>whileif f(p)) <0,
then we set a, = p,, b, = b,. In either case, we let I, := [a,, b,]; then we have I, C I
and f(a,) <0, f(b,) > 0.

We continue the bisection process. Suppose that the intervals I, I,,---, I, have
been obtained by successive bisection in the same manner. Then we have f(a,) <0
and f(b,) > 0, and we set p, = %(ak +b,). If f(p,) =0, we take ¢ := p, and we are
done. If f(p,) > 0, we set ., = a, bk+1 = p,, while if f(p,) <0, we set =
Pyr byyy = b,.Ineithercase,welet/, , := [a;,,, b, Jsthen [, | C I, and f(a, ;) <O,
f(bpyy) > 0.

If the process terminates by locating a point p, suchthat f(p,) = 0, then we are done.
If the process does not terminate, then we obtain a nested sequence of closed bounded
intervals I, = [a,, b,] such that for every n € N we have

fa,) <0 and f®,) > 0.

Furthermore, since the intervals are obtained by repeated bisection, the length of I, is

equalto b, —a, = (b —a)/ 2"~1, 1t follows from the Nested Intervals Property 2.5.2 that
there exists a point c that belongs to /, foralln € N. Sincea, <c <b, foralln € N, we

have 0<c—a,<b,—a, =(b-a)/2"",and0<b, —c<b, —a,=(b—a)/2"".
Hence, it follows that lim(a,) = ¢ = lim(b,). Since f is continuous at ¢, we have

lim (f(a,)) = f(c) = lim(f(?,)).

The fact that f(a,) < 0 for all n € N implies that f(c) = lim ( f (an)) < 0. Also, the fact
that f(b,) > O for all n € N implies that f(c) = lim ( f (bn)) > 0. Thus, we conclude that
f(c) = 0. Consequently, c is a root of f. QED.
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The following example illustrates how the Bisection Method for finding rootsis applied
in a systematic fashion.

5.3.6 Example The equation f(x) =xe* —2 =0 has a root ¢ in the interval [0, 1],
because f is continuous on this interval and f(0) = —2 <0 and f(1) =e —2 > 0. We
construct the following table, where the sign of f( p,) determines the interval at the next
step. The far right column is an upper bound on the error when p, is used to approximate
the root ¢, because we have

|P,, —CI = %(bn —a,) = 172"

We will find an approximation p, with error less than 1072,

n an bn p'l f(pn) %(bn - an)
1 0 1 .5 -1.176 .5

2 5 1 5 -.412 25

3 .75 1 .875 +.099  .125

4 75 875 8125 —-.169  .0625

5 8125 .875 .84375 —.0382 .03125

6 .84375 875 .859375  +.0296 .015625

7 84375 .859375 .8515625 — 0078125

We have stopped at n = 7, obtaining ¢ & p, = .8515625 with error less than .0078125.
This is the first step in which the error is less than 1072, The decimal place values of P past
the second place cannot be taken seriously, but we can conclude that .843 < ¢ < .860. O

Bolzano’s Theorem

The next result is a generalization of the Location of Roots Theorem. It assures us that a
continuous function on an interval takes on (at least once) any number that lies between
two of its values.

5.3.7 Bolzano’s Intermediate Value Theorem Let/ be aninterval andlet f : I — R
be continuousonI.Ifa, b € I and if k € R satisfies f(a) < k < f(b), then there exists a
point ¢ € I between a and b such that f (c) = k.

Proof. Suppose that a < b and let g(x) := f(x) — k; then g(a) < 0 < g(b). By the
Location of Roots Theorem 5.3.5 there exists a point ¢ with a < ¢ < b such that 0 =
g(c) = f(c) — k. Therefore f(c) = k.

Ifb < a,leth(x) := k — f(x)sothat h(b) < O < h(a). Therefore there exists a point
cwithb < ¢ < asuchthat0 = h(c) = k — f(c), whence f(c) = k. QED.

5.3.8 Corollary Let I = [a, b] be a closed, bounded interval and let f : I — R be
continuous on I. If k € R is any number satisfying

inf f(I) <k < sup f(I),
then there exists a number ¢ € I such that f(c) = k.

Proof. It follows from the Maximum-Minimum Theorem 5.3.4 that there are points c,
and ¢* in [ such that

inf f(I) = f(c,) <k = f(c*) =sup f(I).

The conclusion now follows from Bolzano’s Theorem 5.3.7. Q.E.D.
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The next theorem summarizes the main results of this section. It states that the image
of a closed bounded interval under a continuous function is also a closed bounded interval.
The endpoints of the image interval are the absolute minimum and absolute maximum
values of the function, and the statement that all values between the absolute minimum
and the absolute maximum values belong to the image is a way of describing Bolzano’s
Intermediate Value Theorem.

5.3.9 Theorem Let I be a closed bounded interval and let f : I — R be continuous
on[. Then the set f(I) :={f(x) : x € I} is a closed bounded interval.

Proof. 1If we let m := inf f(I) and M := sup f(I), then we know from the Maximum-
Minimum Theorem 5.3.4 that m and M belong to f(I). Moreover, we have f(I) C [m, M].
If k is any element of [m, M], then it follows from the preceding corollary that there exists
a point ¢ € I suchthat k = f(c). Hence, k € f(I) and we conclude that [m, M] € f(I).
Therefore, f(I) is the interval [m, M]. QE.D.

Warning If ] := [a, b]is anintervaland f : I — R is continuous on I, we have proved
that f(I) is the interval [m, M]. We have not proved (and it is not always true) that f (/)
is the interval [ f (@), f (b)]. (See Figure 5.3.3.)
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| | I I
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a X, x b

Figure5.3.3 f(I) = [m, M.

The preceding theorem is a “preservation” theorem in the sense that it states that
the continuous image of a closed bounded interval is a set of the same type. The next
theorem extends this result to general intervals. However, it should be noted that although
the continuous image of an interval is shown to be an interval, it is not true that the image
interval necessarily has the same form as the domain interval. For example, the continuous
image of an open interval need not be an open interval, and the continuous image of an
unbounded closed interval need not be a closed interval. Indeed, if f(x) =1/ 2+
for x € R, then f is continuous on R [see Example 5.2.3(b)]. It is easy to see that if
I, = (-=1,1), then f(I,) = (%, 1], which is not an open interval. Also, if I, := [0, c0),
then f(I,) = (0, 1], which is not a closed interval. (See Figure 5.3.4.)
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Figure5.3.4 Graphof f(x) = 1/(x* + 1) (x € R).

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1

characterizing intervals.

5.3.10 Preservation of Intervals Theorem Let [ be an interval and let f : I — R be
continuous on I. Then the set f(I) is an interval.

Proof. Leta, B € f(I) with @ < B; then there exist points a, b € I such that = f(a)
and B8 = f(b). Further, it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that
if k € (¢, B) then there exists a number ¢ € I with k = f(c) € f(I). Therefore [c, 8]

f(I), showing that f(I) possesses property (1) of Theorem 2.5.1. Therefore f([I) is an
interval. QED.

Exercises for Section 5.3

10.

Let ] :=[a,b]andlet f : I — R be a continuous function such that f(x) > 0 for each x in I.
Prove that there exists a number @ > 0 such that f(x) > « for all x € 1.

Let I :=[a,b]andlet f: I — Randg: I — Rbe continuous functions on /. Show that the
set E:={x € I : f(x) = g(x)} has the property that if (x ) € E and x, — x,, thenx, € E.

Let I :=[a,b]andlet f : I — R be a continuous function on / such that for each x in I there
exists y in I such that | f(y)| < %| f(x)|. Prove there exists a point c in I such that f(c) = 0.

Show that every polynomial of odd degree with real coefficients has at least one real root.

Show that the polynomial p(x) := x* + 7x> — 9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

Let f be continuous on the interval [0, 1] to R and such that f(0) = f (1). Prove that there
exists apoint cin [0, 3] suchthat f(c) = f (c + 3). [Hint: Consider g(x) = f(x) — f (x + 01l
Conclude that there are, at any time, antipodal points on the earth’s equator that have the same
temperature.

Show that the equation x = cos x has a solution in the interval [0, 7/2]. Use the Bisection
Method and a calculator to find an approximate solution of this equation, with error less than
1073,

Show that the function f(x) := 2lnx + /x — 2 hasroot in the interval [1, 2]. Use the Bisection
Method and a calculator to find the root with error less than 1072

(a) The function f(x) = (x — 1)(x — 2)(x — 3)(x — 4)(x — 5) has five roots in the interval
[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located?
(b) Same question for g(x) := (x — 2)(x — 3)(x — 4)(x — 5)(x — 6) on the interval [0, 7].

If the Bisection Method is used onaninterval of length 1tofind p, with error |p, — c| < 1073,
determine the least value of n that will assure this accuracy.
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11. Let I :=[a, b], let f : I — R be continuous on /, and assume that f(a) < 0, f(b) > 0. Let
W :={x €l: f(x) <0}, and let w := sup W. Prove that f(w) = 0. (This provides an alter-
native proof of Theorem 5.3.5.)

12. Let I:=[0,7/2] and let f : I — R be defined by f(x) := sup{x?, cos x} for x € I. Show
there exists an absolute minimum point x, € I for f on I. Show that x, is a solution to tle

equation cos x = x?.

13. Suppose that f : R — Ris continuous on R and that lim f =0and lim f = 0. Prove that
o0

X—=» =00 X—>
f is bounded on R and attains either a maximum or minimum on R. Give an example to show

that both a maximum and a minimum need not be attained.

14. Let f : R — R be continuous on R and let 8 € R. Show thatif x, € R is suchthat f(x,) < 8,
then there exists a §-neighborhood U of x, such that f(x) < Bforallx € U.

15. Examine which open [respectively, closed] intervals are mapped by f(x) := x2 for x € R onto
open [respectively, closed] intervals.

16. Examine the mapping of open [respectively, closed] intervals under the functions g(x) :=
1/(x* + 1) and A(x) := x> for x € R.

17. If f:[0, 1] —» Ris continuous and has only rational [respectively, irrational] values, must f
be constant? Prove your assertion.

18. LetI := [a, bl andlet f : I — R be a (not necessarily continuous) function with the property
that for every x € /I, the function f is bounded on a neighborhood V; (x) of x (in the sense of
Definition 4.2.1). Prove that f is bounded on /. *

19. Let J := (a, b) and let g : J — R be a continuous function with the property that for every
x € J, the function g is bounded on a neighborhood V; (x) of x. Show by example that g is not
necessarily bounded on J. y

Section 5.4 Uniform Continuity

Let ACR and let f: A — R. Definition 5.1.1 states that the following statements are
equivalent:

(i) f iscontinuous at every point u € A;

(ii) givene > Oandu € A, there is a §(¢, u) > O such that for all x such that x € A
and |x —u| < 8(e, u), then | f(x) — f(u)| < &.

The point we wish to emphasize here is that § depends, in general, on both € > 0 and
u € A. The fact that § depends on u is a reflection of the fact that the function f may change
its values rapidly near certain points and slowly near other points. [For example, consider
f(x) :=sin(1/x) for x > 0; see Figure 4.1.3.]

Now it often happens that the function f is such that the number § can be chosen to be
independent of the point # € A and to depend only on ¢. For example, if f(x) := 2x for
all x € R, then

If ()= f@)l=2x —ul,

and so we can choose 6 (¢, u) := ¢/2for all ¢ > 0, u € R. (Why?)
On the other hand if g(x) :=1/x forx € A :={x € R: x > 0}, then

(1) glx) — gu) = —=.
ux
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If u € A is given and if we take
?) (e, u) = inf{%u, %uz },

then if |x — u| < §(e, u), we have |x — u| < %u so that %u <X < %u, whence it follows
that 1/x < 2/u. Thus, if |[x —u| < %u, the equality (1) yields the inequality

3) lg(x) — g)l < (2/u?) |x —ul.
Consequently, if |[x — u| < 8(e, u), then (2) and (3) imply that
lg(x) — gw)l < (2/u?) (3u’e) = e.

We have seen that the selection of § (&, #) by the formula (2) “works” in the sense that it
enables us to give a value of § that will ensure that |g (x) — g(u)| < ¢ when |x —u| < 8
and x, u € A. We note that the value of § (¢, u) given in (2) certainly depends on the point
u € A. If we wish to consider all u € A, formula (2) does not lead to one value § (¢) > 0
that will “work” simultaneously forall # > 0, since inf{&(e, u) : u > 0} = 0.

An alert reader will have observed that there are other selections that can be made
for 8. (For example we could also take §, (¢, u) = inf { %u, §u2£}, as the reader can show;
however, we still have inf {81 (&, u):u > 0} = 0.) In fact, there is no way of choosing one
value of § that will “work” for all # > 0 for the function g(x) = 1/x, as we shall see.

The situation is exhibited graphically in Figures 5.4.1 and 5.4.2 where, for a given
e-neighborhood V/(3) about 1 = £(2) and V/(2) about 2 = f(3), the corresponding max-
imum values of § are seen to be considerably different. As u tends to O, the permissible
values of § tend to 0.

N \
v { =
L
2
V)
\ X
vl\ x —-\l
—2 2
8 —neighborhood 8 - neighborhood
Figure54.1 g(x)=1/x (x >0). Figure54.2 gx)=1/x (x> 0).

5.4.1 Definition Let A € Randlet f : A —» R. Wesay that f is uniformly continuous
on A if foreach ¢ > 0 there is a § (¢) > O such that if x, u € A are any numbers satisfying
x —ul < é8(), then | f(x) — f(u)| <e.

Itisclear thatif f isuniformly continuous on A, then it is continuous at every point of
A. In general, however, the converse does not hold, as is shown by the function g(x) = 1/x
ontheset A:={x e R: x > 0}.

It is useful to formulate a condition equivalent to saying that f is not uniformly
continuous on A. We give such criteria in the next result, leaving the proof to the reader as
an exercise.
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5.4.2 Nonuniform Continuity Criteria Let A C R and let f : A — R. Then the fol-
lowing statements are equivalent:

(1 f is not uniformly continuous on A.

(ii) Thereexists an e, > O such that for every § > O there are points x;, u, in A such that
lx, —ug|l < & and | f(x;) — flus)l = &.

(iii) There exists an &, >0 and two sequences (x,) and (u,) in A such that
lim(x, — u,) =0and|f(x,) — f(u,)| > ¢, foralln € N.

We can apply this result to show that g(x) := 1/x is not uniformly continuouson A :=
{x e R:x > 0}. For,if x, := 1/n and u, := 1/(n + 1), then we have lim(x, —u,) =0,
but [g(x,) — g(u,) = 1foralln € N.

We now present an important result that assures that a continuous function on a closed
bounded interval /I is uniformly continuous on /. Other proofs of this theoremare given in
Sections 5.5 and 11.3.

5.4.3 Uniform Continuity Theorem Let] beaclosed bounded interval and let f : I —
R be continuous on I. Then f is uniformly continuous on I.

Proof. If f isnot uniformly continuous on / then, by the preceding result, there exists
€, > 0 and two sequences (x,) and (u,) in I such that |x, —u,| < 1/n and |f(x,) —
f (un)l > g, for all n € N. Since I is bounded, the sequence (x,) is bounded; by the
Bolzano-Weierstrass Theorem 3.4.8 there is a subsequence (x,l ) of (x") that converges to

an element z. Since [/ is closed, the limit z belongs to I, by Theorem 3.2.6. It is clear that
the corresponding subsequence (“nk) also converges to z, since

|unk —z| < |unk —xnkl + Ixnk —z|.

Now if f iscontinuous at the point z, then both of the sequences (f x,, )) and (f (u, )
must converge to f (z). But this is not possible since

[fCx,) — fu,) =&

foralln € N. Thus the hypothesis that f is not uniformly continuous on the closed bounded
interval I implies that f is not continuous at some point z € I. Consequently, if f is
continuous at every point of 7, then f is uniformly continuous on /. QED.

Lipschitz Functions

If a uniformly continuous function is given on a set that is not a closed bounded interval,
then it is sometimes difficult to establish its uniform continuity. However, there is a condi-
tion that frequently occurs that is sufficient to guarantee uniform continuity.

5.4.4 Definition Let A C R and let f : A — R. If there exists a constant K > 0 such

that

CY) If ) — f)| <K |x —ul

for all x,u € A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz
condition) on A.



5.4 UNIFORM CONTINUITY 139

The condition (4) that a function f : I — R on an interval I is a Lipschitz function
can be interpreted geometrically as follows. If we write the condition as

fx) — f(u)

<Kk, x,uel,x #u,
xX—u

then the quantity inside the absolute values is the slope of a line segment joining the points
(x, f (x)) and (u, f (u)). Thus a function f satisfies a Lipschitz condition if and only if the
slopes of all line segments joining two points on the graph of y = f (x) over I are bounded
by some number X .

5.4.5 Theorem If f: A — R is a Lipschitz function, then f is uniformly continuous
on A.

Proof. If condition (4) is satisfied, then given ¢ > 0, we can take § := ¢/K.Ifx,u € A
satisfy |x — u| < §, then

£

|f(x) — f(u)l <K'K

Therefore f is uniformly continuous on A. QED.

E.

5.4.6 Examples (a) If f(x):= x2onA:= [0, b], where b > 0, then
[f(x) = f)| = Ix +ullx —ul <2b|x — ul

for all x, u in [0, b). Thus f satisfies (4) with K := 2b on A, and therefore f is uniformly
continuous on A. Of course, since f is continuous and A is a closed bounded interval, this
can also be deduced from the Uniform Continuity Theorem. (Note that f does not satisfy
a Lipschitz condition on the interval [0, 00).)

(b) Not every uniformly continuous function is a Lipschitz function.

Let g(x) := /x for x in the closed bounded interval I := [0, 2]. Since g is continuous
on I, it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous
on I. However, there is no number K > 0 such that |g(x)| < K|x| for all x € I. (Why
not?) Therefore, g is not a Lipschitz function on /.

(¢) The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined to
establish the uniform continuity of a function on a set.

We consider g(x) := /x on the set A := [0, 00). The uniform continuity of g on
the interval I := [0, 2] follows from the Uniform Continuity Theorem as noted in (b). If
J :=[1, 00), then if both x, u are in J, we have

Ix — ul ;
lg x) —gw)| = |Vx—Vul=——= <5 Ix —ul.
g (x) — g(w)| = |vx — Vu| T |
Thus g is a Lipschitz function on J with constant K = %, and hence by Theorem 5.4.5,
g is uniformly continuous on [1, co0). Since A =1 U J, it follows [by taking &(¢) :=
inf { 1,8,(¢),8,(¢) }] that g is uniformly continuous on A. We leave the details to the
reader. O

The Continuous Extension Theorem

We have seen examples of functions that are continuous but not uniformly continuous on
open intervals; for example, the function f(x) = 1/x on the interval (0, 1). On the other
hand, by the Uniform Continuity Theorem, a function that is continuous on a closed bounded
interval is always uniformly continuous. So the question arises: Under what conditions is a
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function uniformly continuous on a bounded open interval? The answer reveals the strength
of uniform continuity, for it will be shown that a function on (a, b) is uniformly continuous
if and only if it can be defined at the endpoints to produce a function that is continuous on
the closed interval. We first establish a result that is of interest in itself.

5.4.7 Theorem If f : A — R is uniformly continuous on a subset A of R and if (x,) is
a Cauchy sequence in A, then (f (x,)) is a Cauchy sequence in R.

Proof. Let (x,) be a Cauchy sequence in A, and let ¢ > 0 be given. First choose § > 0
such that if x, u in A satisfy |x — u| < §, then | f(x) — f(u)| < €. Since (x,) is a Cauchy
sequence, there exists H(8) such that |x, — x,, | < é foralln, m > H(8). By the choice of
8, this implies that for n, m > H (8), we have | f(x,) — f(x, )| < &. Therefore the sequence
(f(x,)) is a Cauchy sequence. QED.

The preceding result gives us an alternative way of seeing that f(x) := 1/x is not
uniformly continuous on (0, 1). We note that the sequence given by x, =1/nin O, 1)is
a Cauchy sequence, but the image sequence, where f(x,) = n, is not a Cauchy sequence.

5.4.8 Continuous Extension Theorem A function f is uniformly continuous on the
interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex-
tended function is continuous on [a, b].

Proof. (<) This direction is trivial.

(=) Suppose f is uniformly continuous on (a, b). We shall show how to extend f
to a; the argument for b is similar. This is done by showing that }Ln} f(x) = L exists, and
this is accomplished by using the sequential criterion for limits. If (x,) is a sequence in
(a, b) with lim(x,) = a, then it is a Cauchy sequence, and by the preceding theorem, the
sequence ( f (xn)) is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus
the limit lim( f (xn)) = L exists. If (u,) is any other sequence in (a, b) that converges to a,
then lim(u, — x,) = a — a = 0, so by the uniform continuity of f we have

lim(f(u,)) = lim(f (x,) — f(x,)) + lim(f (x,))
=04+L=0L.

Since we get the same value L for every sequence converging to a, we infer from the
sequential criterion for limits that f has limit L at a. If we define f(a) := L, then f is
continuous at a. The same argument applies to b, so we conclude that f has a continuous
extension to the interval [a, b]. QED.

Since the limit of f(x) := sin(1/x) at 0 does not exist, we infer from the Continuous
Extension Theorem that the function is not uniformly continuous on (0, 4] for any b > 0.
On the other hand, since lir% x sin(1/x) = O exists, the function g(x) := xsin(1/x) is

uniformly continuous on ((i_I;] forallb > 0.

Approximationf

In many applications it is important to be able to approximate continuous functions by
functions of an elementary nature. Although there are a variety of definitions that can be
used to make the word “approximate” more precise, one of the most natural (as well as one of

The rest of this section can be omitted on a first reading of this chapter.
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the most important) is to require that, at every point of the given domain, the approximating
function shall not differ from the given function by more than the preassigned error.

5.4.9 Definition Let / C R be an interval and let s : /| — R. Then s is called a step

function if it has only a finite number of distinct values, each value being assumed on one
or more intervalsin 1.

For example, the function s : [—2, 4] — R defined by

0, —2<x<-1,
1, -1 <x<0,
1 1
=, 0<x < 5,
s(x) := 1 2 . 2
3 3 <x<l,
-2, 1<x<3
2, 3<x <4,
is a step function. (See Figure 5.4.3.)
y
- B
- —
—
—

-+
-

Figure 5.4.3 Graph of y = s(x).

We will now show that a continuous function on a closed bounded interval I can be
approximated arbitrarily closely by step functions.

5.4.10 Theorem Let I be a closed bounded interval and let f : I — R be continuous on

I. If ¢ > 0O, then there exists a step function s, : I — R such that | f (x) — s (x)| < & for
allx e I.

Proof. Since (by the Uniform Continuity Theorem 5.4.3) the function f is uniformly
continuous, it follows that given & > 0 there is a number §(¢) > O such that if x,y € I
and |x — y| < 8(¢),then |f(x) — f(y)| < &. Let I := [a, b] and let m € N be sufficiently
large so that h := (b — a)/m < 8(¢). We now divide I = [a, b] into m disjoint intervals
of length 4; namely, I :=[a,a+ hl,and I, := (a +k—1Dh,a+ kh] fork=2,---,m.
Since the length of each subinterval [, is h < §(¢), the difference between any two values
of fin I, is less than . We now define

5) 5. (x) ;== f(a+kh) for xeI,, k=1,---,m,
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so that s, is constant on each interval /,. (In fact the value of s, on /, is the value of f at
the right endpoint of I, . See Figure 5.4.4.) Consequently if x € I, then

If(x) =5, ()] =1fx) = fla+kh)| <e.

Therefore we have | f(x) —s,(x)| < e forallx € I. QED.
y=f{x) +e
|
y = slx)[ I

y=f(x)|

|
I
I
|
I
I
1
b

|
|
I T N SR U N B
a

Figure 54.4 Approximation by step functions.

Note that the proof of the preceding theorem establishes somewhat more than was
announced in the statement of the theorem. In fact, we have proved the following, more
precise, assertion.

5.4.11 Corollary Let I := [a,b] be a closed bounded interval and let f : I — R be
continuous on I. If e > 0, there exists a natural number m such that if we divide I into
m disjoint intervals I, having length h := (b — a)/m, then the step function s, defined in
equation (5) satisfies | f (x) —s.(x)| < & forallx € I.

Step functions are extremely elementary in character, but they are not continuous
(except in trivial cases). Since it is often desirable to approximate continuous functions by
elementary continuous functions, we now shall show that we can approximate continuous
functions by continuous piecewise linear functions.

5.4.12 Definition Let := [a, b] be an interval. Then a function g : I — R is said to be
piecewise linear on I if I is the union of a finite number of disjoint intervals 1,,---, I,
such that the restriction of g to each interval , is a linear function.

Remark It is evident that in order for a piecewise linear function g to be continuous
on I, the line segments that form the graph of g must meet at the endpoints of adjacent
subintervals 1, I,(Jr1 k=1,---,m—1).

5.4.13 Theorem Let! be aclosed bounded interval and let f : I — R be continuous on
I. If ¢ > O, then there exists a continuous piecewise linear function g, : I — R such that
|f(x) — g.(x)| < ¢ forallx € I.

Proof. Since f is uniformly continuous on I := [a, b], there is a number §(¢) > 0 such
that if x, y € I and |x — y| < é(¢), then | f(x) — f(y)| < & Let m € N be sufficiently
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large so that & := (b — a)/m < é(¢). Divide I = [a, b] into m disjoint intervals of length
h; namely let I, = [a, a + h], and let I, = (a +*k—-Dh,a+ kh] fork=2,---,m.On
each interval /, we define g, to be the linear function joining the points

(a+ & —=Dh, fa+(*k—1h) and  (a+kh, fla+kh)).

Then g, is a continuous piecewise linear function on I. Since, for x € I, the value f (x) is
withine of f(a + (k — 1)h) and f(a + kh), itis an exercise to show that | f (x) — g, (x)| <
¢ forall x € I,; therefore this inequality holds forall x € I. (See Figure 5.4.5.) QE.D.

R A Jat AR

Figure 5.4.5 Approximation by piecewise linear function.

We shall close this section by stating the important theorem of Weierstrass concerning
the approximation of continuous functions by polynomial functions. As would be expected,
in order to obtain an approximation within an arbitrarily preassigned ¢ > 0, we must be
prepared to use polynomials of arbitrarily high degree.

5.4.14 Weierstrass Approximation Theorem Let = [a,b] andlet f:I — R be a
continuous function. If ¢ > 0 is given, then there exists a polynomial function p, such
that|f(x) — p,(x)| < e forallx € I.

There are a number of proofs of this result. Unfortunately, all of them are rather
intricate, or employ results that are not yet at our disposal. One of the most elementary
proofs is based on the following theorem, due to Serge Bemnstein, for continuous functions
on [0, 1]. Given f : [0, 1] — R, Bernstein defined the sequence of polynomials:

< k
©) B, =) f (;) (’;)xk(l -k,
k=0

“The polynomial function B, is called the nth Bernstein polynomial for f; it is a polynomial
of degree at most n and its coefficients depend on the values of the function f at the n + 1
equally spaced points 0, 1/n,2/n, - -+, k/n, - - -, 1, and on the binomial coefficients

n)_ n! _n(n—l)---(n—k+l)
(k T klMn—k) 1-2---k '
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5.4.15 Bernstein’s Approximation Theorem Let f : [0, 1] — R be continuous and let
& > 0. There exists an n_ € N such thatifn > n, then we have | f (x) — B, (x)| < ¢ for all
x € [0,1].

The proof of Bernstein’s Approximation Theorem is given in [ERA, pp. 169-172].

The Weierstrass Approximation Theorem 5.4.14 can be derived from the Bernstein
Approximation Theorem 5.4.15 by a change of variable. Specifically, we replace
f : [a, b] > R by a function F : [0, 1] — R, defined by

F(t):=f(a+®—a)) for tel0,1]

The function F can be approximated by Bernstein polynomials for F on the interval [0, 1],
which can then yield polynomials on [a, b] that approximate f.

Exercises for Section 5.4

1. Show that the function f(x) := 1/x is uniformly continuous on the set A := [a, 00), where a
is a positive constant.

2. Show that the function f(x) := 1/x? is uniformly continuous on A := [1, 0o), but that it is not
uniformly continuous on B := (0, 00).

3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not
uniformly continuous on the given sets.
(@ f@x):=x% A:=][0,00).
(b) g(x):=sin(1/x), B :=(0,00).

4. Show that the function f(x) := 1/(1 +x2) for x € R is uniformly continuous on R.

5. Show that if f and g are uniformly continuous on a subset A of R, then f + g is uniformly
continuous on A.

6. Show thatif f and g are uniformly continuous on A C R and if they are borh bounded on A,
then their product f g is uniformly continuous on A.

7. If f(x) := x and g(x) := sinx, show that both f and g are uniformly continuous onR, but that
their product fg is not uniformly continuous on R.

8. Prove thatif f and g are each uniformly continuous on R, then the composite function f o g is
uniformly continuous on R.

9. If f is uniformly continuous on A C R, and | f(x)| > k > O for all x € A, show that 1/f is
uniformly continuous on A.

10. Prove thatif f is uniformly continuous on a bounded subset A of R, then f is bounded on A.

11. Ifg(x) := 4/x forx € [0, 1], show that there does not exist a constant K such that |g(x)| < K|x|
forall x € [0, 1]. Conclude thatthe uniformly continuous g is not a Lipschitz function on [0, 1].

12. Show thatif f is continuous on [0, 00) and uniformly continuous on [a, 0c0) for some positive
constant g, then f is uniformly continuous on [0, 00).

13. Let A C R and suppose that f : A — R has the following property: for each ¢ > 0 there exists
a function g, : A —> R such that g_ is uniformly continuous on A and |f(x) — g,(x)| < ¢ for
all x € A. Prove that f is uniformly continuous on A.

14. A function f: R — R is said to be periodic on R if there exists a number p > 0 such that
f(x + p) = f(x)forall x € R. Prove that a continuous periodic function on R is bounded and
uniformly continuous on R.
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15. If fy(x) :== 1forx € [0, 1], calculate the first few Bernstein polynomials for f. Show that they
coincide with f,. [Hint. The Binomial Theorem asserts that

(a+b)" = Z (:)a"b"-".]

k=0
16. If f,(x) := x forx € [0, 1], calculate the first few Bernstein polynomials for f,. Show that they
coincide with f,.

17. If f,(x) = x2 for x € [0, 1], calculate the first few Bemnstein polynomials for f,. Show that
B, (x) = (1 = 1/n)x* + (1/n)x.

Section 5.5 Continuity and Gauges

We will now introduce some concepts that will be used later—especially in Chapters 7
and 10 on integration theory. However, we wish to intsroduce the notion of a “gauge” now
because of its connection with the study of continuous functions. We first define the notion
of a tagged partition of an interval.

5.5.1 Definition A partition of aninterval / := [a, b]isacollection? = {I,,---, I } of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals
by I; := [x;_,, x;], where

a=Xy< - <X_ <X <--<x,=b.
The points x; (i =0, ---, n) are called the partition points of P. If a point ¢, has been
chosen from eachinterval I, fori =1, - - -, n, then the points ¢; are called the tags and the

set of ordered pairs )
P= {(Il’ tl), ttty (Iny tn)}
is called a tagged partition of . (The dot signifies that the partition is tagged.)

The “fineness” of a partition P refers to the lengths of the subintervals in P. Instead of
requiring that all subintervals have length less than some specific quantity, it is often useful
to allow varying degrees of fineness for different subintervals I; in P. This is accomplished
by the use of a “gauge”, which we now define.

5.5.2 Definition A gaugeon [ is a sirictly positive function defined on /. If § is a gauge
on I, then a (tagged) partition P is said to be §-fine if

(1) el Clt,—8(t), 4, +8¢)] for i=1,---,n.

We note that the notion of §-fineness requires that the partition be tagged, so we do not
need to say “tagged partition” in this case.

X1 X;

| L j [ ]
£-8(t) 2 £+ 8(t)

Figure 5.5.1 Inclusion (1).

A gauge 6 on an interval / assigns an interval [t — (), t + 8(t)] toeach point ¢ € I.
The §-fineness of a partition P requires that each subinterval I, of P is contained in the
interval determined by the gauge 8 and the tag ¢, for that submterval This is indicated
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by the inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also
controlled by the gauge and the tags; the next lemma reflects that control.

5.5.3 Lemma If a partition P ofI := [a, b] is §-fine and x € I, then there exists a tagt,
in P such that |x —t,| < 8(z)).

Proof. If x € I, there exists a subinterval [x,_;, x;] from P that contains x. Since P is
8-fine, then

(2) ti - S(I,‘) S xi—-l S X S 'xi S ti + 8(ti))
whence it follows that |[x —7,| < 8(z,). QED.
In the theory of Riemann integration, we will use gauges § that are constant functions
to control the fineness of the partition; in the theory of the generalized Riemann integral,
the use of nonconstant gauges is essential. But nonconstant gauge functions arise quite
naturally in connection with continuous functions. For, let f : I — R be continuous on
I and let £ > 0 be given. Then, for each point ¢ € I there exists &,(r) > 0 such that
if [x — | <4,(r) and x € I, then |f(x) — f(¢)| < & Since §, is defined and is strictly
positive on I, the function §, is a gauge on I. Later in this section, we will use the relations

between gauges and continuity to give alternative proofs of the fundamental properties of
continuous functions discussed in Sections 5.3 and 5.4.

5.5.4 Examples (a) Ifdand y are gaugeson / := [a, b]andif 0 < §(x) < y(x) forall
x € I, then every partition P that is §-fine is also y-fine. This follows immediately from
the inequalities

t—y@) <t —8@) and t+8@) <t +y()
which imply that
nel,—8a),,+8@)] St -y, +y@)] for i=1,---,n.
(b) If$, and é, are gauges on I := [a, b] and if
8(x) := min{§,(x),8,(x)}  forall xe€l,

then § is also a gauge on I. Moreover, since §(x) < §,(x), then every é-fine partition is
8,-fine. Similarly, every é-fine partition is also 8,-fine.

(c) Suppose that § is defined on I := [0, 1] by

8(x) = llo if x=0,

=

x if 0<x<l.

=

Then & is a gauge on [0,1].If 0 < ¢ < 1, then [¢ — 8(t),t +8(1)] = (32, 3t], which does
not contain the point 0. Thus, if P is a §-fine partition of 7, then the only subinterval in P

that contains 0 must have the point O as its tag.
(d) Let y bedefined on I := [0, 1] by

% if x=0orx=1,
y(x) = {3x if 0<x<l,

%(l—x) if %<x<l.

Then y is a gauge on I, and it is an exercise to show that the subintervals in any y-fine
partition that contain the points O or 1 must have these points as tags. O
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Existence of §-Fine Partitions

In view of the above examples, it is not obvious that an arbitrary gauge § admits a §-fine
partition. We now use the Supremum Property of R to establish the existence of §-fine
partitions. In the Exercises, we will sketch a proof based on the Nested Intervals Theorem
2.5.2.

5.5.5 Theorem If$ is a gauge defined on the interval [a, b], then there exists a §-fine
partition of [a, b].

Proof. Let E denote the set of all points x € [a, b]such that there exists a §-fine partition
of the subinterval [a, x]. The set E is not empty, since the pair ([a, x], a) is a §-fine partition
of the interval [a, x] when x € [a, a + 8(a)] and x < b. Since E C [a, b], the set E is also
bounded. Let u := sup E sothata < u < b. We will show that u € E and thatu = b.

We claim that u € E. Since u — §(u) <u =supE, therc_: exists v € E such that u —
§(u) < v < u Let ’Pl be a 8-fine partition of [a, v] and let P, := ’Pl U ([v, u], u). Then
P, is a 8-fine partition of [a, ], so thatu € E.

If u < b, let w € [a,b] be such that u < w < u + §(u). If Q1 is a é-fine partition
of [a, ul, we let Q2 = Ql U ([u, w], u). Then Q2 is a 8-fine partition of [a, w], whence
w € E. But this contradicts the supposition that u is an upper bound of E. Therefore u = b.

Q.E.D.
Some Applications

Following R. A. Gordon (see his Monthly article), we will now show that some of the major
theorems in the two preceding sections can be proved by using gauges.

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since f is continuous on
I, then for each ¢ € I there exists §(¢) > O such that if x € I and |x —¢| < §(¢), then
|f(x) — f(®)| < 1. Thus § is a gauge on I. Let {(1;, t,)}{_, be a é-fine partition of I and
let K := max{|f(z;)| : i =1,---,n}. By Lemma 5.5.3, given any x € [ there exists i with
|x —t,| < &(z;), whence

IOl 1f(x) = fFEI+ 1) <1+K.
Since x € [ is arbitrary, then f is boundedby 1+ K on I. Q.E.D.

Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the
existence of x*. Let M := sup{f(x) : x € I} and suppose that f(x) < M for all x € I.
Since f is continuous on I, for each ¢ € I there exists §(¢) > O such that if x € I and
|x —t] <68(2), then f(x) < %(M + f(t)). Thus & is a gauge on I, and if {(/;, ¢,)};_, is a
8-fine partition of I, we let

M = %max{M+f(t|)a vM+f(tn)}

ByLemma 5.5.3, givenany x € I, there exists i with [x — ;| < (), whence
fO) <3 M+ f@) < M.

Since x € I is arbitrary, then M (< M) is an upper bound for f on I, contrary to the
definition of M as the supremum of f. QE.D.

Alternate Proof of Theorem 5.3.5: Location of Roots Theorem. We assume that f(z) # 0
forall ¢ € I. Since f is continuous at ¢, Exercise 5.1.7 implies that there exists §(¢) > 0
suchthatif x € I and |[x —t| < 8(¢),then f(x) < 0if f(¢) < 0,and f(x) > Oif f(¢) > 0.
Then § is a gauge on / and we let {(Ii, t,.)};‘:1 be a §-fine partition. Note that for each i,
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either f(x) < Oforallx € [x;_,, x;]or f(x) > Oforall such x. Since f(xy) = f(a) <0,
this implies that f(x,) < 0, which in turn implies that f(x,) < 0. Continuing in this way,
we have f(b) = f (xn) < 0, contrary to the hypothesis that f(b) > 0. Q.E.D.

Alternate Proof of Theorem 5.4.3: Uniform Continuity Theorem. Let ¢ > 0 be given.
Since f is continuous att € I, there exists 8(t) > Osuch thatif x € 7 and |x —t| < 28(¢),
then | f(x) — f(¢)| < a Thus § is a gauge on I. If {(1;, t;)}}_, is a é-fine partition of /,
let §, := min{8(z,), - - -, 8(¢,)}. Now suppose that x, u € I and |x — u| < §,, and choose i
with |x — ;| < 8(¢). Since

lu =] <lu—x|+Ix -5 <8, +68@) <25z1),

then it follows that
If) = fWI < 1f(x) = FE+ 1) — fW) < e+ je=e.
Therefore, f is uniformly continuous on /. QED.

Exercises for Section 5.5

1. Let é be the gauge on [0, 1] defined by 6(0) := % and §(¢) == %tfort € (0, 1].
(@) Showthat?, = {([0, 11,0). ((3. 3], 3). ((3. 11, 3)} is &-fine.
(b) Show that ’Pz = {([0, 3],0) ([4 2] 2) (13,11, 5)] is not é-fine.

2. Suppose that §, is the gauge defined by §, (0) := Z* 3,(1) := Zt fort € (0, 1]. Are the partitions
given in Exercise 1 §,-fine? Note that §(¢) < §, (z) forall ¢ € [0, 1].

1
(3,
8
2

3. Suppose that 4, is the gauge defined by §,(0) := % and §,(2) := %t for t € (0, 1]. Are the
partitions given in Exercise 1 §,-fine?

4. Let y be the gauge in Example 5.5.4(d).
(a) Ift € (0, i1 show that [r — y(1), 1 + y ()] = [L1. 311 € (0, 3].
(b) Ifre (%, 1) show that [z — y(¢),t + y ()] € (%, 1).

5. Leta <c < b and let § be a gauge on [a, b]. If P’ isa é-fine partition of [a, c] andif P isa
8-fine partition of [c, b], show that P uP’ is 5-fine partition of [a, b] having c as a partition
point.

6. Leta <c < b andlet 8 and 8” be gauges on [a, c] and [c, b], respectively. If § is defined on
[a, b] by

8'(t) if t € la,c),
3(t) :== {min{8'(c), 8" (c)} if t=c,
8" (1) if te€(c, bl

then 8 is a gauge on [a, b] Moreover if P’ is a &'-fine partition of [a, c] and P" is a 6”-fine
partmon of [c b), then P’ U P"isa tagged partition of [a, b] having c as a partition point. Explain
why P up’ may not be é-fine. Give an example.

7. Leté$ and §” be as in the preceding exercise andlet §* be defined by
min{8' (1), $(c ~ 1)} if te€[ac),
8*(t) :== { min{§'(c), 8" (c)} if r=e¢
min{8”(1), (¢t — )} if € (c,bl.

Show that 8* is a gauge on [a, b] and that every §*-fine partition P of [a, b] having c as a partition
=~/ . oy

point gives rise to a §'-fine partition P of [a, c] and a §”-fine partition P of [c, b] such that

P=PUP"



5.6 MONOTONE AND INVERSE FUNCTIONS 149

8. Let § be a gauge on I := [a, b] and suppose that I does not have a §-fine partition.
(@) Letc:= %(a + b). Show that at least one of the intervals [a, c] and [c, b] does not have a
8-fine partition.
(b) Construct a nested sequence (/,) of subintervals with the length of /, equal to (b — a)/ 2"
such that /, does not have a §-fine partition.
(c) Let &eny2, I, and let peN be such that (b—a)/2” <é(£). Show that
I, S [& — 8(6).& + 8(§)], so the pair (I, §) is a -fine partition of /,.

9. Let! :=[a, b]andlet f : I — R be a (not necessarily continuous) function. We say that f is
“locally bounded” at ¢ € I if there exists §(c) > Osuchthat f is boundedon I N [c — §(¢c), c +
8(c)]. Prove thatif f is locally bounded at every point of I, then f is bounded on 7.

10. Let I :=[a,b] and f : I — R. We say that f is “locally increasing” at ¢ € I if there ex-
ists 8(c) > 0 such that f is increasing on I N [c — §(c), ¢ + §(c)]. Prove that if f is locally
increasing at every point of 7, then f is increasing on /.

Section 5.6 Monotone and Inverse Functions

Recall that if A C R, then a function f : A — R is said to be increasing on A if whenever
X;, x, € Aandx, < x,,then f(x,) < f(x,). Thefunction f is said to bestrictlyincreasing
on A if whenever x,,x, € A and x; < x,, then f(x,) < f(x,). Similarly, g: A — R is
said to be decreasing on A if whenever x;, x, € A and x| < x, then g(x,;) > g(x,). The
function g is said to be strictly decreasing on A if whenever x|, x, € A and x; < x, then
g(x)) > g(x,).

If a function is either increasing or decreasing on A, we say that it ismonotone on A. If
f is either strictly increasing or strictly decreasing on A, we say that f is strictly monotone
on A.

We note that if f : A - R is increasing on A then g := —f is decreasing on A;
similarly if ¢ : A — R is decreasing on A then ¥ := —g is increasing on A.

In this section, we will be concerned with monotone functions that are defined on an
interval I € R. We will discuss increasing functions explicitly, but it is clear that there are
corresponding results for decreasing functions. These results can either be obtained directly
from the results for increasing functions or proved by similar arguments.

Monotone functions are not necessarily continuous. For example, if f(x) := 0 for
x €[0,1] and f(x):=1 for x € (1,2], then f is increasing on [0, 2], but fails to be
continuous at x = 1. However, the next result shows that a monotone function always has
both one-sided limits (see Definition 4.3.1) in R at every point that is not an endpoint of its
domain.

5.6.1 Theorem Letl C R be anintervalandlet f : I — R be increasing on I. Suppose
that ¢ € I is not an endpoint of I. Then

@) li)m f=sup{f(x):xel,x <c},

. x—ro—

(ii) xl_i21+f =inf{f(x):x € I, x > c}.

Proof. (i) First note that if x € I and x < ¢, then f(x) < f(c). Hence the set { f(x) :
x € I, x < c}, which is nonvoid since c is not an endpoint of I, is bounded above by f (c).
Thus the indicated supremum exists; we denote itby L. If ¢ > 0 is given, then L — ¢ is not
an upper bound of this set. Hence there exists y, € I, y, < csuchthatL —¢ < f(y,) < L.
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Since f is increasing, we deduce thatif§, .= ¢ — y, andif0 <c—y <4, ,theny, <y <c¢
so that

L-—e<f@)=2f()=<L.

Therefore | f(y) — L] < & when0 < ¢ — y < §,. Since &€ > 0is arbitrary we infer that (i)
holds.
The proof of (ii) is similar. QE.D.

The next result gives criteria for the continuity of an increasing function f ata point ¢
that is not an endpoint of the interval on which f is defined.

5.6.2 Corollary Let]I C R beaninterval andlet f : I — R be increasing on I . Suppose
that ¢ € I is not an endpoint of I. Then the following statements are equivalent.

(a) f iscontinuous at c.
() lim f=f( = lim f.
(€ sup{f(x):xel,x<c}=f(c)=inf{f(x):xe€l, x>c).

This follows easily from Theorems 5.6.1 and 4.3.3. We leave the details to the reader.
Let I be an interval and let f : I — R be an increasing function. If a is the left
endpoint of /, it is an exercise to show that f is continuous at a if and only if

f@=inf{f(x):xel,a<x)

or if and only if f(a) = l_i)m+ f. Similar conditions apply at a right endpoint, and for
X—a

decreasing functions.
If f : I — Risincreasing on I and if ¢ is notan endpoint of /, we define the jump of
f atctobe Jr (o) = lim+ f- lirgl f. (See Figure 5.6.1.) It follows from Theorem 5.5.1
X-=>C: X->C—

that
jf(c) =inf{f(x):xe€l,x>c}—sup{f(x):x €I, x <c}

for an increasing function. If the left endpoint a of I belongs to I, we define the jump of
f ata tobe jf (a) .= lim+ f — f(a). If the right endpoint b of I belongs to I, we define
Xx—a

the jump of f atb tobe jf(b) = f()— lirgn_f.

|
|
I
1
!
c

Figure 5.6.1 The jump of f atc.

5.6.3 Theorem LetI C R be aninterval andlet f : I — R be increasingonl. Ifc € I,
then f is continuous at ¢ if and only ifjf(c) =0.
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Proof. If c is not an endpoint, this follows immediately from Corollary 5.6.2. If c € I is
the left endpoint of I, then f is continuous at c if and only if f(c) = lim+ f, which is
X-->C

equivalent to j (c) = 0. Similar remarks apply to the case of a right endpoint. QED.

We now show that there can be at most a countable set of points at which a monotone
function is discontinuous.

5.6.4 Theorem Letl C R be aninterval andlet f : I — R be monotoneon I. Then the
set of points D C I at which f is discontinuous is a countable set.

Proof. We shall suppose that f is increasing on /. It follows from Theorem 5.6.3 that
D={xel: jf(x) # 0}. We shall consider the case that I := [a, b] is a closed bounded
interval, leaving the case of an arbitrary interval to the reader.

We first note that since f is increasing, then jf (¢) > 0 for all ¢ € I. Moreover, if
a<x <---<x, <b,then (why?) we have

¢)) f@ =< f@+j&x)+---+Jjx,) < fb),
whence it follows that

Jp )+ 4 x,) < ) = f(@)

(See Figure 5.6.2.) Consequently there can be at most k pointsin / = [a, b] where j - x) >
(f®) — f(a))/ k. We conclude that there is at most one point x € I where jf(x) =
f () — f(a); there are at most two points in / where jf(x) > (f(b) — f(a))/2; at most
three points in / where jf(x) > (f(b) — f(a))/3, and so on. Therefore there is at most a
countable set of points x where Jg (x) > 0. But since every point in D must be included in
this set, we deduce that D is a countable set. Q.E.D.

/\f(b)

Jplxa) {I
> f(b) - fla)

Jglxz) { |

jf(xl) {l

|
f@| | ' ‘

|
|
|
I
|
|
|
|
|
|
I
|
!
|
|
|
I
I
|
|
| | | |
I

I
) l | |
a x, X X3 Xy b

Figure 5.6.2 j (x)+:-+j;(x) < f(b) — f(a).
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Theorem 5.6.4 has some useful applications. For example, it was seen in Exercise
5.2.12 thatif & : R — R satisfies the identity

V)] h(x +y) = h(x) + h(y) forall x,y€ R,

and if & is continuous at a single point x,, then & is continuous at every point of R. Thus,
if h is a monotone function satisfying (2), then » must be continuous on R. [It follows
from this that A(x) = Cx for all x € R, where C := h(1).]

Inverse Functions

We shall now consider the existence of inverses for functions that are continuous on an
interval I € R. We recall (see Section 1.1) that a function f : I — R has an inverse
function if and only if f is injective (= one-one); that is, x, y € I and x # y imply that
f(x) # f(y). We note that a strictly monotone function is injective and so has an inverse.
In the next theorem, we show thatif f : I — R is a strictly monotone continuous function,
then f has an inverse function g on J := f(I) that is strictly monotone and continuous
on J. In particular, if f is strictly increasing then so is g, and if f is strictly decreasing
then so is g.

5.6.5 Continuous Inverse Theorem Let I C R be an interval and let f : I — R be
swrictly monotone and continuous on I. Then the function g inverse to f is strictly monotone
and continuous on J := f(I).

Proof. We consider the case that f is strictly increasing, leaving the case that f is strictly
decreasing to the reader.

Since f is continuous and !/ is an interval, it follows from the Preservation of Intervals
Theorem 5.3.10 that J := f(I) is an interval. Moreover, since f is strictly increasing on
I, it is injective on I; therefore the function g : J — R inverse to f exists. We claim
that g is strictly increasing. Indeed, if y,, y, € J with y, < y,,theny, = f(x;)and y, =
f(x,) for some x,, x, € I. We must have x;, < x,; otherwise x; > x,, which implies that
¥, = f(x)) = f(x,) =y,, contrary to the hypothesis that y, < y,. Therefore we have
g(y) =x < x, =g(y,). Since y, and y, are arbitrary elements of J with y, < y,, we
conclude that g is strictly increasing on J.

It remains to show that g is continuous on J. However, this is a consequence of the fact
that g(J) = I is an interval. Indeed, if g is discontinuous at a point ¢ € J, then the jump

of g at c is nonzero so that ylim g < ylim+ g If we choose any number x # g(c) satisfying
—»c— —>C

lim g <x < lim g, then x has the property that x # g(y) for any y € J. (See Figure

x—>c— x—>c+
5.6.3.) Hence x ¢ I, which contradicts the fact that / is an interval. Therefore we conclude
that g is continuous on J. QE.D.

The nth Root Function

We will apply the Continuous Inverse Theorem 5.6.5 to the nth power function. We need
to distinguish two cases: (i) n even, and (ii) » odd.

(i) n even. In order to obtain a function that is strictly monotone, we restrict our
attention to the interval I := [0, 00). Thus, let f(x) := x" for x € I. (See Figure 5.6.4.) We
have seen (in Exercise 2.1.23) thatif 0 < x < y,then f(x) = x" < y" = f(y); therefore f
is strictly increasing on /. Moreover, it follows from Example 5.2.3(a) that f is continuous
on I. Therefore, by the Preservation of Intervals Theorem 5.3.10, J = f([) is an interval.
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jgle) {9 8@
C

N~ eof————

Figure5.6.3 g(y) #xfory e J.

We will show that J = [0, 00). Let y > 0 be arbitrary; by the Archimedean Property, there
exists k € N such that 0 < y < k. Since

fO=0=<y<k=<k"= f(k),

it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that y € J. Since y > 0 is
arbitrary, we deduce that J = [0, 0o).

We conclude from the Continuous Inverse Theorem 5.6.5 that the function g that is
inverse to f(x) = x" on I = [0, c©) is strictly increasing and continuous on J = [0, 00).
We usually write

gy =x""or  gx)=Vx

for x > 0 (n even), and call x'/" = /% the nth root of x > 0 (n even). The function g is
called the nth root function (n even). (See Figure 5.6.5.)
Since g is inverse to f we have

g(f(x)) =x and f(g(x)) =x forall x € [0, c0).
We can write these equations in the following form:
(x")l/" =x and (xV")" =x

for all x € [0, o0) and n even.

Figure5.6.4 Graph of Figure 5.6.5 Graph of
f(x) =x" (x = 0, n even). g(x) =x" (x > 0, n even).
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(ii) n odd. In this case we let F(x) := x" for all x € R; by 5.2.3(a), F is continuous
on R. We leave it to the reader to show that F is strictly increasing on R and that F(R) =
R. (See Figure 5.6.6.)

It follows from the Continuous Inverse Theorem 5.6.5 that the function G that is inverse
to F(x) = x" for x € R, is strictly increasing and continuous on R. We usually write

G(x)=x"" or G(x)= %x forx eR,n odd,

and call x!/" the nth root of x € R. The function G is called the nth root function (n odd).
(See Figure 5.6.7.) Here we have

(x”)l/" =x and (xl/”)" =x

forall x € R and n odd.

e

Figure 5.6.6 Graph of Figure 5.6.7 Graph of
F(x) =x" (x € R, n odd). G(x) = x'/" (x € R, n odd).

Rational Powers

Now that the nth root functions have been defined for n € N, it is easy to define rational
powers.

5.6.6 Definition (i) Ifm, n € Nandx > 0, we define x™/" ;= (x1/")™,
(i) Ifm,n € Nand x > 0, we define x ™/" == (x1/")™.

Hence we have defined x” when r is arationalnumberand x > 0. The graphs of x > x”
depend on whetherr > 1,r =1,0 <r <1,r =0, or r < 0. (See Figure 5.6.8.) Since a
rational number r € Q can be written in the form r = m/n withm € Z, n € N, in many
ways, it should be shown that Definition 5.6.6 is not ambiguous. Thatis if r =m/n = p/q
withm, p € Zandn, g € Nandifx > 0,then (x!/")™ = (x!/9)? . Weleave it as an exercise
to the reader to establish this relation.

5.6.7 Theorem Ifm e€Z,n €N, andx > 0, thenx™" = (x™)'/".

Proof. If x>0 and m,n € Z, then (x™)" =x™ = (x")". Now let y:=x"/" =
(x™™ > 0 so that y" = ((Jcl/")"')'l = ((xl/")")m = x™. Therefore it follows that y =
(x™)n, QE.D.

The reader should also show, as an exercise, thatif x > O and r, s € Q, then

xx*=xt =xx" and (")’ =x" = (°).
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|
I
|
|
|
[
|
1

Figure 5.6.8 Graphsofx — x" (x > 0).

Exercises for Section 5.6

IfI := [a, blisanintervaland f : I — Ris anincreasing function, then the point a [respectively,
b] is an absolute minimum [respectively, maximum] point for f on /. If f is strictly increasing,
then a is the only absolute minimum point for f on /.

. If f and g are increasing functions on an interval / C R, show that f + g is an increasing
function on /. If f is also strictly increasing on I, then f + g is strictly increasing on /.

Show that both f(x) := x and g(x) := x — 1 are strictly increasing on I := [0, 1], but that their
product fg is not increasing on /.

Show thatif f and g are positive increasing functions on an interval I, then their product fg is
increasing on /.

Show thatif I :=[a,bland f : I — Risincreasing on /, then f is continuous at a if and only

if f(a) =inf{f(x) : x € (a, b]}.

Let I/ € Rbeaninterval and let f : I — R be increasing on /. Suppose that ¢ € I is not an
endpoint of /. Show that f is continuous at c if and only if there exists a sequence (x,) in /
suchthatx, <cforn=13,5,---;x, >cforn=2,4,6,--- and such that ¢ = lim(x ) and

f(c) =lim (f(x")).

Let I € Rbeaninterval and let f : I — Rbeincreasing on /. If ¢ is not an endpoint of 7, show
that the jump jf(c) of f atcisgivenbyinf{f(y) — f(x) :x <c <y, x,y € I}.

Let f, gbeincreasingonaninterval I € Randlet f(x) > g(x)forallx € I.Ify € f(I) Ng(),
show that f~'(y) < g~!(»). [Hint: First interpret this statement geometrically.]

Let/ := [0, 1] and let f : I — R be defined by f(x) := x for x rational, and f(x) := 1 — x for
x irrational. Show that f is injective on / and that f (f(x)) = x for all x € I. (Hence f is its
own inverse function!) Show that f is continuous only at the point x = %
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10. Let! :=[a,b] andlet f : I — R be continuous on /. If f has an absolute maximum [respec-
tively, minimum)] at an interior point ¢ of 7, show that f is not injective on /.

11. Let f(x):=xforx € [0, 1],and f(x) := 1+ x forx € (1, 2]. Show that f and £~ are strictly
increasing. Are f and f~' continuous at every point?

12. Let f : [0, 1] — R be a continuous function that does not take on any of its values twice and
with f(0) < f(1). Show that f is strictly increasing on [0, 1].

13. Let h: [0, 1] — R be a function that takes on each of its values exactly twice. Show that &
cannot be continuous at every point. [Hint:If ¢, < c, arethe points where k attains its supremum,
show that ¢, = 0, ¢, = 1. Now examine the points where A attains its infimum.]

14. Letx € R,x > 0.Show thatif m, p € Z, n, ¢ € N,and mq = np, then (x'/")™ = (x"/9)?.

15. IfxeR,x > 0,andifr,s € Q, showthatx"x* = x™"° = x*x" and (x")* = x"° = (x°)".



CHAPTER 6

DIFFERENTIATION

Prior to the seventeenth century, a curve was generally described as a locus of points
satisfying some geometric condition, and tangent lines were obtained through geometric
construction. This viewpoint changed dramatically with the creation of analytic geometry
in the 1630s by René Descartes (1596-1650) and Pierre de Fermat (1601-1665). In this
new setting geometric problems were recast in terms of algebraic expressions, and new
classes of curves were defined by algebraic rather than geometric conditions. The concept
of derivative evolved in this new context. The problem of finding tangent lines and the
seemingly unrelated problem of finding maximum or minimum values were first seen to
have a connection by Fermat in the 1639s. And the relation between tangent lines to curves
and the velocity of a moving particle was discovered in the late 1660s by Isaac Newton.
Newton’s theory of “fluxions”, which was based on an intuitive idea of limit, would be
familiar to any modern student of differential calculus once some changes in terminology
and notation were made. But the vital observation, made by Newton and, independently, by
Gottfried Leibniz in the 1680s, was that areas under curves could be calculated by reversing
the differentiation process. This exciting technique, one that solved previously difficult area
problems with ease, sparked enormous interest among the mathematicians of the era and
led to a coherent theory that became known as the differential and integral calculus.

Isaac Newton

Isaac Newton (1642—1727) was born in Woolsthorpe, in Lincolnshire, Eng-
land, on Christmas Day; his father, a farmer, had died three months earlier.
His mother remarried when he was three years old and he was sent to live
with his grandmother. He returned to his mother at age eleven, only to be
sent to boarding school in Grantham the next year. Fortunately, a perceptive
teacher noticed his mathematical talent and, in 1661, Newton entered Trinity
College at Cambridge University, where he studied with Isaac Barrow.

When the bubonic plague struck in 1665-1666, leaving dead nearly
70,000 persons in London, the university closed and Newton spent two years back in Woolsthorpe.
It was during this period that he formulated his basic ideas concerning optics, gravitation, and his
method of “fluxions”, later called “calculus”. He returned to Cambridge in 1667 and was appointed
Lucasian Professor in 1669. His theories of universal gravitation and planetary motion were
published to world acclaim in 1687 under the title Philosophice Naturalis Principia Mathematica.
However, he neglected to publish his method of inverse tangents for finding areas and other work
in calculus, and this led to a controversy over priority with Leibniz.

Following an illness, he retired from Cambridge University and in 1696 was appointed War-
den of the British mint. However, he maintained contact with advances in science and mathematics
and served as President of the Royal Society from 1703 until his death in 1727. At his funeral,
Newton was eulogized as “the greatest genius that ever existed”. His place of burial in Westminster
Abbey is a popular tourist site.

157
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In this chapter we will develop the theory of differentiation. Integration theory, includ-
ing the fundamental theorem that relates differentiation and integration, will be the subject
of the next chapter. We will assume that the reader is already familiar with the geometrical
and physical interpretations of the derivative of a function as described in introductory
calculus courses. Consequently, we will concentrate on the mathematical aspects of the
derivative and not go into its applications in geometry, physics, economics, and so on.

The first section is devoted to a presentation of the basic results concerning the dif-
ferentiation of functions. In Section 6.2 we discuss the fundamental Mean Value Theorem
and some of its applications. In Section 6.3 the important L’Hospital Rules are presented
for the calculation of certain types of “indeterminate” limits.

In Section 6.4 we give a brief discussion of Taylor’s Theorem and a few of its
applications—for example, to convex functions and to Newton’s Method for the location
of roots.

Section 6.1 The Derivative

In this section we will present some of the elementary properties of the derivative. We begin
with the definition of the derivative of a function.

6.1.1 Definition Let / C R be an interval, let f : I — R, and let ¢ € I. We say that a
real number L is the derivative of f at c if given any ¢ > 0 there exists §(¢) > 0 such that
if x € I satisfies0 < |x — ¢| < &(¢), then

f0) = f©

X —cC

(1 L <e.

In this case we say that f is differentiable at ¢, and we write f’(c) for L.

In other words, the derivative of f at c is given by the limit

@ £ = tim L =IO

xX->C X —cC
provided this limit exists. (We allow the possibility that ¢ may be the endpoint of the
interval.)

Note It is possible to define the derivative of a function having a domain more general
than an interval (since the point ¢ need only be an element of the domain and also a cluster
point of the domain) but the significance of the concept is most naturally apparent for
functions defined on intervals. Consequently we shall limit our attention to such functions.

Whenever the derivative of f : I — R exists at a point ¢ € I, its value is denoted by
f'(c). In this way we obtain a function ' whose domain is a subset of the domain of f.
In working with the function f’, it is convenient to regard it also as a function of x. For
example, if f(x) := x? for x € R, then at any ¢ in R we have
_ f—fl . x =
im —————— =

lim = lim (x + ¢) = 2c.
—c X —C x—>c X —(C x—c

s©=

Thus, in this case, the function f’ is defined on all of R and f'(x) = 2x for x € R.
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We now show that continuity of f at a point ¢ is a necessary (but not sufficient)
condition for the existence of the derivative at c.

6.1.2 Theorem If f: I — R has a derivative at ¢ € I, then f is continuous at c.

Proof. Forallx € I, x # c, we have
) = flo) = (M) — o).
x—c

Since f’(c) exists, we may apply Theorem 4.2.4 concerning the limit of a product to
conclude that

lim(x — c))

X—=>C

lim(f() = £(0) = hgl(
= f'(c)-0=0.

f(X)—f(C))(
x—c

Therefore, lim f(x) = f(c) sothat f is continuous at c. QEUD.
X—>C .

The continuity of f: I — R at a point does not assure the existence of the derivative
at that point. For example, if f(x) := |x| for x € R, then for x # 0 we have (f(x) —
f(0))/(x —0) = |x|/x whichisequalto 1ifx > 0,andequalto —1if x < 0. Thus the limit
at 0 does not exist [see Example 4.1.10(b)], and therefore the function is not differentiable
at 0. Hence, continuity at a point c is not a sufficient condition for the derivative to exist
atc.

Remark By taking simple algebraic combinations of functions of the form x + |x — c|,
itis not difficult to construct continuous functions that d o not have a derivative at a finite (or
even a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical
world by giving an example of a function that is continuous at every point but whose
derivative does not exist anywhere. Such a function defied geometric intuition about curves
and tangent lines, and consequently spurred much deeper investigations into the concepts
of real analysis. It can be shown that the function f defined by the series

o0

1
fx) = Z > cos(3"x)
R n=0
hasthe stated property. A very interesting historical discussion of this and other examples of
continuous, nondifferentiable functions is given in Kline, p. 955-966, and also in Hawkins,

p- 4446. A detailed proof for a slightly different example can be found in Appendix E.

There are a number of basic properties of the derivative that are very useful in the
calculation of the derivatives of various combinations of functions. We now provide the
justification of some of these properties, which will be familiar to the reader from earlier
courses.

6.1.3 Theorem LetI C R be an interval, letc € I, andlet f : I - Randg: I - R
be functions that are differentiable at c. Then:

(@) Ifa € R, then the function af is differentiable at c, and

3 (@fY () = af'(c).
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(b) The function f + g is differentiable at c, and

4) (f+8)©) = f')+g.
(¢) (Product Rule) The function fg is differentiable at ¢, and
(%) (f8) () = f'(©0)gle) + fle)g' (o).
(d) (Quotient Rule) If g(c) # 0, then the function f/g is differentiable at c, and
© ([)' (0 = L©8©) = ')
8 (¢ (c))

Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader.
(c) Let p:= fg;thenforx € I, x # c, we have
P —pe) _ fX)glx) — fle)gle)

X —C X —=C
_ fx)gkx) — fle)gx) + fc)g(x) — f(c)g(c)
X —C
f(x; fle) 20 + £(©) - g(x) f(C)'

Since g is continuous at ¢, by Theorem 6.1.2, then }m‘l? g(x) = g(c). Since f and g are
differentiable at c, we deduce from Theorem 4.2.4 on properties of limits that

EQBS%§§93=f%oyw+fwm%o.

Hence p = fg is differentiable at ¢ and (5) holds.

(d) Let g := f/g. Since g is differentiable at c, it is continuous at that point (by
Theorem 6.1.2). Therefore, since g(c) # 0, we know from Theorem 4.2.9 that there exists
aninterval J C I with ¢ € J such that g(x) # Oforall x € J.Forx € J, x # c, we have

g(x)—q(c)  fx)/gx) = f(c)/glc)  fx)glc) = fc)g(x)
x—c x—c T gglo)x —c)
_ f®)gle) — f(0)g(e) + fle)gle) — f()gkx)
g(x)gc)x —¢)
-] [f(x)—f(c) - f) - M]
g(x)g(c) x—c c
Using the continuity of g at ¢ and the differentiability of f and g at ¢, we get
4/©) = lim q(x) —q() _ f'©)glc) — flo)g’ (C)
xX—=c X —C (g(c))

Thus, g = f/g is differentiable at ¢ and equation (6) holds. QE.D.

Mathematical Induction may be used to obtain the following extensions of the differ-
entiation rules.

6.1.4 Corollary Iff,, f,,---, f,arefunctionsonan interval I toR that are differentiable
atc € I, then:
(a) The function f, + f, + -+ + f, is differentiable at ¢ and

@) i+ hHhi++£)© = fll©)+ fr(0) + -+ f(0).



6.1 THE DERIVATIVE 161

(b) The function f, f, - - - f, is differentiable at c, and
®) (frfy - £ (© = i) fy(©) - ) + f(e) f5(c) -+ £, (c)
+- -+ [1(fy(0) -+ fulo).

An important special case of the extended product rule (8) occurs if the functions are
equal, thatis, f = f, =--- = f, = f. Then (8) becomes

) (f™' () = n(f )" f'(c).

In particular, if we take f(x) := x, then we find the derivative of g(x) := x" tobe g'(x) =
nx"1, n € N. The formulais extended toinclude negative integers by applying the Quotient
Rule 6.1.3(d).

Notation If / C Ris aninterval and f : I — R, we have introduced the notation f’ to
denote the function whose domain is a subset of / and whose value at a point c is the
derivative f'(c) of f at c. There are other notations that are sometimes used for f’; for
example, one sometimes writes Df for f’. Thus one can write formulas (4) and (5) in the
form:

D(f+g) =Df + Dg, D(fg) = (Df) g+ f-(Dg).

When x is the “independent variable”, it is common practice in elementary courses to write
df/dx for f'. Thus formula (5) is sometimes written in the form

d d d
S (fwew) = (d—ﬁ(x)> () + F(x) (;f(x)) ,

This last notation, due to Leibniz, has certain advantages. However, it also has certain
disadvantages and must be used with some care.

The Chain Rule

We now turn to the theorem on the differentiation of composite functions known as the
“Chain Rule”. It provides a formula for finding the derivative of a composite function g o f
in terms of the derivatives of g and f.

We first establish the following theorem concerning the derivative of a function at a
point that gives us a very nice method for proving the Chain Rule. It will also be used to
derive the formula for differentiating inverse functions.

6.1.5 Carathéodory’s Theorem Let f be defined on an interval I containing the point c.
Then f is differentiable at c if and only if there exists a function ¢ on I that is continuous
at ¢ and satisfies

(10 FO=-f)=ex)x—c) for xel
In this case, we have p(c) = f'(c).

Proof. (=) If f'(c) exists, we can define ¢ by

f(x) = f(o)
o(x) == e for x #c,xel,
f) for x =c.

The continuity of ¢ follows from the fact that lim ¢(x) = f’(c). If x = ¢, then both sides

of (10) equal 0, while if x # ¢, then multiplication of ¢(x) by x — ¢ gives (10) for all other
xel.
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(<) Now assume that a function ¢ that is continuous at ¢ and satisfying (10) exists. If
we divide (10) by x — ¢ # 0, then the continuity of ¢ implies that

exists. Therefore f is differentiable at ¢ and f'(c) = ¢(c). QED.

To illustrate Carathéodory’s Theorem, we consider the function f defined by f(x) :=
x> for x € R. For ¢ € R, we see from the factorization

x=3= (x2 +cx +cz)(x —0)

that p(x) = x2 + cx + c? satisfies the conditions of the theorem. Therefore, we conclude
that f is differentiable at ¢ € R and that f'(c) = ¢(c) = 3c2.

We will now establish the Chain Rule. If f is differentiable at ¢ and g is differentiable
at f (c), then the Chain Rule states that the derivative of the composite function g o f at ¢
is the product (g o f)'(c) = g'(f(c)) - f'(c). Note this can be written

gof)Y=@0ofN- 1.

One approach to the Chain Rule is the observation that the difference quotient can be
written, when f(x) # f(c), as the product

gf®) —g(f©) g(f)—-g(f©) fx) - f©

x—c B fx)— f(© ' X —c
This suggests the correct limiting value. Unfortunately, the first factor in the product on
the right is undefined if the denominator f(x) — f(c) equals O for values of x near c, and
this presents a problem. However, the use ‘of Carathéodory’s Theorem neatly avoids this
difficulty.

6.1.6 Chain Rule Let/, J beintervalsinR, letg: I — Rand f : J — R be functions
such that f(J) € I, and let ¢ € J. If f is differentiable at ¢ and if g is differentiable at
f(c), then the composite function g o f is differentiable at ¢ and

11) (80 () =g(f©) f(c)

Proof. Since f '(¢) exists, Carathéodory’s Theorem 6.1.5 implies that there exists a func-
tion ¢ on J such that ¢ is continuous at ¢ and f(x) — f(c) = ¢(x)(x —c¢) forx € J,
and where ¢(c) = f'(c). Also, since g’( f (c)) exists, there is a function v defined on I
such that i is continuous at d := f(c) and g(y) — g(d) = ¥ (y)(y —d) for y € I, where
¥ (d) = g’'(d). Substitution of y = f(x) andd = f(c) then produces

g(f®) —e(f©) =v(f@)(fx) = f©)=[(¥ o f®) - px)]x — )

forall x € J such that f(x) € I. Since the function (¢ o f) - ¢ is continuous at ¢ and its
value at ¢ is g'(f(c)) - f(c), Carathéodory’s Theorem gives (11). QED.

If g is differentiable on 7, if f is differentiable on J and if f(J) C I, then it follows
from the Chain Rule that (g o ) = (g’ o f) - f which can also be written in the form
D(go f)=(Dgo f)-Df.
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6.1.7 Examples (a) If f: I — R is differentiable on I and g(y) := y" fory € R and
n € N, then since g'(y) = ny"~!, it follows from the Chain Rule 6.1.6 that

o) =g(f®) - f(x) for xel

Therefore we have (f")'(x) = n(f(x))"_lf’(x) forall x € I as was seen in (9).

(b) Suppose that f : I — R is differentiable on I and that f(x) # 0 and f'(x) # 0 for
x € 1. If h(y) :=1/y for y # 0, then it is an exercise to show that &' (y) = —1/y?* for
y € R, y # 0. Therefore we have

for xel.

! !
(l)m = (ho 1Y) = K () f () = — LX)
f (F&)
(c) The absclute value function g(x) := |x| is differentiable at all x # 0 and has derivative
g (x) = sgn(x) for x # 0. (The signum function is defined in Example 4.1.10(b).) Though

sgn is defined everywhere, it is not equal to g’ at x = 0 since g’(0) does not exist.
Now if f is a differentiable function, then the Chain Rule implies that the function

g o f = | f|is also differentiable at all points x where f (x) # 0, and its derivative is given
by

reon s _ | ) if f(x) >0,
If f is differentiable at a point ¢ with f(c) = O, then it is an exercise to show that | f| is
differentiable at c if and only if f'(c) = 0. (See Exercise 7.)
For example, if f(x) := x*—1forxe R, then the derivative of its absolute value
|f1(x) = [x* — 1| isequal to | f | (x) = sgn(x* — 1) - (2x) for x # 1, —1. See Figure 6.1.1
for a graph of | f|.

~

T T T 7 T 1777

B N AR [ S
-2 -1 1 2

X

Figure 6.1.1 The function | f|(x) = |x% — 1].

(d) It will be proved later that if S(x) := sinx and C(x) := cos x for all x € R, then
S'(x) =cosx = C(x) and C'(x) = —sinx = =S(x)
for all x € R. If we use these facts together with the definitions
sin x

tanx = , secx (= —,
Cos x Cos x
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forx # 2k + 1) /2, k € Z, and apply the Quotient Rule 6.1.3(d), we obtain

_ (cosx)(cos x) — (sinx)(— sinx)

Dtanx = = (secx)?,
(cos x)2
0— 1(—si i
Dsecx = ( s1;1x) = Smx 5 = (sec x)(tan x)
(cosx) (cos x)
forx # 2k + 1)m/2,k € Z.
Similarly, since
Ccos X 1
cotx ;= ——, csCx = —
sinx sin x
forx # km, k € Z, then we obtain
Dcotx = —(cscx)? and Dcscx = —(csc x)(cot x)

forx #kn,k € Z.
(e) Suppose that f is defined by

| x*sin(1/x) for x #0,
f(x)“{o for x=0.

If we use the fact that Dsinx = cosx for all x € R and apply the Product Rule 6.1.3(c)
and the Chain Rule 6.1.6, we obtain (why?)

f'(x) = 2xsin(1/x) — cos(1/x) for x #0.

If x = 0, none of the calculational rules may be applied. (Why?) Consequently, the deriva-
tive of f at x = 0 must be found by applying the definition of derivative. We find that

f(x) — f(0) x2sin (1/x)
X

f'(©) = lim = lim

=0 lim = lgr(llx sin(l1/x) = 0.

Hence, the derivative f’ of f exists atall x € R. However, the function f’ does not have a

limit at x = 0 (why?), and consequently f’ is discontinuous at x = 0. Thus, a function f
that is differentiable at every point of R need not have a continuous derivative f’. |

Inverse Functions

We will now relate the derivative of a function to the derivative of its inverse function,
when this inverse function exists. We will limit our attention to a continuous strictly
monotone function and use the Continuous Inverse Theorem 5.6.5 to ensure the existence
of a continuous inverse function.

If f is acontinuous strictlymonotone function on an interval I, then its inverse function
g = f~! is defined on the interval J := f(I) and satisfies the relation

g(f(x))=x for xel.

If c € I and d := f(c), and if we knew that both f'(c) and g’(d) exist, then we could
differentiate both sides of the equation and apply the Chain Rule to the left side to get
g (f(©) - f'(¢) = 1. Thus, if f'(c) # 0, we would obtain

g'd) =

1
)’
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However, it is necessary to deduce the differentiability of the inverse function g from the
assumed differentiability of f before such a calculation can be performed. This is nicely
accomplished by using Carathéodory’s Theorem.

6.1.8 Theorem Let I be an interval in R and let f : I — R be sarctly monotone and
continuousonl.LetJ := f(I) andletg : J — R be the swictly monotone and continuous
function inverse to f. If f is differentiable atc € I and f'(c) # O, then g is differentiable
atd .= f(c) and

1 1

12 ) (d) = = .
(12 8D =55~ Ta@)

Proof. Given c € R, we obtain from Carathéodory’s Theorem 6.1.5 a function ¢ on /
with properties that ¢ is continuous atc, f(x) — f(¢) = p(x)(x —c)forx € I,and p(c) =
f'(c). Since ¢(c) # 0 by hypothesis, there exists a neighborhood V := (¢ — 8, ¢ + 8) such
that p(x) # 0 forallx € V N I. (See Theorem4.2.9.) If U := f(V N I), then the inverse
function g satisfies f (g(y)) = yforall y € U, so that

y—d=f(g) - fle) =p(g) - (g0 —g@).
Since ¢(g(y)) # 0 for y € U, we can divide to get
1

g(y) —gld) = ——=-(y—4d).
o(g(»)
Since the function 1/(¢ o g) is continuous at d, we apply Theorem 6.1.5 to conclude that
g'(d) exists and g'(d) = 1/¢(g(d)) = 1/¢(c) = 1/f'(c). QED.

Note The hypothesis, made in Theorem 6.1.8, that f’(c) # O is essential. In fact, if
f'(c) = 0, then the inverse function g is never differentiable atd = f(c), since the assumed
existence of g'(d) would lead to 1 = f’(c)g’(d) = 0, which is impossible. The function
f(x) := x* with ¢ = 0 is such an example.

6.1.9 Theorem Let I be an interval and let f : I — R be swictly monotone on I. Let
J = f(I) and let g : J — R be the function inverse to f. If f is differentiable on I and
f '(x) # 0 forx € I, then g is differentiable on J and

1

13 = ———,
1 = Fog

Proof. 1If f is differentiable on I, then Theorem 6.1.2 implies that f is continuous on /,

and by the Continuous Inverse Theorem 5.6.5, the inverse function g is continuous on J.

Equation (13) now follows from Theorem 6.1.8. QE.D.

Remark If f andg are the functions of Theorem 6.1.9,andif x € I and y € J are related
by y = f(x) and x = g(y), then equation (13) can be written in the form

1 1
———, yel, or Goflix)=——, xel.
(o)) gt 7
It can also be written in the form g’(y) = 1/f’(x), provided that it is kept in mind that x
and y are related by y = f(x) and x = g(y).

gy =
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6.1.10 Examples (a) The function f : R — Rdefinedby f(x) = x4 4x + 3iscon-
tinuous and strictly monotone increasing (since it is the sum of two strictly increasing func-
tions). Moreover, f'(x) = 5x* + 4 is never zero. Therefore, by Theorem 6.1.8, the inverse
function g = f~! is differentiable at every point. If we take ¢ = 1, then since f(1) =8,
we obtain g'(8) = g'(f(1)) = 1/f'(1) = 1/9. .
(b) Letn € Nbeeven,let I := [0, 00), and let f(x) := x" for x € I. It was seen at the
end of Section 5.6 that f is strictly increasing and continuous on I, so that its inverse
function g(y) := y!/" for y € J := [0, 00) is also strictly increasing and continuous on J.
Moreover, we have f’(x) = nx"~! for all x € I. Hence it follows that if y > 0, then g'(y)
exists and
‘0) = L _ 1 = —
4 f'(g(y)) n(g(y))n—l ny(n—l)/n

Hence we deduce that

1
g0 = ;y(”""‘ for y>0.

However, g is not differentiable at 0. (For a graph of f and g, see Figures 5.6.4 and 5.6.5.)
(¢) Letn € N,n # 1,beodd, let F(x) := x" forx € R,andlet G(y) := y'/" beitsinverse
function defined for all y € R. As in part (b) we find that G is differentiable for y # 0
and that G'(y) = (1 /n)y(l/ -1 for y # 0. However, G is not differentiable at 0, even
though G is differentiable for all y # 0. (For a graph of F and G, see Figures 5.6.6 and
5.6.7.)

(d) Letr :=m/n be a positive rational number, let I := [0, 00), and let R(x) := x" for
x € I. (Recall Definition 5.6.6.) Then R is the composition of the functions f(x) := x™
and g(x) = x/" x € I. Thatis, R(x) = f(gx)) for x € I. If we apply the Chain Rule
6.1.6 and the results of (b) [or (c), depending on whether n is even or odd], then we obtain

R'@) = f'(50)g @) = m(my=t .~ xm-

— _"1x(m/n)—l — rxr—l
n
forall x > 0.If r > 1, thenit is an exercise to show that the derivative also exists at x =0
and R'(0) = 0. (For a graph of R see Figure 5.6.8.)

(e) The sine function is strictly increasing on the interval I := [—m/2, 7/2]; therefore
its inverse fufiction, which we will denote by Arcsin, exists on J := [—1, 1]. That is, if
x € [-n/2,m/2]andy € [—1, 1] then y = sin x if and only if Arcsin y = x. It was asserted
(without proof) in Example 6.1.7(d) that sin is differentiable on I and that Dsinx =
cosx for x € I. Since cosx # O for x in (—m /2, 7 /2) it follows from Theorem 6.1.8 that

D Arcsin y = 1 = 1
Dsinx cosx
_ 1 _ 1
1= Ginx)? V12
forall y € (—1}.1). The derivative of Arcsin does not exist at the points —1 and 1. |

Exercises for Section 6.1

1. Use the definition to find the derivative of each of the following functions:
(@ f(x):=x>forxeR, (b)) gx):=1/xforx eR, x #£0,
(©) h(x) :=./xforx >0, (d) k(x):=1/4/x forx > 0.



10.

11.

12.

13.

14.

15.

17.
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Show that f(x) := x'3, x € R, is not differentiable at x = 0.
Prove Theorem 6.1.3(a), (b).

Let f : R — R be defined by f(x) := x? for x rational, f(x) := O for x irrational. Show that
f is differentiable at x = 0, and find f(0).

Differentiate and simplify:

@ f(x):= ]_:_c—xz, (b) gx):=+v5—2x+ x>,

(c) h(x):= (sinx*)" form, k € N, (d) k(x) := tan(x?) for |x| < /7 /2.

Letn € Nandlet f : R — R be defined by f(x) :=x" forx > 0and f(x) := Oforx < 0. For
which values of n is f’ continuous at 0? For which values of n is f’ differentiable at 0?

Suppose that f : R — R is differentiable at ¢ and that f(c) = 0. Show that g(x) := | f(x)| is
differentiable at c if and only if f'(c) = 0.

Determine where each of the following functions from R to R is differentiable and find the
derivative:

@ fx):=|x|+x+1], (b) gx):=2x+ x|,

(©) h(x) = x|x], (d) k(x):=|sinx|,

Prove that if f : R — R is an even function [that is, f(—x) = f(x) for all x € R] and has a
derivative at every point, then the derivative f’ is an odd function [that is, f'(—x) = —f'(x)
for all x € R]. Also prove that if g : R — R is a differentiable odd function, then g’ is an even
function.

Let g : R — R be defined by g(x) := x*sin(1/x%) for x # 0, and g(0) := 0. Show that g is
differentiable for all x € R. Also show that the derivative g’ is not bounded on the interval
[-1,1].

Assume that there exists a function L : (0,00) — R such that L’(x) = 1/x for x > 0. Calculate
the derivatives of the following functions:
(@) f(x):=LE2x+3)forx >0, (b) gx):= (Lx?) forx > 0,

(¢) h(x):=L(ax)fora > 0,x >0, (d) k(x):=L(L(x))whenL(x)>0,x > 0.

If » > 0 is arational number, let f : R — R be defined by f(x) := x"sin(1/x) for x # 0, and
f(0) := 0. Determine those values of r for which f’(0) exists.

If f : R — Ris differentiable at ¢ € R, show that
f(©) =lim (n{f(c+1/n) = f(c)}).

However, show by example that the existence of the limit of this sequence does not imply the
existence of f'(c).

Given that the function h(x) := x> +2x + 1 for x € R hasaninverse 2! on R, find the value
of (h™'Y (y) at the points corresponding tox =0, 1, —1.

Given that the restriction of the cosine function cos to I := [0, 7] is strictly decreasing and
that cos0 =1, cos® = —1, let J := [—1, 1], and let Arccos: J — R be the function inverse
to the restriction of cos to /. Show that Arccos is differentiable on (—1, 1) and DArccos y =
-1/ - yz)l/2 for y € (—1, 1). Show that Arccos is not differentiable at —1 and 1.

Given that the restriction of the tangent function tan to I := (—x /2, 7 /2) is strictly increasing
and that tan(/) = R, let Arctan: R — R be the function inverse to the restriction of tan to /.
Show that Arctan is differentiable on R and that DArctan(y) = (1 + y*)~! for y € R.

Let f : I — R be differentiable at ¢ € I. Establish the Straddle Lemma: Given ¢ > 0 there
exists 8(¢) > O such that if u, v € I satisfy ¢ — §(¢) <u <c <v < c+ 6(¢), then we have
If) — f)— @-— u) f'(c)| < (v — u). [Hint: The §(¢) is given by Definition 6.1.1. Sub-
tract and add the term f(c) — cf’(c) on the left side and use the Triangle Inequality.]
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Section 6.2 The Mean Value Theorem

The Mean Value Theorem, which relates the values of a function to values of its derivative,
is one of the most useful results in real analysis. In this section we will establish this
important theorem and sample some of its many consequences.

We begin by looking at the relationship between the relative extrema of a function
and the values of its derivative. Recall that the function f : I — R is said to have a
relative maximum [respectively, relative minimum] atc € [ if there exists a neighborhood
V := V,(c) of c such that f(x) < f(c) [respectively, f(c) < f(x)]forallxin VN I. We
say that f has a relative extremum at ¢ € [ if it has either a relative maximum or a relative
minimum at c.

The next result provides the theoretical justification for the familiar process of finding
points at which f has relative extrema by examining the zeros of the derivative. However,
it must be realized that this procedure applies only to interior points of the interval. For
example, if f(x) := x onthe interval I := [0, 1], then the endpoint x = 0 yields the unique
relative minimum and the endpoint x = 1 yields the unique maximum of f on I, but neither
point is a zero of the derivative of f.

6.2.1 Interior Extremum Theorem Let c be an interior point of the interval I at which
f: I — R has a relative extremum. If the derivative of f at c exists, then f'(c) = 0.

Proof. We will prove the result only for the case that f has a relative maximum at c; the
proof for the case of a relative minimum is similar.
If f'(c) > 0, then by Theorem 4.2.9 there exists a neighborhood V € [ of ¢ such that
M>O for xeV x #c.
x—c

If x € Vand x > c, then we have

RGO

X —=C

f&x) = fle)=(x—c) 0.

But this contradicts the hypothesis that f has a relative maximum at c. Thus we cannot
have f'(c) > 0. Similarly (how?), we cannot have f'(c) < 0. Therefore we must have
f'e)=0. QED.

6.2.2 Corollary Let f: I — R be continuous on an interval I and suppose that f has a
relative extremum at an interior point ¢ of I. Then either the derivative of f at ¢ does not
exist, or it is equal to zero.

We note thatif f(x) := |x|on [ ;= [—1, 1], then f has an interior minimum at x = 0;
however, the derivative of f fails toexistatx = 0.

6.2.3 Rolle’s Theorem Suppose that f is continuous on a closed interval I := [a, b], that
the derivative f’ exists at every point of the open interval (a, b), and that f (@) = f(b) = 0.
Then there exists at least one point c in (a, b) such that f'(c) = 0.

Proof. If f vanishes identically on I, then any c in (a, b) will satisfy the conclusion of
the theorem. Hence we suppose that f does not vanish identically; replacing f by —f
if necessary, we may suppose that f assumes some positive values. By the Maximum-—
Minimum Theorem 5.3.4, the function f attains the value sup{f(x) : x € I} > 0 at some
point ¢ in . Since f(a) = f(b) = 0, the point ¢ must lie in (a, b); therefore f'(c) exists.
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Figure 6.2.1 Rolle’s Theorem

Since f has a relative maximum at ¢, we conclude from the Interior Extremum Theorem
6.2.1 that f'(c) = 0. (See Figure 6.2.1.) QE.D.

As a consequence of Rolle’s Theorem, we obtain the fundamental Mean Value
Theorem.

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval I :=
[a, b], and that f has a derivative in the open interval (a, b). Then there exists at least one
point c in (a, b) such that

f® = f@=f')b-a.

Proof. Consider the function ¢ defined on I by

f) — f(a)
b—a

[The function ¢ is simply the difference of f and the function whose graph is the line

segment joining the points (a, f(a)) and (b, f (b)); see Figure 6.2.2.] The hypotheses of

o(x) = f(x) — f(a) — (x —a).
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Figure 6.2.2 The Mean Value Theorem
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Rolle’s Theorem are satisfied by ¢ since ¢ is continuous on [a, b], differentiable on (a, b),
and p(a) = ¢(b) = 0. Therefore, there exists a point ¢ in (a, b) such that

fb) — f(a)
b—a
Hence, f(b) — f(a) = f'(c)(b — a). QED.

0=¢'c)=f(c) -

Remark The geometric view of the Mean Value Theorem is that there is some point on
the curve y = f(x) at which the tangent line is parallel to the line segment through the
points (a, f(a)) and (b, f(b)). Thus it is easy to remember the statement of the Mean
Value Theorem by drawing appropriate diagrams. While this should not be discouraged,
it tends to suggest that its importance is geometrical in nature, which is quite misleading.
In fact the Mean Value Theorem is a wolf in sheep’s clothing and is the Fundamental
Theorem of Differential Calculus. In the remainder of this section, we will present some of
the consequences of this result. Other applications will be given later.

The Mean Value Theorem permits one to draw conclusions about the nature of a
function f from information about its derivative f'. The following results are obtained in
this manner.

6.2.5 Theorem Suppose that f is continuous on the closed interval I := [a, b], that f
is differentiable on the open interval (a, b), and that f'(x) = 0 for x € (a, b). Then f is
constanton I .

Proof. We will show that f(x) = f(a) for all x € I. Indeed, if x € I, x > a, is given,
we apply the Mean Value Theorem to f on the closed interval [a, x]. We obtain a point ¢
(depending on x) betweena and x such that f (x) — f(a) = f'(c)(x —a).Since f'(c) =0
(by hypothesis), we deduce that f(x) — f(a) = 0. Hence, f(x) = f(a) forany x € I.
QED.

6.2.6 Corollary Suppose that f and g are continuous on I := [a, b), that they are dif-
ferentiablé on (a, b), and that f'(x) = g’(x) for all x € (a, b). Then there exists a constant
C suchthat f =g+ Conl.

Recall that a function f : I — Rissaid to be increasing on the interval / if whenever
Xy, x, in I satisfy x; < x,, then f(x,) < f(x,). Alsorecall that f is decreasing on / if the
function — f is increasing on /.

6.2.7 Theorem Let f:I — R be differentiable on the interval I. Then:

(@) f isincreasing on I if and only if f'(x) > 0 forallx € I.
(b) f is decreasing on I if and only if f'(x) <O forallx € I.

Proof. (a) Suppose that f'(x) > 0 forall x € I.If x|, x, in I satisfy x, < x,, then we
apply the Mean Value Theorem to f on the closed interval J := [x,, x,] to obtain a point
cin (x;, x,) such that

fxy) = f&x) = flOx; —x).
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Since f’(c) >0 and x, —x; >0, it follows that f(x,) — f(x;) > 0. (Why?) Hence,
f(x;) < f(x,) and, since x, < x, are arbitrary points in I, we conclude that f is in-
creasing on /.

For the converse assertion, we suppose that f is differentiable and increasing on 1.
Thus, for any point x # cin I, we have (f(x) — f(c))/(x —c) > 0. (Why?) Hence, by
Theorem 4.2.6 we conclude that

f'(¢) = lim &= FE@ S,

X—>C X —C

(b) The proof of part (b) is similar and will be omitted. QE.D.

A function f is said to be strictly increasing on an interval I if for any points x,, x, in
I suchthatx; < x,, wehave f(x,) < f(x,). Anargumentalongthe samelines of the proof
of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative on
an interval is strictly increasing there. (See Exercise 13.) However, the converse assertion
is not true, since a strictly increasing differentiable function may have a derivative that
vanishes at certain points. For example, the function f : R — R defined by f (x) := x3 is
strictly increasing on R, but f’(0) = 0. The situation for strictly decreasing functions is
similar.

Remark It is reasonable to define a function to be increasing at a point if there is a
neighborhood of the point on which the function is increasing. One might suppose that,
if the derivative is strictly positive at a point, then the function is increasing at this point.
However, this supposition is false; indeed, the differentiable function defined by

| x+2x%sin(1/x) if x#0,
g(x)“{ 0 if x=0,

is such that g’(0) = 1, yet it can be shown that g is not increasing in any neighborhood of
x = 0. (See Exercise 10.)

We next obtain a sufficient condition for a function to have a relative extremum at an
interior point of an interval.

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval I := [a, b]
and let ¢ be an interior point of I. Assume that f is differentiable on (a, c) and (c, b). Then:

(a) If there is a neighborhood (¢ — 8, ¢ +8) € I such that f'(x) >0 forc—8 <x <c
and f'(x) <0 forc < x < c+ 8, then f has a relative maximum at c.
(b) If there is a neighborhood (¢ — 8,c + 8) € I such that f'(x) <0 forc—8 <x <c
and f'(x) > 0 forc < x < c+ &, then f has a relative minimum at c.

Proof. (a) If x € (c — 4, ¢), then it follows from the Mean Value Theorem that there
exists a point ¢, € (x,c) such that f(c) — f(x) = (c —x)f'(c,). Since f'(c,) >0 we
infer that f(x) < f(c) for x € (c — §, ¢). Similarly, it follows (how?) that f(x) < f(c)
forx € (c, c + 8). Therefore f(x) < f(c) forallx € (c — 8, ¢ + 8) sothat f has arelative
maximum at c.

(b) The proof is similar. Q.E.D.

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there
exists a differentiable function f : R — R with absolute minimum at x = O but such that
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f' takes on both positive and negative values on both sides of (and arbitrarily close to)
x = 0. (See Exercise 9.)

Further Applications of the Mean Value Theorem

We will continue giving other types of applications of the Mean Value Theorem; in doing
so we will draw more freely than before on the past experience of the reader and his or her
knowledge concerning the derivatives of certain well-known functions.

6.2.9 Examples (a) Rolle’s Theorem can be used for the location of roots of a function.
For, if a function g can be identified as the derivative of a function f, then between any two
roots of f there is at least one root of g. For example, let g(x) := cos x, then g is known to
be the derivative of f(x) := sinx. Hence, between any two roots of sinx there is at least
one root of cos x. On the other hand, g’(x) = —sinx = — f(x), so another application of
Rolle’s Theorem tells us that between any two roots of cos there is at least one root of sin.
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion
is probably not news to the reader; however, the same type of argument can be applied to
the Bessel functions J, of ordern = 0, 1, 2, - - - by using the relations

x"J, ()] =x"J,_ (x), [x”_IJn(x)]' =—x"J (% for x> 0.

The details of this argument should be supplied by the reader.

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain
error estimates. For example, suppose it is desired to evaluate +/105. We employ the Mean
Value Theorem with f(x) := 4/x, a = 100, b = 105, to obtain

5
«/RB—«/W:z—\/E

for some number ¢ with 100 < ¢ < 105. Since 10 < \/c < V105 < 4/121 =11, we can
assert that .

<+/105-10

5 N
2(11) 2(10) " -

whence it follows that 10.2272 < 4/105 < 10.2500. This estimate may not be as sharp as
desired. It is clear that the estimate /c < +/105 < +/121 was wasteful and can be improved
by making use of our conclusion that V105 < 10.2500. Thus, /¢ < 10.2500 and we easily
determine that

5
02439 < — > —10.
< 2(10.2500) < V105-10

Our improved estimate is 10.2439 < +/105 < 10.2500. g

Inequalities

One very important use of the Mean Value Theorem is to obtain certain inequalities.
Whenever information concerning the range of the derivative of a function is available, this
information can be used to deduce certain properties of the function itself. The following
examples illustrate the valuable role that the Mean Value Theorem plays in this respect.
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6.2.10 Examples (a) The exponential function f(x) := e has the derivative f'(x) =
e* forallx € R. Thus f'(x) > 1 forx > 0,and f'(x) < 1 for x < 0. From these relation-
ships, we will derive the inequality

1) e&>1+4x for x € R,

with equality occurring if and only if x = 0.

If x = 0, we have equality with both sides equal to 1. If x > 0, we apply the Mean
Value Theorem to the function f on the interval [0, x]. Then for some ¢ with 0 < ¢ < x
we have

e —e¥ =e(x —‘O).

Since e® = 1 and € > 1, this becomes e* — 1 > x so that we have &* > 1 + x for x > O.
A similar argument establishes the same strict inequality for x < 0. Thus the inequality (1)
holds for all x, and equality occurs only if x = 0.

(b) The function g(x) := sinx has the derivative g’(x) = cosx forall x € R. On the basis
of the fact that —1 < cosx < 1 forallx € R, we will show that

2 —x <sinx <x forall x>0.

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we
obtain

sinx — sin0 = (cosc)(x — 0)

for some ¢ between 0 and x. Since sin0 = 0and —1 < cosc¢ < 1, we have —x < sinx < x.
Since equality holds at x = 0, the inequality (2) is established.

(c) (Bernoulli’s inequality) If @ > 1, then
3) QI+x*>14ax forall x > —1,

with equality if and only if x = 0.

This inequality was established earlier, in Example 2.1.13(c), for positive integer
values of a by using Mathematical Induction. We now derive the more general version by
employing the Mean Value Theorem.

If h(x) := (1 + x)* then h'(x) = a(1 +x)*! for all x > —1. [For rational « this
derivative was established in Example 6.1.10(c). The extension to irrational will be dis-
cussed in Section 8.3.] If x > 0, we infer from the Mean Value Theorem applied to 4 on
the interval [0, x] that there exists ¢ with 0 < ¢ < x suchthath(x) — h(0) = A’ (c)(x — 0).
Thus, we have

14+x)*—1=a(+c)* x.

Since ¢ > 0 and @ — 1 > 0, it follows that (1 +¢)*"! > 1 and hence that (1 + x)* >
1+ ax. If —1 < x <0, a similar use of the Mean Value Theorem on the interval [x, 0]
leads to the same strict inequality. Since the case x = O results in equality, we conclude
that (3) is valid forall x > —1 with equality if and only if x = 0.

(d) Let @ be a real number satisfying 0 < @ < 1 and let g(x) = ax — x* for x > 0.
Then g'(x) = a(l —x*7!), so that g'(x) <0 for0 < x <1 and g’(x) > 0 for x > 1.
Consequently, if x > 0, then g(x) > g(1)and g(x) = g(1) if and only if x = 1. Therefore,
if x>0and 0 < o < 1, then we have

X <ax+(1-a).
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Ifa > 0 and b > 0.and if we let x = a/b and multiply by b, we obtain the inequality
a®b'™* < aa + (1 — a)b,
where equality holds if and only if a = b. a

The Intermediate Value Property of Derivatives

We conclude this section with an interesting result, often referred to as Darboux’s Theorem.
It states that if a function f is differentiable at every point of an interval /, then the function
£’ has the Intermediate Value Property. This means that if f” takes on values A and B, then
it also takes on all values between A and B. The reader will recognize this property as one of
the important consequences of continuity as established in Theorem 5.3.7. It is remarkable
that derivatives, which need not be continuous functions, also possess this property.

6.2.11 Lemma LetI C R be an interval, let f : I — R, let c € I, and assume that f
has a derivative at c. Then:

(a) If f'(c) > 0, then there is a number § > 0 such that f (x) > f(c) for x € I such that
c<x<c+.
() If f'(c) <0, then there is a number § > 0 such that f(x) > f(c) forx € I such that
c—d<x<ec.

Proof. (a) Since

lim f(x)%f(c) = f'(c) > 0,

x—c b

it follows from Theorem 4.2.9 that there is a number § > O such thatif x € I and 0 <
|x —c| < &, then

fx) = flo)

X —cC

0.

If x € I also satisfies x > ¢, then we have

fx) = f(o)
>

X —cC

f@) = fle)=x-0) 0.

Hence,ifx € I andc < x < ¢+ 8, then f(x) > f(c).
The proof of (b) is similar. QED.

6.2.12 Darboux’s Theorem If f is differentiable on I = [a, b] and if k is a number
between f’(a) and f’(b), then there is at least one point c in (a, b) such that f'(c) = k.

Proof. Suppose that f'(a) < k < f'(b). We define g on I by g(x) :=kx — f(x) for
x € I.Since g is continuous, it attains a maximum value on /. Since g'(a) = k — f'(a) > 0,
it follows from Lemma 6.2.11(a) that the maximum of g does notoccurat x = a. Similarly,
since g'(b) = k — f'(b) < 0, it follows from Lemma 6.2.11(b) that the maximum does not
occur at x = b. Therefore, g attains its maximum at some c in (a, b). Then from Theorem
6.2.1 we have 0 = g'(c) = k — f'(c). Hence, f'(c) = k. QED.

6.2.13 Example The function g: [—1, 1] — R defined by

1 for 0<x <1,
glx) = 0 for x =0,
-1 for —-1<x<0,
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(which is a restriction of the signum function) clearly fails to satisfy the intermediate value
property on the interval [—1, 1]. Therefore, by Darboux’s Theorem, there does not exist a
function f such that f'(x) = g(x) forallx € [—1, 1]. Inother words, g is not the derivative
on [—1, 1] of any function. O

Exercises for Section 6.2

10.

11.

13.

14.

For each of the following functions on R to R, find points of relative extrema, the intervals on
which the function is increasing, and those on which it is decreasing:

@ f(x):=x*-3x+5, (b) g(x) :=3x —4x?,

(©) h(x):=x>-3x—4, d) k(x) :=x*+2x2 -4

Find the points of relative extrema, the intervals on which the following functions are increasing,
and those on which they are decreasing:

(@ f(x):=x+1/xforx#0, b) gx):= x/(x2 + 1) forx € R,

© h(x):=x—2Jx+2forx >0, (d) k(x):=2x+1/x>forx #0.

Find the points of relative extrema of the following functions on the specified domain:

@ f(x):=Ix* —1|for—4 < x <4, (b) g(x):=1—(x—1)*"?for0<x <2,
(©) h(x):=x|x* —12|for—2 < x <3, @) k(x):=x(x—8)"for0<x<9.
Leta,,a,, -, a, bereal numbers and let f be definedon R by

f(x) = Z(a,» -x)2  for xe R
i=l

Find the unique point of relative minimum for f.

Leta > b > O and let n € N satisfy n > 2. Prove thata'/" — b"/"* < (a — b)"/". [Hint: Show

that f(x) == x'/" — (x — 1)V/" is decreasing for x > 1, and evaluate f at 1 and a/b.]

Use the Mean Value Theorem to prove that | sinx — sin y| < |x — y| forall x, y in R.

Use the Mean Value Theorem to prove that (x — 1)/x < Inx < x — 1 forx > 1. [Hint: Use the

factthat DInx = 1/x forx > 0.]

Let f: [a, b] = R be continuous on [a, b] and differentiable in (a, b). Show thatif lim f'(x) =
X—=a

A, then f'(a) exists and equals A. [Hint: Use the definition of f'(a) and the Mean Value

Theorem.]

Let f : R — R be defined by f(x) := 2x* + x*sin(1/x) for x # 0 and £ (0) := 0. Show that
f has an absolute minimum at x = 0, but that its derivative has both positive and negative values
in every neighborhood of 0.

Let g : R — R be defined by g(x) := x + 2x? sin(1/x) for x # 0 and g(0) := 0. Show that
g'(0) = 1, but in every neighborhood of O the derivative g’(x) takes on both positive and
negative values. Thus g is not monotonic in any neighborhood of 0.

Give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1) but
whose derivative is not bounded on (0, 1).

Ifh(x) :=0forx < Oandh(x) := 1forx > 0, prove there does not exist a function f : R - R
suchthat f'(x) = h(x) forallx € R. Give examples of two functions, not differing by a constant,
whose derivatives equal 4(x) for all x # 0.

Let I be an interval and let f : I — R be differentiable on 1. Show that if f’ is positive on 1,
then f is strictly increasingon /.

Let  be an interval and let f : I — R be differentiable on 7. Show that if the derivative f' is
never 0 on I, theneither f'(x) > Oforallx € I or f'(x) < Oforallx € /.



176 CHAPTER 6 DIFFERENTIATION

15. Let I be aninterval. Prove that if f is differentiable on I and if the derivative f’ is bounded on
I, then f satisfies a Lipschitz condition on /. (See Definition 5.4.4.)
16. Let f: [0, 00) — R be differentiable on (0, 00) and assume that f’'(x) — b as x — 0.
(a) Show thatfor any 2 > 0, we have lim (f(x + h) — f(x))/h =b.
(b) Show thatif f(x) — a asx — oo, then b = 0.
(¢) Show that lim ( f(x)/x) =b.

17. Let £, g be differentiable on R and suppose that f(0) = g(0) and f'(x) < g'(x) forall x > 0.
Show that f(x) < g(x) forallx > 0.

18. Let [ :=[a,b] andlet f : I — R be differentiable at ¢ € 1. Show that for every ¢ > O there
exists § > Osuch thatif 0 < x —y| <danda <x <c <y < b, then

'f(x)—f(y)__f/(c)
x—y

19. A differentiable function f : I — Ris said to be uniformly differentiable on / := [a, b] if for
every ¢ > 0 there exists § > O such that if 0 < |[x — y| < § and x, y € I, then

(X - ’
f)—f») £
x =Yy
Show that if f is uniformly differentiable on 7, then f’ is continuous on /.
20. Suppose that f : [0,2] — R is continuous on [0, 2] and differentiable on (0, 2), and that
fO)=0fH=1f2)=1
(a) Show that there exists ¢, € (0, 1) such that f'(cl) =1.

(b) Show that there exists c, € (1, 2) such that f'(c,) = 0.
(c) Show that there exists ¢ € (0, 2) such that f'(c) =1/3.

<eé.

<Eé.

Section 6.3 L’Hospital’s Rules

The Marquis Guillame Frangois L’ Hospital (1661—-1704) was the author of the first calculus
book, L’Analyse des infiniment petits, published in 1696. He studied the then new differential
calculus from Johann Bernoulli (1667-1748), first when Bernoulli visited L’Hospital’s
country estate and subsequently through a series of letters. The book was the result of
L’Hospital’s studies. The limit theorem that became known as L'Hospital’s Rule first
appeared in this book, though in fact it was discovered by Bernoulli.

The initial theorem was refined and extended, and the various results are collectively
referred to as L’Hospital’s (or L'Hopital’s) Rules. In this section we establish the most basic
of these results and indicate how others can be derived.

Indeterminate Forms

In the preceding chapters we have often been concerned with methods of evaluating limits.
It was shown in Theorem 4.2.4(b) thatif A := lim f(x) and B := }im g(x),andif B # 0,
X—cC —>C

then
i f&x) A
im=— = —,
x—c g(x) B
However, if B = 0, then no conclusion was deduced. It will be seen in Exercise 2 that if
B = 0and A # 0, then the limit is infinite (when it exists).
The case A = 0, B = 0 has not been covered previously. In this case, the limit of the
quotient f/g is said to be “indeterminate”. We will see that in this case the limit may
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not exist or may be any real value, depending on the particular functions f and g. The
symbolism 0/0 is used to refer to this situation. For example, if « is any real number, and
if we define f(x) := ax and g(x) := x, then

tim 2% im @ = lima — .
x—0 g(x) x>0 X x->0

Thus the indeterminate form 0/0 canlead to any real number « as a limit.

Other indeterminate forms are represented by the symbols co/o0, 0 - 0o, 00, 1%, oo
and oo — oo. These notations correspond to the indicated limiting behavior and juxtaposi-
tion of the functions f and g. Our attention will be focused on the indeterminate forms 0/0
and 00/00. The other indeterminate cases are usually reduced to the form 0/0 or co/o0 by
taking logarithms, exponentials, or algebraic manipulations.

0

)

A Preliminary Result

To show that the use of differentiation in this context is a natural and not surprising
development, we first establish an elementary result that is based simply on the definition
of the derivative.

6.3.1 Theorem Let f and g be defined on [a, b], let f(a) = g(a) =0, and let g(x) # 0
fora < x < b. If f and g are differentiable at a and if g'(a) # 0, then the limit of f/g at
a exists and is equal to f'(a)/ g’ (a). Thus-

. fx) _ fla)

m —

li = —F7.
xsat g(x) gla)

Proof. Since f(a) = g(a) =0, we can write the quotient f(x)/g(x) fora <x < b as
follows:
fx)— f(a)
f) _fO-f@__ x-a
g) g —g@  s&x)—gl)’

x—a
Applying Theorem 4.2.4(b), we obtain
lim L&) —f@
: f(x) __ x—at X —a _ fl(a)
XE‘EL g(x) - gx)—gl@ — g'a)’ QED.

lim
x—a+ X —a

Warning Thehypothesis that f(a) = g(a) = Oisessential here. Forexample, if f(x) :=
x + 17 and g(x) :=2x + 3 for x € R, then

17

lim fx _ U

FO 1
x—=0 g(x) T3

g0) "2
The preceding result enables us to deal with limits such as

,  while

x24x  2:041 1
lim — = = —.
x>0 sin2x 2cos0 2
To handle limits where f and g are not differentiable at the point a, we need a more general
version of the Mean Value Theorem due to Cauchy.
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6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on [a, b] and differen-
tiable on (a, b), and assume that g'(x) # O for all x in (a, b). Then there exists c in (a, b)
such that

f®) = f@ _ f©)

gb)—ga) g©°

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which
Rolle’s Theorem will apply. First we note that since g'(x) # 0 forall x in (a, b), it follows
from Rolle’s Theorem that g(a) # g(b). For x in [a, b], we now define

Fb) = f(a)

h(x) := ————(g(x) — (@) — (f(x) — f(a)).

s —s@ & )= )
Then k4 is continuous on [a, b], differentiable on (a, b), and h(a) = h(b) = 0. Therefore,
it follows from Rolle’s Theorem 6.2.3 that there exists a point ¢ in (a, b) such that

f®) = fla) g
0="h(c) = —Fr—= - f(©).
©= o —s@*®
Since g'(c) # 0, we obtain the desired result by dividing by g’(c). QED.

Remarks The preceding theorem has a geometric interpretation that is similar to that of
the Mean Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve
in the plane by means of the parametwic equations x = f(¢), y = g(¢) where a <t < b.
Then the conclusion of the theorem is that there exists a point ( f(c), g(c)) on the curve for
some c in (a, b) such that the slope g'(c)/f’(c) of the line tangent to the curve at that point
is equal to the slope of the line segment joining the endpoints of the curve.

Note that if g(x) = x, then the Cauchy Mean Value Theorem reduces to the Mean
Value Theorem 6.2.4.

L’Hospital’s Rule, I

We will now establish the first of L’Hospital’s Rules. For convenience, we will consider
right-hand limits at a point a; left-hand limits, and two-sided limits are treated in exactly the
same way. In fact, the theorem even allows the possibility that a = —oo. The reader should
observe thdt, in contrast with Theorem 6.3.1, the following result does not assume the
differentiability of the functions at the point a. The result asserts that the limiting behavior
of f(x)/g(x) as x — a+ is the same as the limiting behavior of f'(x)/g'(x) as x — a+,
including the case where this limit is infinite. An important hypothesis here is that both f
and g approach 0 as x — a+.

6.3.3 L’Hospital’s Rule,I Let—oo <a < b < oo andlet f, g be differentiable on (a, b)
such that g'(x) # 0 forall x € (a, b). Suppose that

W Jim 76 =0= lip oo
@ If lim 2% = L e R, then lim 1% =
x—a+ g( ) x—a+ g(x)
f'(x) fx)
(b) If 1 —(—5 =L € {—o00, 00}, thenxl_l)rzl+ ) L
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Proof. If a <a < B < b, then Rolle’s Theorem implies that g(8) # g(a). Further, by
the Cauchy Mean Value Theorem 6.3.2, there exists u € («, 8) such that

fB - f@ _ f'®
gB)—gl@) g
Case (a): If L € Randif e > 0 is given, there exists ¢ € (a, b) such that

(€))

L—5<f,(u)<L+s for u € (a,c),
g )
whence it follows from (2) that
3) L—E<M<L+E for a<a<pB<ec.
g(B) — ga)
If we take the limit in (3) as ¢ — a+, we have
L—e§&5L+e for B € (a,cl.
g(B)

Since ¢ > 0 is arbitrary, the assertion follows.
Case (b): If L = +oco andif M > 0is given, there exists ¢ € (a, b) such that

!
& > for u € (a,c),
g W
whence it follows from (2) that
f(B) — fla)
@) - >M for a<a<pB <ec.
g(B) —ga) P
If we take the limitin (4) as @ — a+, we have
(B
—>M for € (a, c).
g(B) p
Since M > 0Ois arbitrary, the assertion follows.
If L = —o0, the argument is similar. Q.E.D.
6.3.4 Examples (a) Wehave
sinx cos x
i —— =1 —_— = 1 = U.
Am = m [1/(2&)] Jim 2V/xcosx =0

Observe that the denominator is not differentiable at x = 0 so that Theorem 6.3.1
cannot be applied. However f(x) :=sinx and g(x) := /x are differentiable on (0, co)
and both approach 0 asx — 0+. Moreover, g'(x) 7 0on (0, 00), so that 6.3.3 is applicable.

1—co i
(b) Wehave lim [—25’5] = lim ——.
x>0 X x-->0 2.x
We need to consider both left and right hand limits here. The quotient in the second
limit is again indeterminate in the form 0/0. However, the hypotheses of 6.3.3 are again

satisfied so that a second application of L’Hospital’s Rule is permissible. Hence, we obtain

1-— i 1
lim[ cosx] — im sinx _ him cosx _

x—0 xz x>0 2x x>0 2 2'
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ef—1 e

(c) Wehave lim = lin(l) —=1.
X—>

—0 X
Again, both left- and right-hand limits need to be considered. Similarly, we have

. e —1—x e -1 e 1
lim | ————— [ = lim = lim —
x

x—0 2 =0 2x =0 2 = 5
1
d) Wehave lim[ e ] —1im & 0
x=>1|lx =1 x—>1 1
L’Hospital’s Rule, I1

This Rule is very similar to the first one, except that it treats the case where the denominator
becomes infinite as x — a+-. Again we will consider only right-hand limits, but it is possible
thata = —oo. Left-hand limits and two-sided limits are handled similarly.

6.3.5 L’'Hospital’s Rule, I Let —0o <a < b < oo and let f, g be differentiable on
(a, b) such that g (x) # O for all x € (a, b). Suppose that

(5) xl_i’r‘;l+ g(x) = to0.

(@ If Em+ g% =L € R, then lim+ i:g)) =1L.

® I lim 29 1 ¢ {—o0, 00}, then Tim 10 =L,
x—a+ g'(x x—a+ g(x)

Proof. We will suppose that (5) holds with limit co.

As before, we have g(8) # g(a) fora, B € (a, b), @ < B. Further, equation (2) in the
proof of 6.3.3 holds for some u € («, B).

Case (a): If L €e Rwith L > 0 and € > 0 is given, there is ¢ € (a, b) such that (3) in
the proof of 6.3.3 holds whena < a < B8 < c. Since g(x) — oo, we may also assume that
g(c) > 0. Taking B = c in (3), we have

f©) = fla)
glc) — gla)

Since g(c)/g(a) —> 0 as @ — a+, we may assume that 0 < g(c)/g(a) < 1 for all « €
(a, c), whence it follows that

©6) L—-¢< <L+e¢ for « € (aq,c).

w»:l—&>0 for « € (a,c).
gla) g(a)
If we multiply (6) by (g(@) — g(c))/g(a) > 0, we have
g(C)> fl@)  flo) ( g(C))
7 L—g)1- - L A
@ (t=e) ( c@) <t z@ TN T

Now, since g(c)/g(e) — Oand f(c)/g(e) - Oasa — a+,thenforanyd with0 < 6 < 1
thereexistsd € (a, c) suchthat0 < g(c)/g(@) < dand|f(c)|/g(a) < éforalla € (a, d),
whence (7) gives

®) (L—e)(l—S)—8<&<(L+e)+8.
g(@)
If we take § := min{1, ¢, ¢/(|L| + 1)}, itis an exercise to show that
L—2¢< & <L +2e.

g(a)
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Since ¢ > 0 is arbitrary, this yields the assertion. The cases L = 0 and L < 0 are handled
similarly.

Case (b): If L = +00,letM > 1begivenandc € (a, b) besuchthat f'(u)/g' (u) > M
for all u € (a, ¢). Then it follows as before that

FB) - f(@)
EA A V1
2(B) —g@)

Since g(x) »> oo as x — a+, we may suppose that ¢ also satisfies g(c) > O, that
|£(c)l/g(e) < 1, and that 0 < g(c)/g(e) < 3 for all @ € (a,c). If we take B =c in

(9) and multiply by 1 — g(c)/g(a) > 3, we get

M,>M(1_&)>;M
g(a) gla)

)

for a<a<B=<c

2 9
so that

fla) 1 f(©)
PACY NN Y TR add
g@) 2 * g(@)

Since M > 1 is arbitrary, it follows that lim+ f(a)/g(a) = oc.
a—a

>iM-1) for ae(ac0).

If L = —o0, the argument is similar. QE.D.

1
6.3.6 Examples (a) We consider lim E.

x—00 X
Here f(x) :=Inx and g(x) := x on the interval (0, 00). If we apply the left-hand
1 1
version of 6.3.5, we obtain lim nx = lim ﬁ =0.
X—>00 X x—=o00 1

(b) We consider lim e *x2.
X—>00

Here we take f(x) := x? and g(x) := e* on R. We obtain

2
.X . 2x .2
lim — = lim — = lim — =0.
X—00 € X—=00 € xX—00 @
Insinx

(¢) We consider lim
x—>0+ Inx

Here we take f(x) := Insinx and g(x) = Inx on (0, ). If we apply 6.3.5, we obtain

Insinx i cosx/sinx

ad ]-[cosx].

im = lim = lim [ -
x>0+ Inx x—0+ l/x x>0+ LSInXx
Since lim [x/sinx] = 1and lim cosx = 1, we conclude that the limit under considera-
x>0+ x>0

tion equals 1. a

Other Indeterminate Forms

Indeterminate forms such as 00 — 00, 0 - 00, 1%°, 0°, 00® can be reduced to the previously
considered cases by algebraic manipulations and the use of the logarithmic and exponential
functions. Instead of formulating these variations as theorems, we illustrate the pertinent
techniques by means of examples.

6.3.7 Examples (a) Let [ := (0, 7 /2) and consider
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which has the indeterminate form oo — oo. We have

. 1 1 . sinx —x . cosx — 1
llm _—— - hm _— = 11m _——
x sinx x—0+ xsinx x—0+ sin x + X COS X

. —sinx 0
lim ———————— =-=0.
x—>0+ 2COSX — x sinx 2

(b) Let! := (0, o0) and consider 1ir(r)1+x In x, which has the indeterminate form 0 - (—00).
x—>
We have

lim xInx = lim Inx = lim 5 = lim (—x) = 0.
x—0+ x50+ 1/x x>0+ —1/x x—>0+

(¢) LetI := (0, 00) and consider 1iI(I)l+ x*, which has the indeterminate form 0°.
X—>

We recall from calculus (see also Section 8.3) that x* = ¢*!**, It follows from part (b)
and the continuity of the function y — e” aty = O that lim x* =¢® =1.

x—>0+
(d) Let! := (1, 0o) and consider lim (1 + 1/x)*, which has the indeterminate form 1%°.
X—=>00
We note that
(10) (1 4 l/x)x — exln(1+l/x).
Moreover, we have
In(1+1
lim xIn(l +1/x) = lim 21/
xX—>00 x—00 1/x
PN C I V7 T G 0 3
_x—>oo -—x_2 _x—>oo 1+ l/x

Since y +> e’ is continuous at y = 1, we infer that lim (1 4+ 1/x)* =e.
X—>00

(e) Let] := (0, 00) and consider li%1+(l + 1/x)*, which has the indeterminate form oo,
x>

In view of formula (10), we consider

. . In(1+1/x) . 1
= =1 =
xl—l>I(I)l+x In(l+1/%) xl—l>r(l)l+ 1/x x—l>r(l)1+ 1+ 1/x 0
Therefore we have 1ir51+(1 +1/x)* = =1. a
X—

Exercises for Section 6.3

1. Suppose that f and g are continuous on [a, b], differentiable on (a, b), that ¢ € [a, b] and that
g(x) #O0forx € [a,b],x #c. Let A = J}imcf and B := lim g. If B = 0, and if lim f(x)/g(x)
- X—=C X—C
exists in R, show that we must have A = 0. [Hint: f(x) = {f(x)/g(x)}g(x).]
2. In addition to the suppositions of the preceding exercise, let g(x) > 0 for x € [a, b], x # c.
If A > 0and B = 0, prove that we must have lim f(x)/g(x) = oo. If A < 0and B = 0, prove
X—=C

that we must have lim f(x)/g(x) = —oo.
X—=C

3. Let f(x):= x2 sin(1/x) for 0 < x <1 and f(0) := 0, and let g(x) := x2 for x € [0, 1]. Then
both f and g are differentiable on [0, 1] and g(x) > O for x # 0. Show that lin}) f(x)=0=
x>

]in}) g(x) and that lin})f(x)/g(x) does not exist.
x— X
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4. Let f(x) := x* for x rational, let f(x) := 0 for x irrational, and let g(x) :=sinx forx € R.
Use Theorem 6.3.1 to show that lin}] f(x)/g(x) = 0. Explain why Theorem 6.3.3 cannot be

used.

5. Let f(x) := x*sin(1/x) for x # 0, let £(0) := 0, and let g(x) := sinx for x € R. Show that
lin(l) f(x)/g(x) = 0but that lirr%] f'(x)/g (x) does not exist.
x—> x—>

6. Evaluate the following limits, where the domain of the quotient is as indicated.
In(x + 1) tan x

(@ lim ———— (0,7/2), () lim — (0,7/2),
x>0+  sinx x>0+ X
Incos x .t -
© lim 0, 7/2), @ lim =227 % (0, 7/2).
x>0+ X S x—=>04 X
7. Evaluate the following limits:
@ lim 2 o) () lim ©, 1)
- ’ B 1 ) )
x>0 x>0 x(]nx)2
3
© lim x*lnx (0, 00), @ lim = (0, o0).
x-->0+ x--»00 €
8. Evaluate the following limits:
@ i Inx 0, 00) ® i Inx 0
a) lim 72 (0, 00), x..‘?&f (0, 00),
I
(© limxlnsinx (0, 7), @ lim 2% (0, 00)
x--0 00 X1
9. Evaluate the following limits:
(a) lir(r]1+x2x (0, 00), (b) lirrg)(1-+-3//\f)Jt (0, 00),
1 1
(¢) lim A +3/x)" (0, 0), (d) lim (— - ) (0, 0).
x->00 x>0+ \ X  Arctanx
10. Evaluate the following limits:
(@ lim x'* (0, 00), (b) lim (sinx)* (0, 7),
X->00 x>0+
©) 1ir(r)1+x5i” (0, 00), (d) 1in/12 (secx —tanx) (0, /2).

11. Let f be differentiable on (0, 00) and suppose that lim (f(x) + f’(x)) = L. Show that
lim f(x) =L and ]il’{.lo f'(x) =0. [Hint: f(x) =e"f(x)/e*.]

X-->00

ta
12. Try to use L’Hospital’s Rule to find the limit of _s;r;_x as x — (w/2)—. Then evaluate directly
X
by changing to sines and cosines.

Section 6.4 Taylor’s Theorem

A very useful technique in the analysis of real functions is the approximation of functions
by polynomials. In this section we will prove a fundamental theorem in this area which
goes back to Brook Taylor (1685-1731), although the remainder term was not provided
until much later by Joseph-Louis Lagrange (1736—1813). Taylor’s Theorem is a powerful
tesult that has many applications. We will illustrate the versatility of Taylor’s Theorem by
briefly discussing some of its applications to numerical estimation, inequalities, extreme
values of a function, and convex functions.

Taylor’s Theorem can be regarded as an extension of the Mean Value Theorem to
“higher order” derivatives. Whereas the Mean Value Theorem relates the values of a
function and its first derivative, Taylor’s Theorem provides a relation between the values
of a function and its higher order derivatives.
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Derivatives of order greater than one are obtained by a natural extension of the dif-
ferentiation process. If the derivative f’(x) of a function f exists at every point x in an
interval / containing a point c, then we can consider the existence of the derivative of the
function £’ at the point c. In case f’ has a derivative at the point c, we refer to the resulting
number as the second derivative of f at ¢, and we denote this number by f”(c) or by
£@(c). In similar fashion we define the third derivative f”(c) = f®(c), - - -, and the nth
derivative f m (c), whenever these derivatives exist. It is noted that the existence of the nth
derivative at ¢ presumes the existence of the (n — 1)st derivative in an interval containing c,
but we do allow the possibility that ¢ might be an endpoint of such an interval.

If a function f has an nth derivative at a point x, it is not difficult to construct
an nth degree polynomial P, such that P, (x,) = f(x) and P(")(xo) =f (k)(xo) for k =
1,2, -, n. In fact, the polynom1a1

f " (x)
2!

(1) P (x) 1= f(x) + f'(x)(x — x¢) +
f(n)( 0)

(X - xo)z

+- (x —xp)"

has the property that it and its derivatives up to order n agree with the function f and its
derivatives up to order n, at the specified point x,. This polynomial P, is called the nth
Taylor polynomial for f at x,. Itis natural to expect this polynomial to provide areasonable
approximation to f for points near x,, but to gauge the quality of the approximation, it
is necessary to have information concerning the remainder R, := f — P,. The following
fundamental result provides such information.

6.4.1 Taylor’s Theorem Letn € N, let I := [a, b], and let f : I — R be such that f
and its derivatives f', f”,---, f® are continuous on I and that f®*V exists on (a, b). If
X, € I, then for any x in I there exists a point c between x and x, such that

[ (x)
2'o( x = x,)?

n f(n+l)(c)
(x —xp)" + T D

Proof. Let x, and x be given and let J denote the closed interval with endpoints x, and x.
We define the function F on J by

(2 fx) = fxp) + f'(x)(x — xp) +

f‘"’( FAKED)

A 4 (x _ xo)n+1'

(x

F(t) = f(x)— f(@) — (x —‘t‘)f’(t) —_— = ;'t)f(n)(t)

fort € J. Then an easy calculation shows that we have

Fuy=-S20 -.t) AR
n:

If we define G on J by

n+1
—t
G(r) == F(t) - ( a ) F(x,)

- x,
fort € J, then G(x;) = G(x) = 0. An application of Rolle’s Theorem 6.2.3 yields a point
c between x and x,, such that

0=G'©) = F©)+ i+ D=0 Fxy.
(x xo)n
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Hence, we obtain

1 (x _xo)n+1 ,

F =— F
(xo) n+l (x—o) ©
_ 1 x—x)" x—0) £ gy = FO+D () (= x !
n+l (x—o"  nl (n+1)! o
which implies the stated result. QED.

We shall use the notation P, for the nth Taylor polynomial (1) of f, and R, for the
remainder. Thus we may write the conclusion of Taylor’s Theorem as f(x) = P,(x) +
R, (x) where R, is given by

f(n+1)(c)
Tt !
for some point ¢ between x and x,. This formula for R, is referred to as the Lagrange
form (or the derivative form) of the remainder. Many other expressions for R, are known;
one is in terms of integration and will be given later. (See Theorem 7.3.18.)

A R, (x)

+1
(x —xp)"

Applications of Taylor’s Theorem

The remainder term R, in Taylor’s Theorem can be used to estimate the error in approx-
imating a function by its Taylor polynomial P,. If the number n is prescribed, then the
question of the accuracy of the approximation arises. On the other hand, if a certain accuracy
is specified, then the question of finding a suitable value of n is germane. The following
examples illustrate how one responds to these questions.

6.4.2 Examples (a) Use Taylor’s Theorem with n =2 to approximate 3/1+ x,
x> -1

We take the function f(x) := (1 + x)'/3, the point x, =0, and n = 2. Since fl(x) =
1A +x)7 and f"(x) = 3 (-2) A+ x)7?, we have f'(0) = § and f"(0) = —2/9.
Thus we obtain

@) = Py(x) + Ry(x) = 1+ 3x — §x? + R,(x),

where R, (x) = % F")x = % (1 4 ¢)7%3 x> for some point ¢ between 0 and x.
For example, if we let x = 0.3, we get the approximation P,(0.3) = 1.09 for V13,
Moreover, since ¢ > 0 in this case, then (1 + ¢) —8/3 < 1 and so the error is at most

5 /(3
R,(03) < — | =—
,(0.3) (10

3
1
= — -2
=31 ) 600 < 0.17 x 10™=.

Hence, wehave |3/1.3 — 1.09| < 0.5 x 1072, so that two decimal place accuracy is assured.

(b) Approximate the number e with error less than 10>,

We shall consider the function g(x) := e* and take x, =0 and x =1 in Taylor’s
Theorem. We need to determine » so that |Rn(1)| < 1073, To do so, we shall use the fact
that g'(x) = e* and the initial bound of ¢ < 3 for0 <x < 1.

Since g'(x) = e, it follows that g® (x) = ¢* for all k € N, and therefore g® (0) = 1
for all k € N. Consequently the nth Taylor polynomial is given by

2 n

x x
___|_.+._.
n!

P(x)=14+x+ T
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and the remainder for x =1 is given by R, (1) =e“/(n+ 1)! for some c satisfying
0 < ¢ < 1. Since e° < 3, we seek a value of n such that 3/(n +1)! < 1073, A calcu-
lation reveals that 9! = 362, 880 > 3 x 10° so that the value n = 8 will provide the desired
accuracy; moreover, since 8! = 40, 320, no smaller value of n will be certain to suffice.
Thus, we obtain

1 1
e~P8(l)=l+l+2—!+---+§=2.71828

with error less than 1073 O

Taylor’s Theorem can also be used to derive inequalities.

2

6.4.3 Examples (a) 1-— %x < cosx forallx € R.

Use f(x) := cosx and x, = 0 in Taylor’s Theorem, to obtain

1
cosx =1— Exz + R, (x),

where for some ¢ between 0 and x we have
f”’(c)x3 _ sincx3
3! 6 )
If0<x <m,then0 < ¢ < 7; since ¢ and x> are both positive, we have R, (x) > 0. Also,
if —m < x <0, then —7 < ¢ < 0; since sinc and x> are both negative, we again have
R,(x) = 0. Therefore, we see that 1 — %x2 <cosx for |x| < . If |x| > m, then we have
- %xz < —3 < cosx and the inequality is trivially valid. Hence, the inequality holds for
allx e R.

(b) Forany k € N, and for all x > 0, we have

Rz x) =

1 1 1
x—5x +---—2—kx2"<1n(l+x)<x—§x2+---+2k—+lx2"+l.

Using the fact that the derivative of In(1 4 x) is 1/(1 + x) for x > 0, we see that the
nth Taylor polynomial for In(1 + x) with x, = O is

1 1
Pn(JC) =Xx — _x2 44 (_l)n—l_xn
2 n

and the remainder is given by

_ (_l)ncn+1 xn+1

n+1
for some c satisfying 0 < ¢ < x. Thus for any x > 0, if n = 2k is even, then we have
R, (x) > 0; and if n = 2k + 1 is odd, then we have R,,  , (x) < 0. The stated inequality
then follows immediately. |

R, (x)

Relative Extrema

It was established in Theorem 6.2.1 that if a function f : I — R is differentiable at a point
c interior to the interval I, then a necessary condition for f to have arelative extremum at
c is that f'(c) = 0. One way to determine whether f has a relative maximum or relative
minimum [or neither] at c, is to use the First Derivative Test 6.2.8. Higher order derivatives,
if they exist, can also be used in this determination, as we now show.
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6.4.4 Theorem Let I beaninterval, let x, be an interior point of I, and letn > 2. Suppose
that the derivatives f', f”,---, f™ exist and are continuous in a neighborhood of x, and
that f'(x)) = --- = f" D(xp) = 0, but ™ (x;) #O0.

(i) Ifnisevenand f ) (x) > O, then f has a relative minimum at x,.

(i) Ifnisevenand f™ (xy) <O, then f has a relative maximum at x,.
(iii) Ifn isodd, then f has neither a relative minimum nor relative maximum at x,,.

Proof. Applying Taylor’s Theorem at x, we find thatfor x € I we have

i ()
F0) = By + Ry 00 = Fx + L

where c is some point between x, and x. Since f ™ s continuous, if f (")(xo) # 0, then
there exists an interval U containing x, such that f ™ (x) will have the same sign as f ™ (xo)
for x € U. If x € U, then the point ¢ also belongs to U and consequently f®™(c) and
f® (x,) will have the same sign.

(i) Ifnisevenand f(")(xo) > 0, then forx € U we have f™(c) > Oand (x — xy)" >
0 so that R,_,(x) > 0. Hence, f(x) > f(x,) for x € U, and therefore f has a relative
minimum at x,,.

(ii)) Ifnisevenand f (")(xo) < 0, then it follows that R, ,(x) < 0 forx € U, so that
f(x) < f(xy forx € U. Therefore, f has a relative maximum at x,.

(iii) If n is odd, then (x — x,)" is positive if x > x and negative if x < x,. Conse-
quently, if x € U, then R, _, (x) will have opposite signs to the left and to the right of x,,.
Therefore, f has neither a relative minimum nor a relative maximum at X QE.D.

Convex Functions

The notion of convexity plays an important role in a number of areas, particularly in the
modern theory of optimization. We shall briefly look atconvex functions of one real variable
and their relation to differentiation. The basic results, when appropriately modified, can be
extended to higher dimensional spaces.

6.4.5 Definition Let / C R be an interval. A function f : I — R is said to be convex
on / if for any # satisfying 0 < ¢ < 1 and any points x,, x, in I, we have

FA=0x, +1x,) <A =0Df(x) +1f(xy).

Note that if x; < x,, then as ¢ ranges from O to 1, the point (1 — #)x, + tx, traverses
the interval from x, to x,. Thus if f isconvexon I andif x|, x, € I, then the chord joining
any two points (x,, f(x,)) and (x,, f(x,)) on the graph of f lies above the graph of f.
(See Figure 6.4.1.)

A convex function need not be differentiable at every point, as the example f(x) := |x|,
X € R, reveals. However, it can be shown that if I is an open interval and if f: I —
R is convex on I, then the left and right derivatives of f exist at every point of I.
As a consequence, it follows that a convex function on an open interval is necessarily
continuous. We will not verify the preceding assertions, nor will we develop many other
interesting properties of convex functions. Rather, we will restrict ourselves to establishing
the connection between a convex function f and its second derivative f”, assuming that
£ exists.
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y=(1-0flx) + tf (xp)

y=f{1-1) x; + 1xp)

| | ]
X1 (1-0x +1x x2

Figure 6.4.1 A convex function.

6.4.6 Theorem Let I be an open interval and let f : I — R have a second derivative
on . Then f is a convex function on [ if and only if f'(x)>0forallx e I.

Proof. (=) We will make use of the factthat the second derivative is given by the limit
f@a+h —2f@)+ fa—h)

h2
for each a € I. (See Exercise 16.) Givena € I, let h be such thata + h and a — h belong
tol. Thena = %((a +h) + (a—- h)), and since f is convex on I, we have

@ f"(a) = lim

f@=f@Ea@+n+ia@-mn)<if@+mn+if@-n.

Therefore,wehave f(a + h) —2f(a) + f(a — h) > 0. Since h? > Oforall h #0,wesee
that the limit in (4) must be nonnegative. Hence, we obtain f”(a) > Oforanya € I.

(<) We will use Taylor’s Theorem. Let x,, x, be any two pointsof /,let0 < ¢t < 1,
and let x, := (1 — t)x, + tx,. Applying Taylor’s Theorem to f at x, we obtain a point c,
between x, and x; such that

fx) = Flxg) + ) (x, — x0) + 3 f"(c)(x; — x,)?,
and a point ¢, between x and x, such that
f(xz) = f(xo) + fl(x())(xz - xo) + %f” (02)(x2 - xo)z-
If f" is nonnegative on I, then the term
R =11 =D f"c)x, —x) + Lt () (x, — xp)?
is also nonnegative. Thus we obtain
(1 =D F () +1£(x;) = Fxg) + F'(xg) (1 = Dx; + 13, ~ %)
+3(1 =) () = x0) + 31f"(c)) (o, — xp)?
= f(xy) + R
> fxg) = f((1=1x, +1x,).

Hence, f is a convex functionon /. Q.ED.
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Newton’s Method

Itis often desirable to estimate a solution of an equation with a high degree of accuracy. The
Bisection Method, used in the proof of the Location of Roots Theorem 5.3.5, provides one
estimation procedure, but it has the disadvantage of converging to a solution rather slowly.
A method that often results in much more rapid convergence is based on the geometric
idea of successively approximating a curve by tangent lines. The method is named after its
discoverer, Isaac Newton.
Let f be adifferentiable functionthathas a zero at r and let x, be aninitialestimate of r.

The line tangent to the graph at (x,,f(x,)) has the equatlon y=f&)+ f (x))(x — xy),
and crosses the x-axis at the point

X, =X, — )
2" 1 f/ ( xl ) .
(See Figure 6.4.2.) If we replace x, by the second estimate x,, then we obtain a point x;,
and so on. At the nth iteration we get the point x,  , from the point x,, by the formula

I G
n+l ° n f/ ( xn) :
Under suitable hypotheses, the sequence (x,,) will converge rapidly to a root of the equation

f(x) =0, as we now show. The key tool in establishing the rapid rate of convergence is
Taylor’s Theorem.

Figure 6.4.2 Newton’s Method

6.4.7 Newton’s Method Let! :=[a, b] and let f: I — R be twice differentiable on I.
Suppose that f(a) f(b) < 0 and that there are constants m, M such that | f'(x)| > m > 0
and |f"(x)| < M forall x € I and let K := M /2m. Then there exists a subinterval I*
containing a zero r of f such that for any x, € I* the sequence (x,) defined by

f(x,)
5 =x — L forall N,
(5) X4 =X, e orall ne

belongs to I* and (xn) converges to r. Moreover

(6) Xy — 7| < K |x, — rl? forall neN.
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Proof. Since f(a)f(b) < 0, the numbers f(a) and f(b) have opposite signs; hence by
Theorem 5.3.5 there exists » € I such that f (r) = 0. Since f’ is never zero on I, it follows
from Rolle’s Theorem 6.2.3 that f does not vanish at any other point of /.

We now let x’ € I be arbitrary; by Taylor’s Theorem there exists a point ¢’ between x’
and r such that

0=f(r)=f&)+ f/&)r—x)+ 3£ )r—x),
from which it follows that
_f(xl) — f'(x')(r _x/) + %f”(c')(r _x/)2‘

If x” is the number defined from x’ by “the Newton procedure”:

&)
then an elementary calculation shows that
N 11 '
=t =2 g =2

whence it follows that

x// —r = l‘f”(cl)‘ ( ’ )2
2f/(xl ‘

Since ¢’ € I, the assumed bounds on f' and f” hold and, setting K := M/2m, we obtain
the inequality

~—

@) |x"—r|§K|x'—r|2.

We now choose § > 0 sosmallthatd < 1/K and that the interval I* := [r — §, r + 6]
is contained in 1. If x, € I'*, then |x, —r| < § and it follows from (7) that X, — 7l <
K|x, — ri? < K8% < & hence x, € I" implies that X1 € I*. Therefore if x, € I'*, we
infer that x, € I"* for all n € N. Also if x; € I'*, then an elementary induction argument
using (7) shows that |x, | —r| < (K8)"|x, —r| forn € N. But since K& < 1 this proves
that lim(x,) =r. QED.

6.4.8 Example We willillustrate Newton’s Method by using it to approximate V2.
If we let f(x) := x* —2 for x € R, then we seek the positive root of the equation
f(x) = 0. Since f'(x) = 2x, the iteration formula is

R AC)
T ()
x5 -2 1

+ 2
—x — ).
n 2x, 2\ x,

If we take x, = lasour initial estimate, we obtain the successive values x, = 3/2 = 1.5,
xy=17/12=1.416666 - -, x, = 577/408 = 1.414215-- -, and x5 = 665 857/470 832
= 1.414213562374 - - -, which is correct to eleven places. O

=x

Remarks (a) If we let e, .= x, —r be the error in approximating r, then inequality
(6) can be written in the form |Ke, | < |K enlz. Consequently, if |Ke,| < 10™ then
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Ke, | < 1072 50 that the number of significant digits in K e, has been doubled. Be-
cause of this doubling, the sequence generated by Newton’s Method is said to converge
“quadratically”.

(b) Inpractice, when Newton’s Method is programmed for a computer, one often makes an
initial guess x, and lets the computer run. If x, is poorly chosen, or if the root is too near the
endpoint of , the procedure may not converge to a zero of f. Two possible difficulties are
illustrated in Figures 6.4.3 and 6.4.4. One familiar strategy is to use the Bisection Method
to arrive at a fairly close estimate of the root and then to switch to Newton’s Method for
the coup de grace.

SR
N

/ r X, Xp X3 x

Figure 643 x — oo. Figure 6.4.4 x oscillates
between x, and x,.

Exercises for Section 6.4

10.

Let f(x) := cosax for x € R where a # 0.Find f® (x) forn € N, x € R.

Let g(x) := |x*| for x € R. Find g'(x) and g”(x) for x € R, and g"’(x) for x # 0. Show that
£"(0) does not exist.

Use Induction to prove Leibniz’s rule for the nth derivative of a product:

n

foPm =y (Z)f‘"'“(x)g"‘)(x).

k=0
Show thatif x > 0,then 1+ 3x — §x* < VT+x <1+ 3x.

Use the preceding exercise to approximate +/1.2 and /2. What is the best accuracy you can be
sure of, using this inequality?
Use Taylor’s Theorem with n = 2 to obtain more accurate approximations for /1.2 and v/2.

If x > 0 showthat |(1 + x)'* — (1 + $x — $x%)| < (5/81)x>. Use this inequality to approxi-
mate /1.2 and 3/2.

If f(x) := €*, show that the remainder term in Taylor’s Theorem converges to zero as n — 00,
for each fixed x;, and x. [Hint: See Theorem 3.2.11.]

If g (x) := sin x, showthatthe remainder termin Taylor’s Theorem converges tozeroasn — oo
for each fixed x, and x.

Leth(x) := e~'/** forx # 0and h(0) := 0. Show that A (0) = O forall n € N. Conclude that
the remainder term in Taylor’s Theorem for x, = 0 does not converge to zero as n — oo for
x # 0. [Hint: By L'Hospital’s Rule, lin(l) h(x)/x* = Ofor any k € N. Use Exercise 3 to calculate

h™ (x) for x #0.]
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11

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,
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If x € [0, 1] and n € N, show that

2 3 n n+1
x x x x
— - 4. —_nri— ’ .
In(1 + x) (x 2+3+ +(=1) n)<n+1

Use this to approximate In 1.5 with an error less than 0.01. Less than 0.001.

We wish to approximate sin by a polynomial on [—1, 1] so that the error is less than 0.00'1.
Show that we have

in x x—£+x—5 < 1 for x|l <1
sx = 6 ' 120/)| = 5040 =5

Calculate e correct to 7 decimal places.

Determine whether or not x = 0 is a point of relative extremum of the following functions:

@ fx):= 242 (b) g(x):=sinx —x,

() h(x):=sinx + éx3, (d) k(x):=cosx—1+ %xz.

Let f be continuous on [a, b] and assume the second derivative f” exists on (a, b). Suppose
that the graph of f and the line segment joining the points (a, f(a)) and (b, f(b)) intersect
at a point (x,, f(x,)) where a < x; < b. Show that there exists a point ¢ € (a, b) such that
f'© =0

Let I C R be an open interval, let f : I — R be differentiable on 1, and suppose f”(a) exists
ata € I. Show that

h)—2 —h
f//(a)=£i—£r(l)f(a+ ) f};(za)-"-f(a )‘

Give an example where this limit exists, but the function doesnot have a second derivative at a.

Suppose that / C R is an open interval and that f”(x) > Oforall x € 1.1fc € I, show that the
part of the graph of f on 7 is never below the tangent line to the graph at (c, f(c)).

Let 7 C R be an interval and let ¢ € /. Suppose that f and g are defined on / and that
the derivatives f®, g™ exist and are continuous on I. If f®(c) =0 and g®(c) =0 for
k=0,1,---,n—1, but g™ (c) # 0, show that

. fx) ")
e 0

Show that the function f(x) := x3 = 2x — 5 has a zero r in the interval I := [2, 2.2]. Ifx,
2 and if we define the sequence (x,) using the Newton procedure, show that |x,_ , —7|
0.Nx, - r|?. Show that x, is accurate to within six decimal places.

)

Approximate the real zeros of g(x) := x* — x — 3.

Approximate the real zeros of h(x) := x> — x — 1. Apply Newton’s Method starting with the
initial choices (@) x, := 2, () x, := 0, (¢) x, := —2. Explain what happens.

The equation In x = x — 2 has two solutions. Approximate them using Newton’s Method. What
happens if x, := 1 is the initial point?

The function f(x) = 8x> — 8x% + 1 has two zeros in [0, 1]. Approximate them, using Newton’s
Method, with the starting points (a) x, := 3, (b)x, := ;. Explain what happens.

Approximate the solution of the equation x = cos x, accurate to within six decimals.



CHAPTER 7

THE RIEMANN INTEGRAL

ea——

We have already mentioned the developments, during the 1630s, by Fermat and Descartes
leading to analytic geometry and the theory of the derivative. However, the subject we
know as calculus did not begin to take shape until the late 1660s when Isaac Newton
created his theory of “fluxions” and invented the method of “inverse tangents” to find areas
under curves. The reversal of the process for finding tangent lines to find areas was also
discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton’s unpublished
work and who arrived at the discovery by a very different route. Leibniz insroduced the
terminology “calculus differentialis” and ‘“‘calculus integralis”, since finding tangent lines
involved differences and finding areas involved summations. Thus, they had discovered that
integration, being a process of summation, was inverse to the operation of differentiation.
During a century and a half of development and refinement of techniques, calculus
consisted of these paired operations and their applications, primarily to physical problems.
In the 1850s, Bemhard Riemann adopted a new and different viewpoint. He separated the
concept of integration from its companion, differentiation, and examined the motivating
summation and limit process of finding areas by itself. He broadened the scope by consid-
ering all functions on an interval for which this process of “integration” could be defined:
the class of “integrable” functions. The Fundamental Theorem of Calculus became a result
that held only for a restricted set of integrable functions. The viewpoint of Riemann led
others to invent other integration theories, the most significant being Lebesgue’s theory of
integration. But there have been some advances made in more recent times that extend even

Bernard Riemann
(Georg Friedrich) Bernard Riemann (1826—1866), the son of a poor Lutheran
minister, was born near Hanover, Germany. To please his father, he enrolled °
(1846) atthe University of Gottingen as a student of theology and philosophy,
but soon switched to mathemtics. He interrupted his studies at Gottingen to
study at Berlin under C. G. J. Jacobi, P. G. J. Dirichlet, and F. G. Eisenstein,
but returned to Goéttingen in 1849 to complete his thesis under Gauss. His
thesis dealt with what are now called “Riemann surfaces”. Gauss was so
enthusiastic about Riemann’s work that he arranged for him to become a
privatdozent at Gottingen in 1854. On admission as a privatdozent, Riemann was required to
prove himself by delivering a probationary lecture before the entire faculty. As tradition dictated,
_ he submitted three topics, the first two of which he was well prepared to discuss. To Riemann’s
surprise, Gauss chose that he should lecture on the third topic: “On the hypotheses that underlie
the foundations of geometry”. After its publication, this lecture had a profound effect on modern
geometry.
Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made
major contributions in many areas: the foundations of geometry, number theory, real and complex
analysis, topology, and mathematical physics.

193
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the Lebesgue theory to a considerable extent. We will give a brief introduction to these
results in Chapter 10.

We begin by defining the concept of Riemann integrability of real-valued functions
defined on a closed bounded interval of R, using the Riemann sums familiar to the reader
from calculus. This method has the advantage that it extends immediately to the case of
functions whose values are complex numbers, or vectors in the space R”. In Section 7.2,
we will establish the Riemann integrability of several important classes of functions: step
functions, continuous functions, and monotone functions. However, we will also see that
there are functions that are not Riemann integrable. The Fundamental Theorem of Calculus
is the principal result in Section 7.3. We will present it in a form that is slightly more
general than is customary and does not require the function to be a derivative at every
point of the interval. A number of important consequences of the Fundamental Theorem
are also given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion
for Riemann integrability. This famous result is usually not given in books at this level,
since its proof (given in Appendix C) is somewhat complicated. However, its statement is
well within the reach of students, who will also comprehend the power of this result. The
final section presents several methods of approximating integrals, a subject that has become
increasingly important during this era of high-speed computers. While the proof's of these
results are not particularly difficult, we defer them to Appendix D.

An interesting history of integration theory, including a chapter on the Riemann inte-
gral, is given in the book by Hawkins cited in the References.

Section 7.1 Riemann Integral

We will follow the procedure commonly used in calculus courses and define the Riemann
integral as a kind of limit of the Riemann sums as the norm of the partitions tend to 0.
Since we assume that the reader is familiar—at least informally—with the integral from a
calculus course, we will not provide a motivation of the integral, or disuss its interpretation
as the “area under the graph”, or its many applications to physics, engineering, economics,
etc. Instead, we will focus on the purely mathematical aspects of the integral.

However, we first recall some basic terms that will be frequently used.

Partitions and Tagged Partitions

If I := [a, b] is a closed bounded interval in R, then a partition of / is a finite, ordered set
P := (x4 x,,-+,x,_;,x,) of points in I such that

a=xy<x <---<x,_,<x,=b

(See Figure 7.1.1.) The points of P are used to divide I = [a, b] into non-overlapping
subintervals

Ii=1xpx ) Li=lxpxl - Loi=Ix,_ %]

1 | | t 1 1 | |
a=xg X1 X2 X3 Xy _1 X"=b

Figure 7.1.1 A partition of [a, b].
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Often we will denote the partition P by the notation P = {[x,._l, xi]}:.;l. We define the
norm (or mesh) of P to be the number

(@) 1Pl := max{x, —xq,x, — X"+, %, —X,_;}.

Thus the norm of a partition is merely the length of the largest subinterval into which the
partition divides [a, b]. Clearly, many partitions have the same norm, so the partition is not
a function of the norm.

If a point ¢, has been selected from each subinterval I; = [x,_,, x;],fori =1,2,---,n,
then the points are called tags of the subintervals I;. A set of ordered pairs

’P = {([X,-_l’ xi]’ ti)}:l=1

of subintervals and corresponding tags is called a tagged partition of /; see Figure 7.1.2.
(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags
can be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the
left endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an
endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each
tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many
ways. The norm of a tagged partition is defined as for an ordinary partition and does not
depend on the choice of tags.

Lo

tn
| ol |\‘: |
Xn_1 X,

a=xg *1 X2 X3 - n=b

Figure7.1.2 A tagged partition of [a, b]

If P is the tagged partition given above, we define the Riemann sum of a function
f : [a, b] > R corresponding to P to be the number

@ S P) =) F) —x,_y).
i=1

We will also use this notation when P denotes a subset of a partition, and not the entire
partition.

The reader will perceive that if the function f is positive on [a, b], then the Riemann
sum (2) is the sum of the areas of n rectangles whose bases are the subintervals I, =
[x;_y» x;] and whose heights are f(z,). (See Figure 7.1.3.)

3 1

Figure 7.1.3 A Riemann sum.
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Definition of the Riemann Integral

We now define the Riemann integral of a function f on an interval [a, b].

7.1.1 Definition A function f : [a, b] — R is said to be Riemann integrable on [a, b]
if there exists a number L € R such that for every ¢ > O there exists §, > 0 such that if P
is any tagged partition of [a, b] with | P|| < 3., then

IS(f;P)~L| <e.

The set of all Riemann integrable functions on [a, b] will be denoted by R[a, b].

Remark It is sometimes said that the integral L is “the limit” of the Riemann sums
S(f; P) asthenorm | P|| — 0. However, since S(f; P) is not a function of ||P||, this limit
is not of the type that we have studied before.

First we will show thatif f € R[a, b], then the number L is uniquely determined. It
will be called the Riemann integral of f over [a, b]. Instead of L, we will usually write

=/abf or fabf(x)dx.

It should be understood that any letter other than x can be used in the latter expression, so
long as it does not cause any ambiguity.

7.1.2 Theorem If f € R[a, b], then the value of the integral is uniquely determined.

Proof. Assume that L' and L” both satisfy the definition and let & > 0. Then there exists
s, ;2 > Osuchthatif P, is any tagged partion with ||P, || < 8, /2> then
IS(f; P~ L'l <¢/2.
Also there exists &, > 0 such that if ’P is any tagged partition with II’P |l < 8, then
IS(f; ’Pz) - L' <¢g/2.

Now let §, := min{§, /2> ;'/2} >0and let P be a tagged partition with ||P| < 8,. Since
both | P|| < 8 ¢2 and [P < 85/2, then

IS(fiP)—L'I<e/2  and  IS(f;P)—L"| <¢/2,
whence it follows from the Triangle Inequality that

IL' = L"| =L~ S(f; P) + S(f; P) — L]
<IL' = S(fi P +1S(f3P) - L]
<ef2+¢e/2=c¢.

Since ¢ > 0 is arbitrary, it follows that L' = L". QED.

Some Examples

If we use only the definition, in order to show that a function f is Riemann integrable
we must (i) know (or guess correctly) the value L of the integral, and (ii) construct a
8, that will suffice for an arbitrary ¢ > 0. The determination of L is sometimes done by
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calculating Riemann sums and guessing what L must be. The determination of §, is likely
to be difficult.

In actual practice, we usually show that f € R[a, b] by making use of some of the
theorems that will be given later.

7.1.3 Examples (a) Every constant function on [a, b] is in R[a, b].
Let f(x) :=k for all x € [a, b]. If P := {([x;_,, x;], t,)}i_, is any tagged partition of
[a, b], then it is clear that

S(fiP) =) k(x, —x,_y) = k(b —a).
i=1

Hence, for any ¢ > 0, we can choose 86 := 1 so that if ||7'>|| <8, then
IS(F;P) —k(b—a)| =0 < ¢.

Since ¢ > 0 is arbitrary, we conclude that f € R[a, b] and fab f =k —a).

(b) Letg:[0,3] > Rbedefinedby g(x) :=2for0 <x <1l,andg(x) :=3forl <x <
3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests that we
might expect that f03 g=28.

l 1 |
1 2

Figure7.1.4 Graphof g.

Let P be a tagged partition of [0, 3] with norm < §; we will show how to determine
8 in order to ensure that |S(g; P) — 8| < ¢. Let P, be the subset of P having its tags in
[0, 1] where g(x) = 2, and let 'P2 be the subset of P with its tags in (1, 3] where g(x) = 3.
It is obvious that we have

3) S(g; P) = S(g; P)) + S(g; P,y).

Since ||P|| < 8,ifu € [0,1 —8]and u € [x;_;, x,), thenx;, | <1—§sothatx, <x,_, +

i-1 — i

8 < 1, whence the tagt; € [0, 1]. Therefore, the interval [0, 1 — 8] is contained in the union
of all subintervals in P with tags ¢, € (0, 1]. Similarly, this union is contained in [0, 1 + &].
(Why?) Since g(t;) = 2 for these tags, we have

2(1-98) < S(g;P)) <2(1+8).

A similar argument shows that the union of all subintervals with tags ¢, € (1, 3] contains the
interval [1 + §, 3] of length 2 ~ §, and is contained in [1 — §, 3] of length 2 + §. Therefore,

3(2-8) < 5(g;Py) <3(2+9).
Adding these inequalities and using equation (3), we have
8- 58 < S(g;P) = S(g; P,) + S(g; P) <8+55,
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whence it follows that
|S(g; P) — 8 < 5.

To have this final term < &, we are led to take §, < &/5.

Making such a choice (forexample,if we take §, := ¢£/10), we canretrace the argument
and see that |S(g; P) — 8| < ¢ when ||P|| < d,. Since ¢ > 0 is arbiwary, we have proved
that g € R[0, 3] and that f03 g = 8, as predicted.

(c) Leth(x) = x forx € [0, 1]; we will show that h € R[O, 1].

We will employ a “trick” that enables us to guess the value of the integral by considering
a particular choice of the tag points. Indeed, if {/,};_, is any partition of [0, 1] and we
choose the tag of the interval /; = [x;_,, x;] to be the midpoint g, := %(x,._1 + x,), then
the contribution of this term to the Riemann sum corresponding to the tagged partition

Q:= {@ qi)}:"=1 is
h(g)(x; —x;_y) = %(xi +x_ D& —x_ ) = %(xiz —xlp).

If we add these terins and note that the sum telescopes, we obtain

n

S Q=) ja-xtp=1a2-0) =1

i=1

Now let P == {(Ii, ti)}:.;l be an arbitrary tagged partition of [0, 1] with |P|| < & so
thatx, —x,_, <dfori=1,---, n Also let Q have the same partition points, but where
we choose the tag g; to be the midpoint of the interval I;. Since both ¢, and g; belong to
this interval, we have |t; — ;| < 4. Using the Triangle Inequality, we deduce

n n
Zti(xi =X~ Z:qi(xi - xi—l)’
i=1 i—1

n n
<Dl =gl —x,_) <8) (x —x_,) = 8(x, —x) = 8.
i=1 i=1

|S(h; P) — S(h; Q)| =

Since S(h; Q) = % we infer that if P is any tagged partition with Pl < 8, then
IS(h; P) — 3| <.

Therefore we are led to take §, < ¢. If we choose §, := ¢, we can retrace the argument to

conclude that & € R[0, 1] and fol h= fol xdx = %

(d) Let F(x):=1forx =123, % and F(x) :=0 elsewhere on [0, 1]. We will show
that F € R[0, 1] and that [ F = 0.

Here there are four points where F is not 0, each of which can belong to two subin-
tervals in a given tagged partition P. Only these terms will make a nonzero contribution to
S(F; P). Therefore we choose 3, =¢/8.

If 1P| <8,, let P, be the subset of P with tags different from 1,424, and
let P, be the subset of P with tags at these points. Since S(F;P;) =0, it is seen
that S(F; P) = S(F; 7'30) + S(F; 751) = S(F; ’Pl). Since there are at most 8 terms in
S(F;P,)and each term is < 1 - §,, we conclude that 0 < S(F; P) = S(F; P)) < 85, =e¢.
Thus F € R[0, 1] and [, F =0.

(e) LetG(x) :=1/nforx =1/n (n € N), and G(x) := 0 elsewhere on [0, 1].

Given e > 0, let E, be the (finite) set of points where G(x) > ¢, let n, be the number

of pointsin E_, and let§, .= ¢/(2n_). Let Pbea tagged partition such that 1Pl < 3,. Let
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750 be the subset of P with tags outside of E, and let 'Pl be the subset of P with tags in
E,. Asin (d), we have

0 < 8(G; P) = S(G; P)) < (2n)8, = .

Since ¢ > 0 is arbitrary, we conclude that G € R[0, 1] and fol G=0. O

Some Properties of the Integral

The difficulties involved in determining the value of the integral and of §, suggest that
it would be very useful to have some general theorems. The first result in-this direction
enables us to form certain algebraic combinations of integrable functions.

7.1.4 Theorem Suppose that f and g are in R[a, b]. Then:
(a) Ifk € R, the function kf is in R[a, b] and

fabkf=k/abf.

(b) The function f + g is in R[a, b] and

/ab(f+g>=fabf+]:g.

(¢) If f(x) <g(x) forallx € [a, b], then

fabefabg-

Proof. If P= {([x,._l, x;1.t) }:'=1 is a tagged partition of [a, b], then it is an easy exercise
to show that

Skf; P)=kS(f;P),  S(f+&P)=S(f;P)+S(g;P),

S(f; P) < S(g; P).

We leave it to the reader to show that the assertion (a) follows from the first equality.
As an example, we will complete the proofs of (b) and (c).

Given € > 0, we can use the argument in the proof of the Uniqueness Theorem 7.1.2
to construct a number §, > 0 such that if Pis any tagged partition with 1Pl <6 ¢+ then
both

b b
) |S(f;1’>)—/a f|<e/2 and lS(g;f?)—fa g|<£/2.

To prove (b), we note that
‘S(f+g;75)—(/abf+/abg)‘=,S(f;7'>)+S(g;1'>)—/abf—/abg‘

. b . b
<|ssmr- [ 1|+ ]s@m - [ e
<eg/2 +ae/2 =e.

Since € > 0 is arbitrary, we conclude that f + g € R[a, b] and that its integral is the sum
of the integrals of f and g.
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To prove (c), we note that the Triangle Inequality applied to (4) implies
b b
/ f—€e/2<S(f;P) and S(g;’P)</ g+e/2
a a
If we use the fact that S(f; 75) < S(g; 'P), we have
b b
f f= [ gte
But, since ¢ > 0 is arbitrary, we conclude that fab f< fab g. Q.ED.

Boundedness Theorem

We now show that an unbounded function cannot be Riemann integrable.
7.1.5 Theorem If f € Rla, b], then f is bounded on [a, b].

Proof. Assume that f is an unbounded function in R[a, b] with integral L. Then there
exists 8 > 0 such that if P is any tagged partition of [a, b] with ||P|| <, then we have
|S(f; P) — L| < 1, which implies that

5) IS(f; P)| < IL| + 1.

Now let Q = {[x,_,, x,1}’_, be apartition of [a, b] with | Q|| < &. Since | f|is not bounded
on [a, b], then there exists at least one subinterval in Q, say [xk_l, xk], on which | f| is not
bounded—for, if | f| is bounded on each subinterval [x;_,, x;] by M,, then it is bounded on
[a, b] by max{M,---, M, }.

We will now pick tags for Q that will provide a contradiction to (5). We tag Q by
t; = x; fori # k and we pick ¢, € [x,_;, x,] such that

F 05 = x| > LT+ [3 £a 0 =%,
i#k

From the Triangle Inequality (in the form |A + B| > |A| — | Bl), we have

ISC Q1 2 £ 60y =5l = [0 £ = x| > ILI+1,
2k

which contradicts (5). Q.ED.

We will close this section with an example of a function that is discontinuous at every
rational number and is not monotone, but is Riemann integrable nevertheless.

7.1.6 Example We consider Thomae’s function 4 : [0, 1] — R defined, as in Example
5.1.6(h),by h(x) :=0if x € [0, 1] is irrational, A(0) := 1 and by A(x) := 1/nif x € [0, 1]
is the rational number x = m/n where m, n € N have no common integer factors except 1.
It was seenin 5.1.6(h) that A is continuous at every irrational number and discontinuous at
every rational number in [0, 1]. We will now show that 4 € R[O0, 1].

Let e > 0;thenthe set E, := {x € [0, 1] : h(x) > £/2} is a finite set. We let n_ be the
number of elements in E, and let §, := ¢/(4n,). If Pisa tagged partition with ||P| < s,
let 751 be the subset of P having tags in E . and 7'32 be the subset of P having tags elsewhere
in [0, 1]. We observe that P, has at most 2n, intervals whose total length is < 2n, 8, = /2
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and that 0 < h(t;) < 1forevery tag in P1 Also the total lengths of the subintervals in 'PZ
is < land h(z;) < £/2 for every tag in P,. Therefore we have

|S(h; P)| = S(h; P,) + S(h; Py) < 1-2n.8, 4 (¢/2) -1 ==&.

Since ¢ > 0O is arbitrary, we infer that A € R[0, 1] with integral 0. O

Exercises for Section 7.1

10.

11.

If I := [0, 4], calculate the norms of the following partitions:
(@ P,:=1(01,2,4), b P,:=1(0,2,3,4),
(©) Py:=(0,1,15,2,34,4), d P,:=1(0,525,35,4).

If f(x) = x? for x € [0, 4], calculate the following Riemann sums, where ’Pi has the same
partition points as in Exercise 1, and the tags are selected as indicated.

(@) P, with the tags at the left endpoints of the subintervals.

(b) P, with the tags at the right endpoints of the subintervals.

(c) P, with the tags at the left endpoints of the subintervals.

(d) P, with the tags at the right endpoints of the subintervals.

Show that f : [a, b] & R is Riemann integrable on [a, bj if and only if there exists L € R
such that for every € > O there exists §, > 0 such that if P is any tagged partition with norm
Pl < 4,, then |S(f; P) — L| <e.

<9,

Let Pbea tagged parition of [0, 3]. ) .

(a) Show thatthe union U, of all subintervals in P with tags in [0, 1] satisfies [0, 1 — ||P||]] €
U, <01+ P , .

(b) Show that the union U, of all subintervals in P with tags in [1, 2] satisfies [1 + ||P||,
2- 1PN U, S - IPIL, 2+ IPI].

Let P := {(1;,¢,)}i_, be atagged partition of [a, b] and let ¢, < c,.

(@) If ubelongs to a subinterval /; whose tag satisfies ¢, <1, < c,,showthatc, — Pl <u<
¢, + 1Pl . .

(b) If v € [a, b] and satisfies ¢, + ||P|| < v < ¢, — || PI|, then the tag ¢, of any subinterval I,
that contains v satisfies ¢, € [c,, ¢,].

(@ Let f(x):==2if 0<x<1and f(x) =1 if 1 <x <2. Show that f € R[0, 2] and
evaluate its integral.

(b) Leth(x):=2if0<x <1,h(1):=3andh(x) :=1if 1 < x < 2. Show that h € R[0, 2]
and evaluate its integral.

Use Mathematical Induction and Theorem 7.1.4 to show that if fj.---, f, are in R]a, b]
and if k,,---,k, € R, then the linear combination f = 3", k. f. belongs to R[a, b] and

i=1 % J;
L=k ) 5

If f € Rla,b] and |f(x)| < M for all x € [a, b], show that | f,bfl < M(b —a).

If f € R[a,b] and if(7'3n) is any sequence of tagged partitions of [a, b] such that II’Pn || = 0,
prove that fab f=1lim, S(f; 75").

Let g(x) := 0if x € [0, 1] is rational and g(x) := 1/x if x € [0, 1] is irrational. Explain why

g ¢ R0, 1]. However, show that there exists a sequence (P,) of tagged partitions of [a, b] such
that |P,|| — Oandlim, S(g; P,) exists.

Suppose that f is bounded on [a, b] and that there exists two sequences of tagged partitions
of [a, b] such that |P,|| = 0 and ||Q, || — O, but such that lim, S(f; P,) # lim, S(f; ,).
Show that f is not in R[a, b].
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12.

13.

14.

15.

16.

17.

18.
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Consider the Dirichlet function, introduced in Example 5.1.5(g), defined by f(x) =1 for
x € [0, 1] rational and f(x) := 0 for x € [0, 1] irrational. Use the preceding exercise to show
that f is not Riemann integrable on [0, 1].

Suppose that f : [a,b] — R and that f(x) = 0 except for a finite number of points c,, - - -, ¢
in [a, b]. Prove that f € Rla, bl andthat [ f = 0. :

n

If g € R[a, b] and if f(x) = g(x) except for a finite number of points in [a, b], prove that
feRlabland that 7 f = [*g.

Suppose that ¢ < d are pointsin [a, b]. If ¢ : [a, b] — R satisfies p(x) = a > 0for x € [c,d]
and ¢(x) = Oelsewherein [a, b], prove that ¢ € R[a, b]andthat j;b ¢ = a(d — c).[Hint: Given
£ > Olet 8, := &/4a and show that if ||P|| < 8, then we have a(d —c — 28,) < S(p; P) <
a(d—c+25,)]

LetO < a < b, let O(x) := x2forx € [a, blandlet P = {lx;_,» xi]]f‘zl be a partition of [a, b].
For each i, let g, be the positive square root of
%(xiz +xx_, + xiz—l)-
(@) Show thatg, satisfies 0 <x;_,| < g, <x,.
(b) Show that Q(g,)(x; — x,_,) = 50 —x7_)).
(c) If Q is the tagged partition with the same subintervals as P and the tags q;, show that
5(0; Q) = ;(* —a).
(d) Use the argument in Example 7.1.3(c) to show that Q € R[a, b] and

b b
f Q=/ x?dx = 3(b° - a%).

Let0<a <band m € N, let M(x) :=x™ for x € [a,b] and let P := {[x,_,,x;]}}_, be a
partition of [a, b]. Foreach i, let g, be the positive mth root of

m+1 (" +xim_lxi—1 +ee +xixim—_ll +xy).

(a) Show that g, satisfies 0 < x,_, <q, <x,.

(b) Show that M (g,)(x; — x;_)) = 77 ("' = x%').

(c) If Q is the tagged partition with the same subintervals as P and the tags g;, show that
S(M; Q) = 7 0" —a™*).

(d) Use the argument in Example 7.1.3(c) to show that M € R[a, b] and

b b 1
/ M =/ xMdx = ___(bm+l _am+l).
a a m+1

If f € Rla, b] and c € R, we define g on [a+ ¢, b+ c] by g(y) := f(y — ¢). Prove that
g € Rla + ¢, b+ c] and that f b_:r: g= fab f- The function g is called the c-translate of f.

a

Section 7.2 Riemann Integrable Functions

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze
Theorem, which will be used to establish the Riemann integrability of several classes of
functions (step functions, continuous functions, and monotone functions). Finally we will
establish the Additivity Theorem.

We have already noted that direct use of the definition requires that we know the value

of the integral. The Cauchy Criterion removes this need, but at the cost of considering two
Riemann sums, instead of just one.
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7.2.1 CauchyCriterion A function f : [a, b] — R belongs to R|a, b] if and only if for
every ¢ > 0 there exists n, > 0 such that if P and Q are any tagged partitions of [a, b]
with ||P| < n, and 191 < n,, then

IS(f; P) = S(f; Q) <.
Proof. (=) If f € Rla, b] with integral L, let n, :=8,/2 > O be such that if P, Q are
tagged partitions such that ||P|| < n, and | Q|| < n,, then
IS(f;P)—Ll<eg/2 and  |S(f; Q) — Ll <e&/2.
Therefore we have
IS(f;P) = S(f; QI < IS(f; P) — L+ L = S(f; Q)

<|S(f;P)—=L|+IL - S(f; Q)|
<ef2+e/2=c¢.

(&) For each n € N, let §, > 0 be such that if P and O are tagged partitions with
norins < §,, then
IS(f: P) — S(fs Q| < 1/n.

Evidently we may assume that §, > §
min{§,;, -+, 8 )

For each n € N, let P be a tagged partition with ||'P | <8,. Clearly, if m > n then
both ’Pm and ’P,l have norms < §,, so that

1 for n € N; otherwise, we replace §, by 8 =

1) IS(f; B) = S(f; Pl <1/n for m>n.

Consequently, the sequence (S(f; ’P N, is a Cauchy sequence in R. Therefore (by
Theorem 3.5.5) this sequence converges in R and we let A :=lim,, S(f; 'Pm)
Passing to the limit in (1) as m — oo, we have

IS(f;P)— Al <1/n  forall neN.

To see that A is the Riemann integral of f, given ¢ > 0, let K € Nsatisfy K > 2/¢. If Q
is any tagged partition with | Q| < 8, then

IS(f; Q) — Al < IS(f; Q) — S(f; Pl + 1S(f: P,) — A
<1/K+1/K <e.

Since ¢ > 0 is arbitrary, then f € R[a, b] with integral A. Q.E.D.
We will now give two examples of the use of the Cauchy Criterion.
7.2.2 Examples (a) Letg: [0, 3] — R be the function considered in Example 7.1.3(b).
In that example we saw that if P is a tagged partition of [0, 3] with norm [|P|| < 8, then
8—56 < S(g;P) <8+58.
Hence if Q is another tagged partition with || Q| < 8, then
8 — 58 < S(g; Q) <8+58.
If we subtract these two inequalities, we obtain

1S(g; P) — S(g; Q)| < 108.



204 CHAPTER7 THERIEMANN INTEGRAL

In order to make this final term < &, we are led to employ the Cauchy Criterion with
n, := £/20. (We leave the details to the reader.)

(b) The Cauchy Criterion can be used to show that a function f : [a, b] - R is not
Riemann integrable. To do this we need to show that: There exists &, > 0 such that for
anyn >0 there exists tagged partitions P and Q with ||'P]| < nand | Q| < n such that
IS(f; P) = S(f; DI = &

We will apply these remarks to the Dirichlet function, considered in 5.1.6(g), defined
by f(x) :=1if x € [0, 1] is rational and f(x) := 0 if x € [0, 1] is irrational.

Here we take ¢ := % If Pis any partition all of whose tags are rational numbers then
S(f; P) =1, while if Q is any tagged partition all of whose tags are irrational numbers
then S(f; Q) = 0. Since we are able to take such tagged partitions with arbitrarily small
norms, we conclude that the Dirichlet function is not Riemann integrable. O

The Squeeze Theorem

The next result will be used to establish the Riemann integrability of some important classes
of functions.

7.2.3 Squeeze Theorem Let f : [a,b] = R. Then f € Rla, b] if and only if for every
€ > 0 there exist functions a, and w, in R[a, b] with

?) o, (x) < f(x) 2w, (x) forall x € [a,b],
and such that b
3 / (0, —,) <e&.

Proof. (=) Takea, =w, = f foralle > 0.
(<) Lete > 0. Since o, _and w, belong to R[a, b], there exists §, > 0 such thatif P
is any tagged partition with ||P|| < &, then

lS(ae; P) - /b o,

It follows from these inequalities that

< E&.

b
<& and }S(a)g;P) —/ ,

b b
/ a, — €< S,; P) and S(w,; P) < / w, + €.
a a
In view of inequality (2), we have S(«,; P)<S fs P) < S(w,; P), whence
b ) b
/ a,—e<S(f;P) <[ o, + €.
If Q is another tagged partition with IIQII < §,, then we also have
b _ b
/ a, —e<S(f;Q) </ o, +e¢.
If we subtract these two inequalities and use (3), we conclude that
b b
S =5 < [w,- [a,+2e

b
=/ (0, —a,) +2¢ < 3e.

Since ¢ > 0 is arbitrary, the Cauchy Criterion implies that f € R[a, b]. QED.
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Classes of Riemann Integrable Functions

The Squeeze Theorem is often used in connection with the class of step functions. It will be
recalled from Definition 5.4.9 thata function ¢ : [a, b] — Ris a step function if it has only
a finite number of distinct values, each value being assumed on one or more subintervals
of [a, b]. For illustrations of step functions, see Figures 5.4.3 or 7.1.4.

7.2.4 Lemma If J is a subinterval of [a, b] having endpoints ¢ < d and if ¢,(x) =1
forx € J and ¢, (x) := O elsewhere in [a, b], then ¥, € Rla, b] and fab 0, = d—c.

Proof. If J = [c, d] with ¢ < d, this is Exercise 7.1.15 and we can choose §, = ¢/4.
A similar proof can be given for the three other subintervals having these endpoints.
Alternatively, we observe that we can write

Pled) = Plea) ~ Pladr  Pedl = Pled) ~ Plea A4 Gca) = Oreay ~ Prear-
Since fab P = 0, all four of these functions have integral equal to d — c. QED.

It is an important fact that any step function is Riemann integrable.
7.2.5 Theorem Ify :[a,b] — R is a step function, then ¢ € R|a, b].

Proof. Step functions of the type appearing in 7.2.4 arecalled “‘elementary step functions”.
In Exercise 5 it is shown that an arbitrary step function ¢ can be expressed as a linear
combination of such elementary step functions:

@ v=2 ko,
j=1

where J; has endpoints ¢; < d].. The lemma and Theorem 7.1.4(a,b) imply that ¢ € R[a, b]
and that

b m
5) / 9= k(d —c). QED.
a j=1

We will now use the Squeeze Theorem to show that an arbitrary continuous function
is Riemann integrable.

7.2.6 Theorem If f : [a, b] — R is continuous on [a, b], then f € R[a, b].

Proof. It follows from Theorem 5.4.3 that f is uniformly continuous on [a, b]. Therefore,
given ¢ > 0 there exists §, > 0 such that if u, v € [a, b] and |u — v| < §,, then we have
|f @) — FO)| < /(b —a).

Let P = {I,}}_, bea partition such that ||P|| < §,,letu; € I, beapoint where f attains
itsminimum value on /;, and let v; € I, be a point where f attains its maximum value on ;.

Let a, be the step function defined by «, (x) := f(u;) for x € [x,._l,x,.) i=1,---,
n—1)anda,(x) = f(u,) forx € [x x,]. Let _ be defined similarly using the points
v, instead of the u,. Then one has

n—1°

a (x) < f(x) 2w (x) forall x € [a,b].
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Moreover, it is clear that

n

b
0= [(@-a) =Y (fm) - Fw)e - x_)

i=1
< ;Zl(ﬁ)(xi —X;_) =&

Therefore it follows from the Squeeze Theorem that f € R[a, b]. Q.ED.

Monotone functions are not necessarily continuous at every point, but they are also
Riemann integrable.

7.2.7 Theorem Iff :[a,b] — R is monotone on [a, b], then f € R[a, b].

Proof. Suppose that f is increasing on the interval [a, b], a < b.If e > 0is given, we let
q € N be such that

_f®-f@ .t

h: .
q b—a

Let y, == f(a) +kh for k=0,1,---,q and consider sets A, := f_l([yk_., y,)) for
k=1,---,9—1and Aq = f_l([yq_l, yq]). The sets {A,} are pairwise disjoint and have
union [a, b]. The Characterization Theorem 2.5.1 implies that each A, is either (i) empty,
(ii) contains a single point, or (iii) is a nondegenerate interval (not necessarily closed)
in [a, b]. We discard the sets for which (i) holds and relabel the remaining ones. If we
adjoin the endpoints to the remaining intervals {A,}, we obtain closed intervals {7 }. It
is an exercise to show that the relabeled intervals {A k}Z=1 are pairwise disjoint, satisfy
la, b] = Uj_, A, and that f(x) € [y,_,, y Jforx € A,.
We now define step functions «, and w, on [a, b] by setting

a (x) =y, and w, (x) ==y, for X €A,

It is clear that o, (x) < f(x) < w,(x) forall x € [a, b] and that
b q
/ (0, —a,) = Z()’k = VDX = X y)
a k=1

9
=Y "h-(y—x_)=h-(b—a) <e.
k=1
Since ¢ > 0 is arbitrary, the Squeeze Theorem implies that f € R[a, b]. QE.D.

The Additivity Theorem

We now return to arbitrary Riemann integrable functions. Our next result shows that the
integral is an “additive function” of the interval over which the function is integrated. This
property is no surprise, but its proof is a bit delicate and may be omitted on a first reading.

7.2.8 Additivity Theorem Let f : [a,b] —> R and let ¢ € (a, b). Then f € Rla, b] if
and only if its restrictions to [a, c] and [c, b] are both Riemann integrable. In this case

©) /abf=/:f+/cbf.
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Proof. (<) Suppose that the restriction f, of f to [a, c], and the restriction f, of f to
[c, b] are Riemann integrable to L, and L,, respectively. Then, given & > O there exists § >
Osuchthatlf’P is ataggedpartmon of [a, c] with ||73 | < &, then|S(f;; 'P )—L,| <¢g/3.
Also there exists 8” > 0 such that if ’P is a tagged partition of [c b] with II’P || < 8" then
|S(f2, P ) — L)l <e/3. IfMisa bound for | f|, we define 8, := min{&’, 8” e/6M} and
letPbea tagged partition of [a, b] with | Q| < 8. We will prove that

) IS(f; Q) — (L, +Ly| <e.

(i) Ifcis apartition point of Q, we split Q into a partition Q of [a, c] and a partition
Q of [c, b]. Since S(f; Q) = S(f; Q )+ S(f; Q) and since Q has norm < & and Q
has norm < 8", the inequality (7) is clear

(ii)) If c is not a partition point in Q= {1, t)}e—,, there exists k < m such that
¢ € (x,_;, x,). Welet Q, be the tagged partition of [a, c] defined by

Ql = {(Ils tl)’ ] (Ik—l’ tk—l)’ ([xk—l’ C]» C)},
and Q2 be the tagged partition of [c, b] defined by
Q, == {([c, ), ©), Upyy tey)s -+ > s 1))

A straightforward calculation shows that

S(f; Q) = S(f; Q) — S(f; Q) = fFt)(x, —x,_) — fF©Ox, — X))
=(f@t) — f©) O —x_1)s

whence it follows that
IS(f; @) = 8(f; Q) — S(f; QI < 2M(x, —x,_,) < ¢/3.
But since | Q, || < § < & and || Q, |l < & < &, it follows that
IS(f:Q)—Ll<¢/3 and  [S(f; Q) —L,| <¢/3,
from which we obtain (7). Since ¢ > 0 is arbitrary, we infer that f € R[a, b] and that (6)

holds.

(=) We suppose that f € R[a, b] and, givene > 0, we let n, > O satisfy the Cauchy
Criterion 7.2.1. Let f| be the restriction of f to [a, c] and let ’Pl, Ql be tagged partitions
of [a, c] with ||’P | <n, and IIQ || < n,. By adding additional partmon points and tags
from [c, b], we can extend 73 and Ql to tagged partitions P and Q of [a, b] that satisfy
1Pl <, and 191 < n,- If we use the same additional points and tags in [c, b] for both P
and Q, then

S(fi; P = S(f; Q) = S(f; P) — S(f; Q).

Since both P and Q have norm < n,, then |S(f}; 'PI) = S(fys Q1)| < €. Therefore the
Cauchy Condition shows that the restriction f, of f to[a, c] is in R[a, c]. In the same way,
we see that the restriction f, of f to [c, b] is in R[c, d].

The equality (6) now follows from the first part of the theorem. QED.

7.2.9 Corollary If f € R[a,b], and if [c, d] C [a, b], then the restriction of f to [c, d]
isinR[c, d].
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Proof. Since f € R[a, b] and c € [a, b], it follows from the theorem that its restriction
to [c, b] is in R[c, b]. But if d € [c, b], then another application of the theorem shows that
the restriction of f to [c, d] is in R[c, d]. QED.

7.2.10 Corollary If f € R[a,b] and ifa =c; < ¢, < --- <c, = b, then the restric-
tions of f to each of the subintervals [c;_,, c;] are Riemann integrable and

a i=1 C-_l

Until now, we have considered the Riemann integral over an interval [a, b] where
a < b. It is convenient to have the integral defined more generally.

7.2.11 Definition If f € R[a, b] and if , B € [a, b] witha < B, we define

/:f::—/aﬂf and /;af:=0.

7.2.12 Theorem If f € Rla,b] andifc, B, y are any numbers in [a, b], then

®) /uﬂf=/uyf+fyﬁf,

in the sense that the existence of any two of these integrals implies the existence of the third
integral and the equality (8).

Proof. If any two of the numbers «, 8, y are equal, then (8) holds. Thus we may suppose
that all three of these numbers are distinct.
For the sake of symmetry, we introduce the expression

L(a,ﬂ,y):=Lﬁf+/;yf+fyaf-

It is clear that (8) holds if and only if L(«, 8, y) = 0. Therefore, to establish the assertion,
we need to show that L = 0 for all six permutations of the arguments «, 8 and y.

We note that the Additivity Theorem 7.2.8 implies that L(«, 8, y) = Owhena < y <
B. But itis easily seen that both L(8, y, @) and L(y, a, 8) equal L(«, 8, ). Moreover, the
numbers

LB, e, v), L(a, v, B), and L(y, B, a)

are all equal to —L(a, B, y). Therefore, L vanishes for all possible configurations of these
three points. - QED.

Exercises for Section 7.2

1. Let f:[a,b] — R.Showthat f ¢ R]a, b] if and only if there exists £, > 0 such that for every
n € N there exist tagged partitions P and Q with ||’P | <1/n and IQ | < 1/n such that
IS(f;P,) — S(f; @) > &

2. Consider the function & defined by k(x) := x + 1 for x € [0, 1] rational, and h(x) := O for
x € [0, 1] irrational. Show that h is not Riemann integrable.



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.
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Let H(x) := kforx = 1/k (k € N) and H(x) := 0 elsewhere on [0, 1]. Use Exercise 1, or the
argument in 7.2.2(b), to show that H is not Riemann integrable.

Ifa(x) := —xandw(x) := xandifa(x) < f(x) < w(x) forallx € [0, 1], does it follow from
the Squeeze Theorem 7.2.3 that f € R[0, 1]?

If J is any subinterval of [a, b]andif ¢ ,(x) := 1 forx € J and ¢ ,(x) := O elsewhere on[a, b],
wesay that ¢, is an elementary step function on [a, b]. Show that every step function is a linear
combination of elementary step functions.

If ¥ : [a, b] — R takes on only a finite number of distinct values, is ¥ a step function?

If S(f; P) is any Riemann sum of f : [a, b] — R, show that there exists a step function
¢ : [a,b] = Rsuchthat [* ¢ = S(f; P).

Suppose that f is continuous on [a, b], that f(x) > Oforallx € [a, b] and that f ab f =0.Prove
that f(x) = Oforall x € [a, b].

Show that the continuity hypothesis in the preceding exercise cannot be dropped.

If f and g are continuous on [a, b] and if fab f= fab &, prove that there exists ¢ € [a, b] such
that f(c) = g(c).

If f isbounded by M on [a, b] and if the restriction of f toevery interval [c, b] where ¢ € (a, b)
is Riemann integrable, show that f € R[a, b] and that fcb f— f: f as ¢ > a+. [Hint: Let
a.(x) = —-Mandw_(x) = Mforx € [a,c)anda (x) = w (x) := f(x)forx € [c, b]. Apply
the Squeeze Theorem 7.2.3 for c sufficiently near a.]

Show that g(x) := sin(1/x) for x € (0, 1] and g(0) := 0 belongs toR[0, 1].

Give an example of a function f : [a, b] — R thatis in R[c, b] for every ¢ € (a, b) but which
is not in R[a, b].

Supposethat f : [a, b] = R,thata =c, < ¢, <--- < ¢, = bandthatthe restrictions of f to
[c,_,,c;]1 belong to Rlc;_,,c;] fori =1,---, m. Prove that f € R[a, b] and that the formula
in Corollary 7.2.10 holds.

If f is bounded and there is a finite set £ such that f is continuous at every point of [a, b]\E,
show that f € R[a, b].

If f is continuous on [a, b], a < b, show that there exists ¢ € [a, b] such that we have fab f=
f(c)(b — a). This result is sometimes called the Mean Value Theorem for Integrals.

If f and g are continuous on [a, ] and g(x) > O for all x € [a, b], show that there exists

c € [a, b] such that f: fg = f(c) f: g- Show that this conclusion fails if we do not have
g(x) > 0. (Note that this result is an extension of the preceding exercise.)

1/n
Let f be continuous on [a, b], let f(x) = O for x € [a, b], andlet M, := (fab f") . Show
that lim(M,) = sup{f(x) : x € [a, b]}.
Suppose that a > 0 and that f € R[—a, a].
(a) If f is even (thatis,if f(—x) = f(x) forall x € [0,a]), show that [ f =2 [} f.
(b) If fisodd (thatis, if f(—x) = —f(x) for all x € [0, a]), show that ffa f=0.
Suppose that f : [a,b] — Rand that n € N. Let P, be the partition of [a, b]into n subinter.vals
havingequallengths, sothatx;, :==a +i(b —a)/nfori =0,1,---,n.LetL, (f) = S(f; P, )
and R (f) = S(f; 'Pn’r), where 'P"‘ , has its tags at the left endpoints, and 'PM has its tags at
the right endpoints of the subintervals [x,_,, x;].

-1

(@) If f isincreasing on [a, b], showthat L (f) < R, (f) and that

b—
0<R,(f)—L,(f)= (f(b) _ f(a)) , (n_a)

(b) Show that f(a)(b—a) < L,(f) < [, f < R,(f) < f(b)(b—a).
(¢c) If fisdecreasing on [a, b], obtain an inequality similar to that in (a).



210 CHAPTER7 THERIEMANN INTEGRAL

(d) If f € Rla,b] is not monotone, show that f: f is not necessarily between L, (f) and
R, (f).
21. If f is continuous on [—a, a], show that ffa f(xz) dx = 2f0a f(xz)dx.

22. If fiscontinuouson[—1, 1],showthatf0"/2 f(cosx)dx = On/zf(sinx) dx =3 [ f(sinx)dx.

[Hint: Examine certain Riemann sums.]

Section 7.3 The Fundamental Theorem

We will now explore the connection between the notions of the derivative and the integral.
In fact, there are two theorems relating to this problem: one has to do with integrating a
derivative, and the other with differentiating an integral. These theorems, taken together,
are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the
operations of differentiation and integration are inverse to each other. However, there are
some subleties that should not be overlooked.

The Fundamental Theorem (First Form)

The First Form of the Fundamental Theorem provides a theoretical basis for the method
of calculating an integral that the reader learned in calculus. It asserts that if a function
f is the derivative of a function F, and if f belongs to R[a, b], then the integral fa b f
can be calculated by means of the evaluation F |z:= F (b) — F(a). A function F such that
F'(x) = f(x) for all x € [a, b] is called an antiderivative or a primitive of f on [a, b].
Thus, when f has an antiderivative, it is a very simple matter to calculate its integral.

In practice, it is convenient to allow some exceptional points ¢ where F'(c) does not
exist in R, or where it does not equal f(c). It turns out that we can permit a finite number
of such exceptional points.

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a finite set E
in [a, b] and functions f, F : [a, b] — R such that:

(a) F iscontinuous on [a, b],

(b) F'(x) = f(x) forallx € [a, b]\E,

(c) f belongstoR]a,b].

Then we have

b.
1) / f =F(b) — F(a).

Proof. We will prove the theorem in the case where E := {a, b}. The general case can
be obtained by breaking the interval into the union of a finite number of intervals (see
Exercise 1).

Lete > Obe given. Since f € R[a, b] by assumption (c), there exists §, > 0 such that
if P is any tagged partition with ||P|| < 8, then

2) ‘S(f;f?)—/abf| <e
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If the subintervals in P are [x;_;, x;], then the Mean Value Theorem 6.2.4 applied to F on
[x;_;, x;] implies that there exists u; € (x;_;,x;) such that

F(x) = F(x;_) =F'(u)- (x; —x,_;) for i=1,---,n.

If we add these terms, note the telescoping of the sum, and use the fact that F' (u ,.) = f(u D
we obtain

n

Fb)-F@ =) (F(x)— F(x,_)) =Y f@)(x, —x,_)).
im1 i=1

Now let ’Pu = {([x;_» %] u;)}i—,, so the sum on the right equals S(f; 75u). If we substi-
tute F(b) — F(a) = S(f; 'Pu) into (2), we conclude that

F(®) — F(a) — bf < &.
| [ 7]

But, since ¢ > 0 is arbitrary, we infer that equation (1) holds. QED.

Remark If the function F is differentiable at every point of [a, b], then (by Theorem
6.1.2) hypothesis (a) is automatically satisfied. If f is not defined for some point ¢ € E,
we take f(c) := 0. Evenif F is differentiable at every point of [a, b], condition (c) is not
automatically satisfied, since there exist functions F such that F’ is not Riemann integrable.
(See Example 7.3.2(e).)

7.3.2 Examples (a) If F(x) := %xz forall x € [a, b],then F'(x) = x forall x € [a, b].
Further, f = F’iscontinuous so itisin R[a, b]. Therefore the Fundamental Theorem (with
E = @) implies that

b
f xdx = F(b) — F(a) = 1(b* — a?).
(b) If G(x) := Arctan x for x € [a,b], then G'(x) = 1/(x* + 1) for all x € [a, b]; also

G’ is continuous, so it is in R[a, b]. Therefore the Fundamental Theorem (with E = )
implies that

b
1
/ 5 dx = Arctan b — Arctana.
a x°+1

(¢) If A(x) = |x| for x € [—10, 10], then A’(x) = —1if x € [-10,0) and A'(x) = +1
for x € (0, 10]. Recalling the definition of the signum function (in 4.1.10(b)), we have
A’ (x) = sgn(x) for all x € [—10, 10]\{0}. Since the signum function is a step function, it
belongs to R[—10, 10]. Therefore the Fundamental Theorem (with E = {0}) implies that

10
/ sgn(x)dx = A(10) — A(-10) =10 - 10 = 0.
~10

(d) If H(x) := 2./x for x € [0, b], then H is continuous on [0, b] and H' (x) = 1/./x for
x.€ (0, b]. Since h := H' is not bounded on (0, b}, it does not belong to R[0, b] no matter
how we define A (0). Therefore, the Fundamental Theorem 7.3.1 does not apply. (However,
we will see in Example 10.1.10(a) that & is generalized Riemann integrable on [0, b].)

() LetK(x):=x*cos(1/x?)forx € (0, 1]andlet K (0) := 0. It follows from the Product
Rule 6.1.3(c) and the Chain Rule 6.1.6 that

K'(x) = 2x cos(1/x%) + (2/x)sin(1/x%)  for x € (0, 1].
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Further, as in Example 6.1.7(¢e), it can be shown that K’(0) = 0. Thus K is continuous
and differentiable at every point of [0, 1]. Since it can be seen that the function K’ is
not bounded on [0, 1], it does not belong to R[0, 1] and the Fundamental Theorem 7.3.1
does not apply to K’. (However, we will see from Theorem 10.1.9 that K’ is generalized
Riemann integrable on [0, 1].) O

The Fundamental Theorem (Second Form)

We now turn to the Fundamental Theorem (Second Form) in which we wish to differentiate
an integral involving a variable upper limit.

7.3.3 Definition If f € R[a, b], then the function defined by

3) F(z) := /zf for ze€ [a,b],

is called the indefinite integral of f with basepoint a. (Sometimes a point other than a is
used as a basepoint; see Exercise 6.)

We will first show thatif f € R[a, b], then its indefinite integral F satisfies a Lipschitz
condition; hence F is continuous on [a, b].

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a, b]. In fact,
if|f(x)| < M forall x € [a, b], then |F(z) — F(w)| < M|z— w| forall z, w € [a, b].

Proof. The Additivity Theorem 7.2.8 implies that if z, w € [a, b] and w < z, then

F(z)=/jf=[f+[f=F<w>+[ﬁ

z

F(z)—F(w)=/ f.

w

whence we have

Now if —M < f(x) < M for all x € [a, b], then Theorem 7.1.4(c) implies that

z

—M(z—w) S/ f=M@z—w),

w

whence it follows that ,
z
F@ - Fl < |[ 1] < Mzl
w

as asserted. QED.

We will now show that the indefinite integral F is differentiable at any point where f
is continuous.

7.3.5 Fundamental Theorem of Calculus (Second Form) Let f € R[a, b] andlet f be
continuous at a pointc € [a, b]. Then the indefinite integral, defined by (3), is differentiable
atc and F'(c) = f(c).
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Proof. We will suppose that ¢ € [a, b) and consider the right-hand derivative of F atc.
Since f is continuous at c, given ¢ > 0 there exists n, > 0 such that ifc<x<c+n e
then

O] fl)—e< f(x) < flc) +e.
Let h satisfy 0 < h < n,. The Additivity Theorem 7.2.8 implies that f is integrable on the
intervals [a, c], [a, ¢ + A] and [c, ¢ + h] and that

c+h
F(c+h) — F(C)=f f

Now on the interval [c, ¢ + k] the function f satisfiés inequality (4), so that (by Theorem
7.1.4(c)) we have

c+h
(f(c)—€)-h < F(c+ h) — F(c) =f fF=(fc)+e):h.

If we divide by 4 > 0 and subtract f(c), we obtain
F(c+h) — F(c)

h
But, since ¢ > 0 is arbitrary, we conclude that the right-hand limit is given by
F(c+h) — F(c)

- fl)]| <e

li = .
Jim, Y f(e)
It is proved in the same way that the left-hand limit of this difference quotient also equals
f(c) when ¢ € (a, b], whence the assertion follows. Q.E.D.

If f is continuous on all of [a, b], we obtain the following result.

7.3.6 Theorem If f is continuous on [a, b], then the indefinite integral F, defined by
(3), is differentiable on [a, b] and F'(x) = f(x) forall x € [a, b].

Theorem 7.3.6 can be summarized: If f is continuous on [a,b), then its indefinite
integral is an antiderivative of f. We will now see that, in general, the indefinite integral
need not be an antiderivative (either because the derivative of the indefinite integral does
not exist or does not equal f (x)).

7.3.7 Examples (a) If f(x):=sgnxon[—1, 1],then f € R[—1, 1] and has the indef-
inite integral F(x) := |x| — 1 with the basepoint —1. However, since F’(0) does not exist,
F is not an antiderivative of f on [—1, 1].

(b) If h denotes Thomae’s function, considered in 7.1.6, then its indefinite integral
H(x) := fOx h is identically O on [0, 1]. Here, the derivative of this indefinite integral
exists at every point and H'(x) = 0. But H'(x) # h(x) whenever x € QN [0, 1], so that
H is not an antiderivative of 4 on [0, 1]. O

Substitution Theorem

The next theorem provides the justification for the “change of variable” method that is often
used to evaluate integrals. This theorem is employed (usually implicitly) in the evaluation by
means of procedures that involve the manipulation of “differentials”, common in elementary
courses.
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7.3.8 Substitution Theorem Let J :=[c, 8] and let ¢ : J —> R have a continuous
derivative on J. If f : I — R is continuous on an interval I containing ¢(J), then

B »(B)
)] / flo®) - ¢'(t)dt = f( ) f(x)dx.
o P(a

The proof of this theorem is based on the Chain Rule 6.1.6, and will be outlined in
Exercise 15. The hypotheses that f and ¢’ are continuous are restrictive, but are used to
ensure the existence of the Riemann integral on the left side of (5).

4 sin /1

7.3.9 Examples (a) Consider the integral / dt.

1 1
Here we substitute ¢(t) := /7 for t € [1, 4] so that ¢'(¢) = 1/(2+/1) is continuous
on [1, 4]. If we let f(x) := 2sinx, then the integrand has the form (f o ¢) - ¢’ and the
Substitution Theorem 7.3.8 implies that the integral equals [ 12 2sinxdx = —2cosx|? =

2(cos 1 — cos2).
4 .
sin vt dt.
o W1

Since ¢(t) := 4/t does not have a continuous derivative on [0, 4], the Substitution
Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious
that this integral exists; however, we can apply Exercise 7.2.11 to obtain this conclusion.
We could then apply the Fundamental Theorem 7.3.1 to F(t) := —2 cos 4/t with E := {0}
to evaluate this integral.) d

(b) Consider the integral

We will give a more powerful Substitution Theorem for the generalized Riemann
integral in Section 10.1.

Lebesgue’s Integrability Criterion

We will now present a statement of the definitive theorem due to Henri Lebesgue (1875-
1941) giving a necessary and sufficient condition for a function to be Riemann integrable,
and will give some applications of this theorem. In order to state this result, we need to
introduce the important notion of a null set.

Warning Some people use the term “null set” as a synonym for the terms “empty set”
or “void set” referring to @ (= the set that has no elements). However, we will always use
the term “null set” in conformity with our next definition, as is customary in the theory of
integration.

7.3.10 Definition (a) A set Z C R issaid to be a null set if forevery £ > 0 there exists
a countable collection {(ak, b,) }io:l of open intervals such that

(6) zcJanb) and ) (b —a) <e.
k=1 k=1

(b) If Q(x) is a statement about the point x € I, we say that Q(x) holds almost every-
where on / (or for almost every x € I), if there exists a null set Z C I such that
Q(x) holds for all x € I\Z. In this case we may write

Q) for ae. xe€l.

It is trivial that any subset of a null set is also a null set, and it is easy to see that the
union of two null sets is a null set. We will now give an example that may be very surprising.
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7.3.11 Example The Q, of rational numbers in [0, 1] is a null set.

We enumerate Q, = {r,, r,,---}. Given ¢ > 0, note that the open interval J, :=
(r, —&/4,r, +¢/4) contains r; and has length £/2; also the open interval J, := (r, —
/8, r, + £/8) contains r, and has length £/4. In general, the open interval

‘ & &
Jei=\n— 2k+1’rk+ SRH

contains the point r, and has length &/ 2k, Therefore, the union U, J, of these open
intervals contains every point of Q, ; moreover, the sum of the lengths is ZZ‘;I (e/2%) = €.
Since £ > Ois arbitrary, Q, is a null set. . Od

The argument just given can be modified to show that: Every countable set is a null
set. However, it can be shown that there exist uncountable null sets in R; for example, the
Cantor set that will be introduced in Definition 11.1.10.

We now state Lebesgue’s Integrability Criterion. It asserts that a bounded function on
an interval is Riemann integrable if and only if its points of discontinuity form a null set.

7.3.12 Lebesgue’s Integrability Criterion A bounded function f : [a, b] — R is Rie-
mann integrable if and only if it is continuous almost everywhere on [a, b].

A proof of this result will be given in Appendix C. However, we will apply Legesgue’s
Theorem here to some specific functions, and show that some of our previous results follow
immediately from it. We shall also use this theorem to obtain the important Composition
and Product Theorems.

7.3.13 Examples (a) The step function g in Example 7.1.3(b) is continuous at every
point except the point x = 1. Therefore it follows from the Lebesgue Integrability Criterion
that g is Riemann integrable.

In fact, since every step function has at most a finite set of points of discontinuity,
then: Every step function on [a, b] is Riemann integrable.

(b) Since it was seen in Theorem 5.5.4 that the set of points of discontinuity of a monotone
function is countable, we conclude that: Every monotone function on [a, b] is Riemann
integrable.

(¢c) The function G in Example 7.1.3(e) is discontinuous precisely at the points D :=
{1,1/2,---,1/n,---}. Since this is a countable set, itis a null set and Lebesgue’s Criterion
implies that G is Riemann integrable.

(d) The Dirichlet function was shown in Example 7.2.2(b) not to be Riemann integrable.
Note that it is discontinuous at every point of [0, 1]. Since it can be shown that the
interval [0, 1] is not a null set, Lebesgue’s Criterion yields the same conclusion.

(e) Leth:[0, 1] > R be Thomae’s function, defined in Examples 5.1.6(h) and 7.1.6.

In Example 5.1.6(h), we saw that h is continuous at every irrational number and is
discontinuous at every rational number in [0, 1]. By Example 7.3.11, it is discontinuous on
a null set, so Lebesgue’s Criterion implies that Thomae’s function is Riemann integrable
on [0, 1], as we saw in Example 7.1.6. O

We now obtain a result that will enable us to take other combinations of Riemann
integrable functions.



216 CHAPTER7 THE RIEMANN INTEGRAL

7.3.14 Composition Theorem Let f € R[a, b]with f([a, b]) C [c,d]andletp : [c, d]
— R be continuous. Then the composition ¢ o f belongs to R|a, b).

Proof. If f is continuous at a point u € [a, b], then ¢ o f is also continuous at u. Since
the set D of points discontinuity of f is a null set, it follows that the set D, C D of points
of discontinuity of ¢ o f is also a null set. Therefore the composition ¢ o f also belongs
to R|a, b]. QED.

It will be seen in Exercise 22 that the hypothesis that ¢ is continuous cannot be dropped.
The next result is a corollary of the Composition Theorem.

7.3.15 Corollary Suppose that f € R[a, b]. Then its absolute value |f| is in R[a, b],

and
b b
[ 1= [in=me-a,

where | f(x)| < M for all x € [a, b).

Proof. We have seen in Theorem 7.1.5 that if f is integrable, then there exists M such
that | f(x)| < M forallx € [a, b]. Let p(t) == |t|fort € [-M, M];thenthe Composition
Theorem implies that | f| = ¢ o f € R[a, b]. The first inequality follows from the fact that
—|f| < f < |f] and 7.1.4(c), and the second from the fact that | f (x)| < M. QED.

7.3.16 The Product Theorem If f and g belong to R[a, b], then the product fg belongs
to R[a, b].

Proof. 1If ¢(1) := t? for t € [-M, M], it follows from the Composition Theorem that
f2 = ¢ o f belongs to R[a, b]. Similarly, (f + g)2 and g* belong to R[a, b]. But since
we can write the product as

fe=3[r+9* -1 -¢4,
it follows that fg € R[a, b]. QED.

Integration by Parts

We will conclude this section with a rather general form of Integration by Parts for the
Riemann integral, and Taylor’s Theorem with the Remainder.

7.3.17 Integration by Parts Let F, G be differentiable on [a, b] and let f = F' and
g := G’ belong to R[a, b]. Then
b b
- / Fg.
a a

Proof. By Theorem 6.1.3(c), the derivative (FG)' exists on [a, b] and
(FG) =F'G+ FG' = fG + Fg.

] b "
7 / £G = FG

Since F, G are continuous and f, g belong to R[a, b], the Product Theorem 7.3.16 implies
that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3.1 implies that

b b b b
a=/ (FG)’=/ fG+/ Fg,

from which (7) foflows. QED.

FG
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A special, but useful, case of this theorem is when f and g are continuous on [a, b]
and F, G are their indefinite integrals F (x) = f: fandG(x) := f: g.
We close this section with a version of Taylor’s Theorem for the Riemann Integral.

7.3.18 Taylor’s Theorem with the Remainder Suppose that f', ---, f®, f"+D exjst
on [a, b] and that f®*V € R[a, b]. Then we have

(n)
®) =@+ L0 0+t Do oy ik,
where the remainder is given by
b A
9) R = % / FAD@) - (b —1) dr.

Proof. Apply Integration by Parts to equation (9), with F(¢) := f®(¢) and G(z) :=
(b—1)"/n!,sothat g(r) = —(b —1)""'/(n — 1)!, to get
r=b 1 b ) n—1
= 0o+ i [ f0-e-arar

")
n

— a\? (n) n—1
-(b—a)" + 1)|/ f9@ - b -0""dr.

If we continue to integrate by parts in thls way, we obtain (8). QED.

Exercises for Section 7.3

1. Extend the proof of the Fundamental Theorem 7.3.1 to the case of an arbitrary finite set E.

2. IfneNand H,(x) := x"“/(n + 1) for x € [a,b], show that the Fundamental Theorem 7.3.1
implies that fab x"dx = ("' —a"t!)/(n + 1). What is the set E here?

3, If g(x) .= x for |x|] > 1 and g(x) := —x for |x| <1 and if G(x) := %I)c2 — 1|, show that
2, 8(x) dx = GB3) — G(-2) = 5/2.
4. Let B(x) = —1x? forx < 0and B(x) := 1x?for x > 0. Showthat [* x| dx = B(b) — B(a).
Let f : [a,b] > Randlet C € R.
(@) If ®:[a, b] — Ris an antiderivative of f on [a, b], showthat ®.(x) := ®(x) + Cis also
an antiderivative of f on [a, b].
(b) If ®, and ®, are antiderivatives of f on [a, b], show that ® — &, is a constant function
on [a, b).
6. If f € R[a, bl andif ¢ € [a, b], the function defined by F(z) = fcz f forz € [a, b] s called the
indefinite integral of f with basepoint c. Find a relation between F, and F..
7. Wehaveseen in Example 7.1.6 that Thomae’s function is in R[0, 1] with integral equalto 0. Can
the Fundamental Theorem 7.3.1 be used to obtain this conclusion? Explain your answer.
8. Let F(x) be defined forx >0by F(x):=(n—-1)x—(n—1)n/2forx e[n—1,n),n e N.
Show that F is continuous and evaluate F’(x) at points where this derivative exists. Use this

result to evaluate f [xJdx for0 < a < b, where [x] denotes the greatest integer in x, as defined
in Exercise 5.1.4.

9. Let f € R[a, b] and define F(x) := fax f forx € [a, b].
(a) Evaluate G(x) := [ f in terms of F, where ¢ € [a, b].
(b) Evaluate H(x) := f: f interms of F.
(c) Evaluate S(x) := ["* f interms of F.
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10. Let f : [a, b] — R be continuous on [a, b] and let v : [c, d] — R be differentiable on [c, d]
with v([c, d])  [a, b]. If we define G (x) := [ £, show that G'(x) = f(v(x)) - v/(x)forall

x € [c,d].
11. Find F'(x) when2F is defined on [0, 1] by:
@ F@):=fy A+ "dr (b) Fx):=[5V1+1dt

12. Let f:[0,3] > R be defined by f(x):=x for 0 <x <1, f(x):=1for 1 <x <2 and
f(x) ;= x for2 < x < 3. Obtain formulas for F(x) := [, f and sketch the graphs of f and F.
Where is F differentiable? Evaluate F’(x) at all such points.

13. If f: R — Ris continuous and ¢ > 0, define g : R — R by g(x) = ff_t_f f @) dt. Show that
g is differentiable on R and find g’ (x).

14. If f: [0, 1] - Ris continuous and f(f f= fxl f forall x € [0, 1], show that f(x) = O for all
x € [0, 1].

15. Use the following argument to prove the Substitution Theorem 7.3.8. Define F (u) := f:(ﬂ) f(x)dx
foru € I,and H(t) := F(p(t)) fort € J. Show that H'(t) = f(¢(t))¢’(t) fort € J and that

o(B)
f F(x)dx = F(g(B)) = H(B) = / Fo)e (1) dt.
@

()
16. Use the Substitution Theorem 7.3.8 to evaluate the following integrals.
2

1 _
(a) /t\/l+t2dt, (b) ft2(1+t3)—‘/2dt=4/3,
0 0
Y1+t
© /—d
T~/

t
d) dt = 2(sin2 — sin 1).

T

17. Sometimes the Substitution Theorem 7.3.8 cannot be applied but the following result, called
the “Second Substitution Theorem” is useful. In addition to the hypotheses of 7.3.8, assume
that ¢’ (t) # Oforall¢ € J, so the function y : ¢(J) — R inverse to ¢ exists and has derivative
¥'(p(1)) = 1/¢/(¢). Then

A )
/ flo()dt = F)Y (x)dx.
o @)
To prove this, let G(t) := f; f(p(s))ds for t € J, so that G'(t) = f(¢(t)). Note that
K (x) :== G(¥(x)) is differentiable on the interval ¢(J) and that K'(x) = G'(Yy (x))¢¥'(x) =
f@ o ()Y (x) = f(x)y¥'(x). Calculate G(8) = K (¢(B)) in two ways to obtain the for-
mula.

18. Apply the Second Substition Theorem to evaluate the following integrals.

dt
b ——— =In(3 +2v2) -
()le\[ ()[]tﬁ1 n(3 +2v2)
fdt ! dt —
(C) l T\/;’ - | (d) /; m-Arctan(l)—Arctan(l/b

19. Explain why Theorem 7.3.8 and/or Exercise 7.3.17 cannot be applied to evaluate the following
integrals, using the indicated substitution.

4

(@ /0 % o(5) = VI, (b) / °°‘°‘f‘” o(5) = V1,
1

(©) /,/1+2|t|dt o) = |tl, d) / ¢(t) = Arcsinzt.
—1 0

20. (a) If Z, and Z, arenull sets, show that Z, U Z, is anull set.

(b) More generally, if Z, is a null set for each n € N, show that U _1 Z, is anull set. [Hint:
Givene > Oandn € N let {J;' : k € N} be a countable collection of open intervals whose
union contains Z, and the sum of whose lengths is < ¢/2". Now consider the countable
collection {J;' : n, k € N}.]
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21. Let £, g € Rla, bl.
(@) Ifr € R, show that [[(tf + g)* > 0.

(b) Use(a)toshow that2| [/ fgl <t 7 f2+(1/1) [/ g* fort > 0.
(¢) If f* f* =0, show that [ fg = 0.

2
(d) Now prove that fab fg | < (fal7 | fgh? < (f: - (fa” g%). This inequality is called the
Cauchy-Bunyakovsky-Schwarz Inequality (or simply the Schwarz Inequality).

22. Let h:[0, 1] — R be Thomae’s function and let sgn be the signum function. Show that the
composite function sgn o h is not Riemann integrable on [0, 1].

Section 7.4 Approximate Integration

The Fundamental Theorem of Calculus 7.3.1 yields an effective method of evaluating
the integral fa b f provided we can find an antiderivative F such that F'(x) = f (x) when
x € [a, b]. However, when we cannot find such an F, we may not be able to use the Funda-
mental Theorem. Nevertheless, when f is continuous, there are a number of techniques for
approximating the Riemann integral fa b f by using sums that resemble the Riemann sums.

One very elementary procedure to obtain quick estimates of fa b f, based on Theorem
7.1.4(c), is to note that if g(x) < f(x) < h(x) forall x € [a, b], then

/ﬂbgsfabfsfabh.

If the integrals of g and A can be calculated, then we have bounds for fab f. Often these
bounds are accurate enough for our needs.

. . ) .
For example, suppose we wish to estimate the value of fol e " dx.Itis easy to show
2
thate™ <e™ < 1forx € [0, 1], so that

1 1, 1
/ e”‘dxs/ e ™ dx 5/ 1dx.
0 0 0

Consequently, we have 1 — 1/e < fol e dx < 1. If we use the mean of the bracketing
values, we obtain the estimate 1 — 1/2e &~ 0.816 for the integral with an error less than
1/2e < 0.184. This estimate is crude, but it is obtained rapidly and may be quite satis-
factory for our needs. If a better approximation is desired, we can attempt to find closer
approximating functions g and 4.

Taylor’s Theorem 6.4.1 can be used to approximate e by a polynomial. In using
Taylor’s Theorem, we must get bounds on the remainder term for our calculations to have
significance. For example, if we apply Taylor’s Theorem to e for 0 < y < 1, we get

where R, = y“e_c /24 where c is some number with 0 < ¢ < 1. Since we have no better
information as to the location of ¢, we must be content with the estimate 0 < R; < y*/24.
Hence we have

2
e~* :1—x2+%x4—%x6+R3,
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where 0 < R; < x® /24, for x € [0, 1]. Therefore, we obtain

1 1 1
/ e"‘zdx =/ (1-x*+ %x“ - éxﬁ)dx+/ R,dx
0 0 1 0
1,1 1
Since we have 0 < fol Rydx < 9% = ﬁ < 0.005, it follows that
1
[ e dx ~ % (~0.7429)
0

with an error less than 0.005.

Equal Partitions

If f:[a,b] — R is continuous, we know that its Riemann integral exists. To find an
approximate value for this integral with the minimum amount of calculation, it is convenient
to consider partitions P, of [a, b] into n equal 'subintervals having length b, = (b —a)/n.
Hence P, is the partition:

a<a+hn<a+2hn<---<a+nhn=b.

If we pick our tag points to be the left endpoints and the right endpoints of the subintervals,
we obtain the nth left approximation given by

n—1
L,(f):=h, ) fla+kh,),
k=0
and the nth right approximation given by

R,(f):=h,)_ fla+kh,).
k=1

It should be noted that it is almost as easy to evaluate both of these approximations as only
one of them, since they differ only by the terms f(a) and f (b).

Unless we have reason to believe that one of L, (f) or R, (f) is closer to the actual
value of the integral than the other one, we generally take their mean:

3 (L, () + R, ().
which is readily seen to equal
n—1
o) TN =h,Gf@+ ) flat+kh)+Lf®)),
k=1

as a reasonable approximation to f: f
However, we note that if f is increasing on [a, b], then it is clear from a sketch of the
graph of f that

b
%) L(f)< f f<R ().

In this case, we readily see that

/abf—T,.(f)

<1 (R,(H =L, ()
=1n (f(b) — f(@) = (f®b) — f(a))-

(b—a)
2n
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An error estimate such as this is useful, since it gives an upper bound for the error of the
approximation in terms of quantities that are known at the outset. In particular, it can be
used to determine how large we should choose n in order to have an approximation that
will be correct to within a specified error € > 0.

The above discussion was valid for the case that f is increasing on [a, b]. If f is
decreasing, then the inequalities in (2) should be reversed. We can summarize both cases
in the following statement.

74.1 Theorem If f : [a,b] — R is monotone and if T, ( f) isgiven by (1), then

3) “)

b
=T,

<If) - f( )l

7.4.2 Example If f (x) =e - on [0, 1], then f is decreasing. It follows from (3)
that if n = 8, then Ifo % gy — T,(Nl = —e71)/16 < 0.04, and if n = 16, then

| f e dx —Ti(Hl <A - e_l)/32 < 0.02. Actually, the approximation is consider-
able better, as we will see in Example 7.4.5. O

The Trapezoidal Rule

The method of numerical integration called the “Trapezoidal Rule” is based on approximat-
ing the continuous function f : [a, b] — R by a piecewise linear continuous function. Let
n € Nand, as before, leth, := (b — a)/n and consider the partition P,. We approximate f
by the piecewise linear function g, that passes through the points (a +kh,, f(a+ khn)),
where k =0, 1, - - -, n. It seems reasonable that the integral fab f will be “approximately
equal to” the integral [ b g, wWhen n is sufficiently large (provided that f is reasonably
smooth).

Since the area of a trapezoid with horizontal base 4 and vertical sides /, and/, is known
to be 3h(l; +1,), we have

a+(k+1)h
/ 8, = ih, - [fla+kh)+ fla+ K+ Dh)],
a+kh,l

fork =0,1,--.,n — 1. Summing these terms and noting that each partition point in P,
except a and b belongs to two adjacent subintervals, we obtain

b
/ g, = hn(%f(a) +fa+h)+-+ fla+k—1h)+ %f(b)).

But the term on the right is precisely T, (f), found in (1) as the mean of L, (f) and R, (f).
We call T, (f) the nth Trapezoidal Approximation of f.

In Theorem 7.4.1 we obtained an error estimate in the case where f is monotone; we
now state one without this restriction on £, but in terms of the second derivative f” of f.

7.4.3 Theorem Let f, f' and f" be continuous on [a,b] and let T, (f) be the nth
Trapezoidal Approximation (1). Then there exists ¢ € [a, b] such that

b b — h2
@ T.(f) - / r= 8 e

A proof of this result will be given in Appendix D; it depends on a number of results
we have obtained in Chapters 5 and 6.
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The equality (4) is interesting in that it can give both an upper bound and a lower bound
for the difference 7, (f) — fb f. Forexample if f”(x) > A > Oforallx € [a, b],then(4)
implies that this dlfference always exceeds -5 5ADB - a)hi. If we only have f”(x) > 0 for
x € [a, b], which is the case when f is convex (= concave upward), then the Trapezoidal
Approximation is always too large. The reader should draw a figure to visualize this.

However, it is usually the upper bound that is of greater interest.

7.4.4 Corollary Let f, f' and f” be continuous, and let | f"(x)| < B, forall x € [a, b].
Then

b - a)h2 _(b—a)’

(5) T.(f) - f‘ —— B, = 12 %

When an upper bound B, can be found, (5) can be used to determine how large n must
be chosen in order to be certain of a desired accuracy.

7.4.5 Example If f(x) := e on [0, 1], then a calculation shows that f”(x) =
2
2¢*" (2x% — 1), so that we can take B, = 2.Thus, if n = 8, then

1
T, _
‘S(f) / f‘—lz 64 ~ 384 < 0003

On the other hand, if n = 16, then we have

1
T 0.000 66.
‘ 16(f) = / f“ 12- 256 = 1536 < 0:000

Thus, the accuracy in this case is considerably better than predicted in Example 7.4.2 O

The Midpoint Rule

One obvious method of approximating the integral of f is to take the Riemann sums
evaluated at the midpoints of the subintervals. Thus, if P, is the equally spaced partition
given before, the Midpoint Approximation of f is given by

M,(f):=h, (f@+3h)+ f(a+3h,)+ -+ f(a(n=13)h,))
©6) , =h,> fla+(k=13)h,).
k=1

Another method might be to use piecewise linear functions that are tangent to the
graph of f at the midpoints of these subintervals. At first glance, it seems as if we would
need to know the slope of the tangent line to the graph of f at each of the midpoints
a+ (k— %hn) (k=1,2,---,n). However, it is an exercise in geometry to show that the
area of the trapezoid whose top is this tangent line at the midpoint a + (k — %)hn is equal
to the area of the rectangle whose height is f(a + (k — %)hn). (See Figure 7.4.1.) Thus,
this area is given by (6), and the “Tangent Trapezoid Rule” turns out to be the same as
the “Midpoint Rule”. We now state a theorem showing that the Midpoint Rule gives better
accuracy than the Trapezoidal Rule by a factor of 2.
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f@+u_%m

-

+ e~

a+ (k-1 a+(k—%)h kh

N

Figure 7.4.1 The tangent trapezoid.

7.4.6 Theorem Let f, f', and f” be continuous on [a, b] and let M, (f) be the nth
Midpoint Approximation (6). Then there exists y € [a, b] such that

(b — a)h}

b
@) Af—M,,(f)= W)

The proof of this result is in Appendix D.

As in the case with Theorem 7.4.3, formula (7) can be used to give both an upper
bound and a lower bound for the difference fab f — M, (f), although it is an upper bound
that is usually of greater interest. In contrast with the Trapezoidal Rule, if the function is
convex, then the Midpoint Approximation is always too small.

The next result is parallel to Corollary 7.4.4.

7.4.7 Corollary Let f, f', and f” be continuous, and let | f”(x)| < B, forallx € [a, b).
Then

N2 3
B Ul g

8 = — .
( ) 24 2 24n2 2

Mﬂﬁ—L?f

Simpson’s Rule

The final approximation procedure that we will consider usually gives a better approxi-
mation than either the Trapezoidal or the Midpoint Rule and requires essentially no extra
calculation. However, the convexity (or the concavity) of f does not give any information
about the error for this method.

Whereas the Trapezoidal and Midpoint Rules were based on the approximation of f
by piecewise linear functions, Simpson’s Rule approximates the graph of f by parabolic
arcs. To help motivate the formula, the reader may show that if three points

(_hv yO)’ (O’ y1)1 and (h1 y2)

are given, then the quadratic function q(x) := Ax? + Bx + C that passes through these
points has the property that

h
th = 3h(p + 4y, + ).
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Now let f be a continuous function on [a, b] and let n € N be even, and let 2, :=
(b — a)/n. On each “double subinterval”

la,a+2h,], [a+2h,,a+4h] - -, [b—2h,b]
we approximate f by n/2 quadratic functions that agree with f at the points
Yoi=f@, yi=fl@a+h), yi=fa+2h), -, y, = fb)
These considerations lead to the nth Simpson Approximation, defined by
S,(f) = sh,(f@+4f@+h,)+2f(a+2h,)+4f(@+3h,)
©) +2f(a+4h) +---+2f(b—2h,) +4f(b~h)+ f(b).

Note that the coefficients of the values of f at the n + 1 partition points follow the pattern
1,4,2,4,2,---,4,2, 4, 1.

We now state a theorem that gives an estimate about the accuracy of the Simpson
approximation; it involves the fourth derivative of f.

7.4.8 Theorem Let f, ', ", f® and f® be continuous on [a,b] and let n € N be
even. If S (f) is the nth Simpson Approximation (9), then there exists ¢ € [a, b] such
that

b
(10) S.(f)— ff—(—— F@).

A proof of this result is given in Appendix D.
The next result is parallel to Corollaries 7.4.4 and 7.4.7.

749 Corollary Let f, f', f", f® and f® be continuous on [a, b] and let | ¥ (x)| <

B, forallx € [a, b]. Then
a)h’ (b-a)
/f‘_—B4=—'B4-

11
(11 180 180n*

Successful use of the estimate (11) depends on being able to find an upper bound for
the fourth derivative.

7.4.10 Example If f(x) = 4e‘"2 on [0, 1] then a calculation shows that
FD(x) = de (4x* — 12x2 + 3),

whence it follows that | f @ (x)| <20 for x € [0, 1], so we can take B, =201t follows
from (11) that if n = 8 then

1
|,0H) - /f‘ o 84 20 = 2 < 000003

and thatif n = 16 then

’516(f) / f) < 589 535 < 0-0000017. 0
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Remark The nth Midpoint Approximation M, (f) can be used to “step up” to the (2n)th
Trapezoidal and Simpson Approximations by using the formulas

T,(f)=iM(H+AIT(f) and S, (f)=3M () +1iT,(f),

that are given in the Exercises. Thus once the initial Trapezoidal Approximation T} = T,(f)
has been calculated, only the Midpoint Approximations M, = M, (f) need be found. That
is, we employ the following sequence of calculations:

T, =3 —a)f@ + f®));

M =0b-af(3a@+b), T,=IMm+1i1, §=IM+1iT;
1 1 2 lp.
M2, T4 = 5M2+ ET ) S4 = §M2+ §T2a
2
8 3

M, T, =%M4+%T’ S8=§M4+1T4;

Exercises for Section 7.4

10.

11.

Use the Trapezoidal Approximation with n =4 to evaluate In2 = flz(l/x)dx. Show that
0.6866 < In2 < 0.6958 and that

1 1
00013 < —<T,-In2< — . .
<768_ ,—In _96<00105

Use the Simpson Approximation withn = 4 to evaluateIn2 = flz (1/x)dx.Show that 0.6927 <
In2 < 0.6933 and that

1 1
0.000016 < — - —— - —
< 5 1920 <§,—-lh2< 920 < 0.000521.

Let f(x):=(1+x»"! for x €[0,1]. Show that f”(x) =23x>—1)(1 +x?) 3 and that
| f’ (x)l <2 for x € [0, 1]. Use the Trapezoidal Approximation with n = 4 to evaluate 7 /4 =
Jo f (x) dx. Showthat |T,(f) — (x/4)| < 1/96 < 0.0105.

If the Trapezoidal Approximation T, (f) is used to approximate /4 as in Exercise 3, show that
we must take n > 409 in order to be sure that the error is less than 1076,

Let f be as in Exercise 3. Show that f®(x) = 24(5x* — 10x* + 1)(1 +x2)75 and that
| @ (x)l <96forx € [0, 1]. Use Simpson’s Approximation with n = 4 to evaluate /4. Show
that |S,(f) — (/4)| < 1/480 < 0.0021.

If the Simpson Approximation S, (f) is used to approximate 7 /4 as in Exercise 5, show that we
must take n > 28 in order to be sure that the error is less than 107°.

If p is a polynomial of degree at most 3, show that the Simpson Approximations are exact.

Show that if f”(x) >0 or; [a, b] (that is, if f is convex on [a, b]), then for any natural numbers
m,nwehave M, (f) < Jo f@dx < T (f).If f”(x) < Oon[a, b], this inequality is reversed.

Show that T, (f) = 1[M,(f) + T,(f)].
Show that S, (f) = $M,(f) + T, (f).

Show that one has the estimate
| £ (x)| for all x € [a, b].

S ()= [ fx) dx‘ < [(b —a)2/18n2]Bz, where B, >



226 CHAPTER7 THE RIEMANNINTEGRAL

12. Note that j;)l (1 — x» Y2 dx = /4. Explain why the error estimates given by formulas (4), (7),
and (10) cannot be used. Show that if h(x) = (1 —x?)"/? for x in [0, 1], then T, (h) < /4 <
M, (h). Calculate M(h) and Ty(h).

13. If h is as in Exercise 12, explain why K = fol/ﬁh(x) dx = m/8 + 1/4. Show that |h”(x)|,5
2%/2 and that |h® (x)| <9272 for x € [0, 1/+/2]. Show that |K — T, (h)| < 1/12n? and that
|K = 8,(h)| < 1/10n*. Use these results to calculate 7.

InExercises 14-20, approximate the indicated integrals, giving estimates for the error. Use a calculator
to obtain a high degree of precision.

2 2 1 d
14, /(1+x4)1/2dx. 15. / (4+x%)" dx. 16. .
0 0 o 1+x
oo /2 n/2
1. [ $mx 18. f _dx 19. f Jsinx dx.
0 X 0 l+smx 0

1
20. /cos(xz) dx.
0



CHAPTER 8

SEQUENCES OF FUNCTIONS

In previous chapters we have often made use of sequences of real numbers. In this chapter
we shall consider sequences whose terms are functions rather than real numbers. Sequences
of functions arise naturally in real analysis and are especially useful in obtaining approxi-
mations to a given function and defining new functions from known ones.

In Section 8.1 we will introduce two different notions of convergence for a sequence of
functions: pointwise convergence and uniform convergence. The latter type of convergence
is very important, and will be the main focus of our attention. The reason for this focus is
the fact that, as is shown in Section 8.2, uniform convergence “preserves” certain properties
in the sense that if each term of a uniformly convergent sequence of functions possesses
these properties, then the limit function also possesses the properties.

In Section 8.3 we will apply the concept of uniform convergence to define and derive
the basic preperties of the exponential and logarithmic functions. Section 8.4 is devoted to
a similar treatment of the trigonometric functions.

Section 8.1 Pointwise and Uniform Convergence

Let A C R be given and suppose that for each n € N there is a function f, : A - R; we
shall say that (f,) is a sequence of functions on A to R. Clearly, for each x € A, such a
sequence gives rise to a sequence of real numbers, namely the sequence

ey (f, (),

obtained by evaluating each of the functions at the point x. For certain values of x € A
the sequence (1) may converge, and for other values of x € A this sequence may diverge.
For each x € A for which the sequence (1) converges, there is a uniquely determined real
number lim(f, (x)). In general, the value of this limit, when it exists, will depend on the
choice of the point x € A. Thus, there arises in this way a function whose domain consists
of all numbers x € A for which the sequence (1) converges.

8.1.1 Definition Let (f,) be a sequence of functionson A C Rto R, let A; C A, and let
f Ay > R. We say that the sequence (f,) converges on A, to f if, foreach x € A, the
sequence (f,(x)) converges to f(x) in R. In this case we call f the limit on A, of the
sequence (f,). When such a function f exists, we say that the sequence () is convergent
on A, or that (f,) converges pointwise on A .

It follows from Theorem 3.1.4 that, except for a possible modification of the domain
A, the limit function is uniquely determined. Ordinarily we choose A to be the largest
set possible; that is, we take A, to be the set of all x € A for which the sequence (1) is
convergent in R.

227
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In order to symbolize that the sequence (f,) converges on A, to f, we sometimes
write

f =1lm(f,) on A, or Jo=> f on A,
Sometimes, when f, and f are given by formulas, we write
fx) =1lim f, (x) for x €A, or f,&x) = f(x) for x € A,
8.1.2 Examples (a) lim(x/n) =0forx € R.
Forn € N, let f,(x) == x/n and let f(x) := 0 for x € R. By Example 3.1.6(a), we
have lim(1/n) = 0. Hence it follows from Theorem 3.2.3 that
lim(f,(x)) = lim(x/n) = xlim(1/n) =x-0=0

forall x € R. (See Figure 8.1.1.)

f
(1,8(1))
f2
&
f3 %4,
= I
Figure8.1.1 f (x) =x/n. Figure8.1.2 ¢ (x) =x".

(b) lim(x").

Let g,(x) := x" for x € R, n € N. (See Figure 8.1.2.) Clearly, if x = 1, then the
sequence (g, (1)) = (1) converges to 1. It follows from Example 3.1.11(b) that lim(x") = 0
for0 < x < 1 and it is readily seen that this is also true for —1 < x < 0. If x = —1, then
g,(-1) = (=1)", and it was seen in Example 3.2.8(b) that the sequence is divergent.
Similarly, if (x| > 1, then the sequence (x") is not bounded, and so it is not convergent
in R. We conclude that if

0 for —1<x <1,
1 for x=1,

g(x) = {

then the sequence (g,) converges to g on the set (—1, 1].
(¢) lim((x?+ nx)/n) =x forx € R.
Leth, (x) == (x2 +nx)/nforx € R, n € N, and let 2(x) := x for x € R. (See Fig-

ure 8.1.3.) Since we have k (x) = (x%/n) + x, it follows from Example 3.1.6(a) and
Theorem 3.2.3 that &, (x) — x = h(x) forallx € R.
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hihy by b

Figure 8.1.3 & (x) = (x*> + nx)/n, Figure 8.1.4 F,(x) =sin(nx +n)/n.

(d) lim((1/n)sin(nx + n)) =0 forx € R.
Let F, (x) == (1/n) sin(nx + n) forx € R, n € N, and let F(x) := 0 for x € R. (See
Figure 8.1.4.) Since |siny| < 1forally € R we have

1
< -

1
@) |F,(x) — F(x)| = i— sin(nx + n)
n n

for all x € R. Therefore it follows that lim(F, (x)) = 0 = F(x) for all x € R. The reader
should note that, given any ¢ > 0, if » is sufficiently large, then |F, (x) — F(x)| < ¢ for all
values of x simultaneously! O

Partly to reinforce Definition 8.1.1 and partly to prepare the way for the important
notion of uniform convergence, we reformulate Definition 8.1.1 as follows.

8.1.3 Lemma A sequence (f,) of functions on A C R to R converges to a function
f:Ay—> RonAifandonly if for eache > 0 and eachx € A, there is a natural number
K (e, x) such that ifn > K (e, x), then

(©) |f,) = f0)] <e.

We leave it to the reader to show that this is equivalent to Definition 8.1.1. We wish to
emphasize that the value of K (¢, x) willdepend, in general, on both e > O and x € A,,. The
reader should confirm the fact that in Examples 8.1.2(a—c), the value of K (¢, x) required
to obtain an inequality such as (3) does depend on both ¢ > 0 and x € A;. The intuitive
reason for this is that the convergence of the sequence is “significantly faster” at some
points than it is at others. However, in Example 8.1.2(d), as we have seen in inequality (2),
if we choose n sufficiently large, we canmake |F, (x) — F(x)| < ¢ forall values of x € R.
It is precisely this rather subtle difference that distinguishes between the notion of the
“pointwise convergence” of a sequence of functions (as defined in Definition 8.1.1) and the
notion of “uniform convergence”.

Uniform Convergence

8.1.4 Definition A sequence (f,) of functions on A C R to R converges uniformly
on A, C A to a function f : A; — R if for each ¢ > 0 there is a natural number K (¢)
(depending on € but not on x € Ao) such thatif n > K (¢), then

@) |f,00 — f@x)| <&  forall xeA,
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In this case we say that the sequence (£,) is uniformly convergent on A . Sometimes we
write

f,=3f on A, or [, 3 fx) for x €A,

Itis an immediate consequence of the definitions thatif the sequence ( f,) is uniformly
convergent on A, to f, then this sequence also converges pointwise on A to f in the sense
of Definition 8.1.1. That the converse is not always true is seen by a careful examination of
Examples 8.1.2(a—); other examples will be given below.

It is sometimes useful to have the following necessary and sufficient condition for a
sequence ( f,) to fail to converge uniformly on A to f.

8.1.5 Lemma A sequence (f,) of functions on A € R toR does not converge uniformly
on A, C A toafunction f : A, — R if and only if for some &, > O there is a subsequence
( f"k) of (f,) and a sequence (x,) in A such that

®)] fnk (x) = f(x)| =g forall ke N.

The proof of this result requires only that the reader negate Definition 8.1.4; we leave
this to the reader as an important exercise. We now show how this result can be used.

8.1.6 Examples (a) Consider Example 8.1.2(a). If we let n, := k and x, := k, then
f,,k (x,) = 1 so that lfnk (%) — f(x,)| = |1 — O] = 1. Therefore the sequence (£, ) does not
converge uniformly on R to f.

(b) Consider Example 8.1.2(b). If n, := k and x, := (1)"/*, then

g”k(xk) _g(xk)‘ = ‘% _Ol — %

Therefore the sequence (g,) does not converge uniformly on (-1, 1] to g.

(c) Consider Example 8.1.2(c). If n, := k and x, := —k, then h”k (x,) =0and h(x,) =
—k sothat |h”k (x,) — h(x,)| = k. Therefore the sequence (h,,) does not converge uniformly
onR to A. O

The Uniform Norm

In discussing uniform convergence, it is often convenient to use the notion of the uniform
norm on a set of bounded functions.

8.1.7 Definition If A € Rand ¢ : A — R isa function, we say that ¢ is bounded on A
if the set ¢ (A) is a bounded subset of R. If ¢ is bounded we define the uniform norm of
¢ on A by

(6) llell, := sup{lex)| : x € A}.
Note that it follows thatif ¢ > 0, then

@) lell, < e = lpx) <e  forall x € A.

8.1.8 Lemma A sequence (f,) of bounded functions on A C R converges uniformly on
A to f ifandonly if | f, — fll, = O.



8.1 POINTWISE AND UNIFORM CONVERGENCE 231

Proof. (=) If (f,) converges uniformly on A to f, then by Definition 8.1.4, given any
& > 0 there exists K(¢) such that if n > K(¢) and x € A then

|f,(0) — f@)] <&

From the definition of supremum, it follows that || fn — fll4 < e whenever n > K (¢). Since
¢ > 0 is arbitrary this implies that | f, — |, — 0.

(=) If|f, — fll, — 0, then given & > O there is a natural number H (¢) such that if
n > H(e)then| f, — fl, < e.Itfollows from (7)that|f (x) — f(x)| < &foralln > H(e)
and x € A. Therefore (f,) converges uniformly on A to f. QED.

We now illustrate the use of Lemma 8.1.8 as a tool in examining a sequence of bounded
functions for uniform convergence.

8.1.9 Examples (a) We cannotapply Lemma 8.1.8 to the sequence in Example 8.1.2(a)
since the function f, (x) — f(x) = x/n is not bounded on R.

For the sake of illustration, let A := [0, 1]. Although the sequence (x/n) did not
converge uniformly on R to the zero function, we shall show that the convergence is
uniform on A. To see this, we observe that

1
Ifo = flla =sup{lx/n—01:0=<x <1} =

so that || f, — f 4 — O. Therefore (f,) is uniformly convergent on A to f.

(b) Letg,(x):= x"forxe A:=[0,1]andn € N,andlet g(x) :=0for0 < x < 1 and
g(1) := 1. The functions g, (x) — g(x) are bounded on A and

le. —gll, = su x" for 0<x<1| _
En ~ 8l Plo for x=1

for any n € N. Since ||g, — gll, does not converge to 0, we infer that the sequence (g,)
does not converge uniformly on A to g.

(c) We cannot apply Lemma 8.1.8 to the sequence in Example 8.1.2(c) since the function
h,(x) —hx) = x* /n is not bounded on R.
Instead, let A := [0, 8] and consider

{
Ik, — hll, =sup{x*/n : 0 < x < 8} = 64/n.

Therefore, the sequence (h,,) converges uniformly on A to A.

(d) Ifwe refer to Example 8.1.2(d), we see from (2) that || F, — F|p < 1/n. Hence (F,)
converges uniformly on R to F.

(e LetG(x) :=x"(1 —x) forx € A := [0, 1]. Then the sequence (G, (x)) converges to
G(x) := 0 for each x € A. To calculate the uniform norm of Gn — G =G, on A, we find
the derivative and solve

G, (x) = x”_l(n —(n+ l)x) =0

to obtain the point x, := n/(n + 1). This is an interior point of [0, 1], and it is easily
verified by using the First Derivative Test 6.2.8 that G, attains a maximum on [0, 1] at x,,.
Therefore, we obtain

1G4 =G, (%) = A+ /M ——.

which converges to (1/¢) - 0 = 0. Thus we see that convergence is uniform on A. ]
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By making use of the uniform norm, we can obtain a necessary and sufficient condision
for uniform convergence that is often useful.

8.1.10 Cauchy Criterion for Uniform Convergence Let (f,) be a sequence of bounded
functions on A C R. Then this sequence converges uniformly on A to a bounded function
f if and only if for each € > 0 there is a number H (¢) in N such that for allm,n > H(g),
then | £, £, < =

Proof. (=)If f, = f on A, then given ¢ > 0 there exists a natural number K (%8) such
thatifn > K (&) then | f, — fll, < 3e. Hence, if bothm, n > K (3¢), then we conclude
that

[£u® = £, < [£,0) = FO|+|£,00 = fFO)] < e+ 32 =+

forall x € A. Therefore | f,, — f,II, <¢&,form,n > K(%a) =: H(¢).
(¢«) Conversely, suppose that for ¢ > 0 there is H (¢) such that if m, n > H (¢), then
| f, — fn||A < ¢. Therefore, for each x € A we have

(8) |fu® = £ < fu—Fly<e  for mn>H).

It follows that (£, (x)) is a Cauchy sequence in R; therefore, by Theorem 3.5.5, it is a
convergent sequence. We define f : A — R by

f(x) = lim(f,(x)) for x € A.
If we let n — o0 in (8), it follows from Theorem 3.2.6 that foreach x € A we have
|£, ) = fx)| <& for m>H(e).

Therefore the sequence ( f,) converges uniformly on A to f. QED.

Exercises for Section 8.1

Show that lim(x/(x + n)) = Oforallx e R, x > 0.
Show that lim(nx /(1 + n*x%)) =0forallx € R.
Evaluate lim(nx /(1 + nx)) forx e R,x > 0.
Evaluate lim(x" /(1 + x")) forx e R,x > 0.
Evaluate lim((sinnx)/(1 + nx)) forx € R, x > 0.
Show that lim(Arctannx) = (7 /2)sgn x for x € R.
Evaluate lim(e™™) forx € R, x > 0.

Show that lim(xe ™) = 0forx € R, x > 0.

Show that lim(x%e ") = 0 and that lim(n?x%e™"*) = O forx € R, x > 0.

W 0 NN L»n AW N =

—_
e

Show that lim ((cos 7rx)?") exists for all x € R. Whatis its limit?

—
—

Show thatifa > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval
[0, a], but is not uniform on the interval [0, 0o).

12. Show thatif a > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval
[a, 00), but is not ypiform on the interval [0, co).

13. Show thatifa > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval
[a, 00), but is not uniform on the interval [0, 00).
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14. Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the
interval [0, b], but is not uniform on the interval [0, 1].

15. Show thatifa > 0, then the convergence of the sequence in Exercise 5 is uniform on the interval
[a, 00), but is not uniform on the interval [0, 00).

16. Show thatif a > 0, thenthe convergence of the sequence in Exercise 6 is uniform on the interval
[a, 00), but is not uniform on the interval (0, 00).

17. Show thatifa > 0, then the convergence of the sequence in Exercise 7 is uniform on the interval
[a, 00), but is not uniform on the interval {0, 00).

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, 00).
19. Show that the sequence (x2e~"*) converges uniformly on [0, 0o).

+ 20. Show that if a > 0, then the sequence (n>x2e~") converges uniformly on the interval [a, o),
but that it does not converge uniformly on the interval [0, co).

21. Show that if (f,), (g,) converge uniformly on the set A to f, g, respectively, then (£, + g,)
converges uniformlyon A to f + g.

22. Show thatif f, (x) :=x + 1/n and f(x) := x for x € R, then (f,) converges uniformly on R
to f, but the sequence ( f,,") does not converge uniformly on R. (Thus the product of uniformlv
convergent sequences of functions may not converge uniformly.)

23. Let (f,). (g,) be sequences of bounded'functions on A that converge uniformly on A to f, g,
respectively. Show that (f, g,) converges uniformly on A to fg.

24. Let (f,) be a sequence of functions that converges uniformly to f on A and that satisfies
|f,(x)| < M foralln € Nand all x € A. If g is continuous on the interval [— M, M], show that
the sequence (g o f,) converges uniformly to g o f on A.

Section 8.2 Interchange of Limits

It is often useful to know whether the limit of a sequence of functions is a continuous
function, a differentiable function, or a Riemann integrable function. Unfortunately, it
is not always the case that the limit of a sequence of functions possesses these useful
properties.

8.2.1 Example (a) Let g, (x) := x" for x € [0, 1] and n € N. Then, as we have noted
in Example 8.1.2(b), the sequence (g,) converges pointwise to the function

(x) = 0 for 0<x<1,
§X) - 1 for x=1.

Although all of the functions g, are continuous at x = 1, the limit function g is not
continuous at x = 1. Recall that it was shown in Example 8.1.6(b) that this sequence does
not converge uniformly to g on [0, 1].

(b) Each of the functions g,(x) = x" in part (a) has a continuous derivative on [0, 1].
However, the limit function g does not have a derivative at x = 1, since it is not continuous
at that point.

() Letf, :[0, 1] - R bedefined forn > 2 by

n’x for 0<x<1/n,

f,@):={-n*(x—-2/n) for 1/n<x<2/n,
0 for 2/n<x<1.
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(See Figure 8.2.1.) It is clear that each of the functions f, is continuous on [0, 1]; hence
it is Riemann integrable. Either by means of a direct calculation, or by referring to the
significance of the integral as an area, we obtain

1
/ f,(x)dx =1 for n>2
0

The reader may show that f, (x) — Oforallx € [0, 1]; hence the limit function f vanishes

identically and is continuous (and hence integrable), and fol f(x)dx = 0. Therefore we
have the uncomfortable situation that:

1 1
/ f(x)dx=0;é1=1im/ f,(x) dx.
0 0

)

0 2 1

|

[

|

|

|

|

|

|

|

[

!
1
n n

Figure 8.2.1 Example 8.2.1(c).

(d) Those who consider the functions f, in part (c) to be “artificial” may prefer to consider
the sequence (h,) defined by A, (x) = 2nxe ™™’ for x € [0, 1),n € N. Since h, = H,,
where H (x) := —e"”‘z, the Fundamental Theorem 7.3.1 gives

1
/ h,(x)dx =H,(1)— H(0)=1-e™".
0

It is an exercise to show that h(x) := lim(h,(x)) = Oforall x € [0, 1]; hence
1 1
/ h(x)dx # lim/ h,(x)dx. O
0 0

Although the extent of the discontinuity of the limit function in Example 8.2.1(a) is
not very great, it is evident that more complicated examples can be constructed that will
produce more extensive discontinuity. In any case, we must abandon the hope that the limit
of a convergent sequence of continuous [respectively, differentiable, integrable] functions
will be continuous [respectively, differentiable, integrable].

It will now be seen that the additional hypothesis of uniform convergence is sufficient
to guarantee that the limit of a sequence of continuous functions is continuous. Similar
results will also be established for sequences of differentiable and integrable functions.

Interchange of Limit and Continuity

8.2.2 Theorem Let (f,) be a sequence of continuous functions on a set A € R and
suppose that ( f,) converges uniformly on A to a function f : A — R. Then f is continuous
onA.
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Proof. By hypothesis, given ¢ > 0 there exists a natural number H = H (%8) such that
if n > H then | f,(x) — f(x)| < %e for all x € A. Let ¢ € A be arbitrary; we will show

that f is continuous at c. By the Triangle Inequality we have
£ ) = F@OI < [F) = fr®| +]fu ) = f4©] + | fu(©) = f@)
3+ | fy (@) = fy©] + 3e.
Since f, is continuous at c, there exists a number § := 8(%6‘, c, fH) > 0 such that if
|x —c| <dandx € A, then|f,(x) — fy(0)| < %s. Therefore, if |x —¢| < dandx € A,

then we have | f(x) — f(c)| < ¢. Since € > 0 s arbitrary, this establishes the continuity of
f atthe arbitrary point ¢ € A. (See Figure 8.2.2.) : QE.D.

A

IA

(x, for (X))

(e, f(c)

(x, £(x)

(c, fyy ()

Figure8.2.2 |f(x) — f(c)| <e.

Remark Although the uniform convergence of the sequence of continuous functions
is sufficient to guarantee the continuity of the limit function, it is not necessary. (See
Exercise 2.)

Interchange of Limit and Derivative

We mentioned in Section 6.1 that Weierstrass showed that the function defined by the series
(e ¢]
fx) = Z 2% cos(3*x)
k=0

is continuous at every point but does not have a derivative at any point in R. By considering
the partial sums of this series, we obtain a sequence of functions (f,) that possess a
derivative at every point and are uniformly convergent to f. Thus, eventhoughthe sequence
of differentiable functions (f,) is uniformly convergent, it does not follow that the limit
function is differentiable.

We now show that if the sequence of derivatives (f,) is uniformly convergent, then
all is well. If one adds the hypothesis that the derivatives are continuous, then it is possible
to give a short proof, based on the integral. (See Exercise 11.) However, if the derivatives
are not assumed to be continuous, a somewhat more delicate argument is required.

8.2.3 Theorem LetJ C R be a bounded interval and let (f,) be a sequence of functions
on J to R. Suppose that there exists x, € J such that (f,(x,)) converges, and that the
sequence ( f,) of derivatives exists on J and converges uniformly on J to a function g.

Then the sequence ( f,) converges uniformly on J to a function f that has a derivative
ateverypointof J and ' = g.
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Proof. Leta < b be the endpoints of J and let x € J be arbitrary. If m, n € N, we apply
the Mean Value Theorem 6.2.4 to the difference f, — f, on the interval with endpoints x,
x. We conclude that there exists a point y (depending on m, n) such that

Fn®) — £,(x) = £, (x0) — £, (x0) + (x = x){ [ () = fu(M)}.

Hence we have

1) | = s 211060 = Sl + B =) | £ = 111, -

From Theorem 8.1.10, itfollows from (1) and the hypotheses that ( f, (x,)) is convergent and
that (f,,) is uniformly convergent on J, that (f,) is uniformly convergent on J. We denote
the limit of the sequence (f,) by f. Since the £, are all continuous and the convergence is
uniform, it follows from Theorem 8.2.2 that f is continuous on J.

To establish the existence of the derivative of f ata point ¢ € J, we apply the Mean
Value Theorem 6.2.4 to f,, — £, on an interval with end points c, x. We conclude that there
exists a point z (depending on m, n) such that

(£ = £} —{f,© - £,0} = x - O {2 - fl(D)}.
Hence, if x # ¢, we have

Fu@®) = fu(0)  £,(0) = £,(0)

X —C X —=C

< |fm= 1,

Since (f,) converges uniformly on J, if ¢ > 0 is given there exists H(g) such that if
m,n > H(e) and x # c, then

Jn®) = Ful0)  £,(x) = f,()

X —=C X —=C

?

<e.

If we take the limit in (2) with respect to m and use Theorem 3.2.6, we have

‘f(x) -f© £, =10

X —=C X —cC

<e&.

provided that x # ¢, n > H(¢). Since g(c) = lim(f,(c)), there exists N(¢) such that if
n > N(e), then | f,(c) — g(c)| < & Now let K := sup{H(e), N (¢)}. Since fx(c) exists,
there exists &, (¢) > O suchthatif 0 < |x — c| < 8, (¢), then

fx® = fx©)

X —C

f,’{(c){ <e&.

Combining these inequalities, we conclude thatif 0 < |[x — ¢| < §  (€), then

) = f@©
C

X —

< 3e.

gl

Since ¢ > Qis arbitrary, this shows that f’(c) exists and equals g(c). Since ¢ € J is arbitrary,
we conclude that /' = g on J. QED.

Interchange of Limit and Integral
We have seen in Example 8.2.1(c) thatif (f,) is a sequence R[a, b] that converges on [a, b]
to a function f in R[a, b], then it need not happen that

b b
3 ["f=tim [ 5.

Ja n-»00 a
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We will now show that uniform convergence of the sequence is sufficient to guarantee that
this equality holds.

8.2.4 Theorem Let (f,) be a sequence of functions in R[a, b] and suppose that (f,)
converges uniformly on [a, b] to f. Then f € R[a, b] and (3) holds.

Proof. 1t follows from the Cauchy Criterion 8.1.10 that, given £ > 0 there exists H(e)
such that if m > n > H(e) then

- < f,x)— f,(x) <e . for x € [a.b]

Theorem 7.1.4 implies that

b b
—e(b—a) 5/ f,,,—/ f, < eb—a).

Since & > 0 is arbitrary, the sequence ( fab f,,) is a Cauchy sequence in R and therefore
converges to some number, say A € R.

We now show f € R [a, b] with integral A. If ¢ > 0 is given, let K(¢) be such that
if m > K(e), then | f, (x) — f(x)| < e forall x € [a, b]. If P := {([x,_,, x;], t,)}{_; is any
tagged partition of [a, b] and if m > K (¢), then

n

PR PR AR CAE

i=1

IS P) = S(F3P)| =

<Y 1) = f@)| @& —x,_)

i=1
<Y e —x,_) =& —a).
i=1

We now choose r > K(g) such that | fab f, — Al < & and we let Sm > 0 be such that
Ifab f. = S(f,; P)| < & whenever |P| < 8, .- Then we have
b
A A
a

But since £ > 0 is arbitrary, it follows that f € R [a, b] and fab f=A. QED.

b
|SCF; P) — A| < |S(fF; P) = S(f,: P)| + |S(f,;7>) —/ f

<eb—a)+e+e=¢cb—-—a+?2).

The hypothesis of uniform convergence is a very stringent one and restricts the utility
of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem
8.2.4. For the present, we will state a result that does not require the uniformity of the

convergence, but does require that the limit function be Riemann integrable. The proof is
omitted.

8.2.5 Bounded Convergence Theorem Let (f,) be a sequence in R|a, b] that con-

verges on [a, b] to a function f € R[a, b]. Suppose also that there exists B > 0 such that
|f,(x)| < B forallx € [a, b], n € N. Then equation (3) holds.
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Dini’s Theorem

We will end this section with a famous theorem due to Ulisse Dini (1845-1918) which
gives a partial converse to Theorem 8.2.2 when the sequence is monotone. We will present
a proof using nonconstant gauges (see Section 5.5).

8.2.6 Dini’s Theorem Suppose that (f,) isa monotone sequence of continuous functions
on I := [a, b] that converges on I to a continuous function f. Then the convergence of the
sequence is uniform.

Proof. 'We suppose that the sequence ( f,) is decreasing andletg,, := f,, — f. Then (g,,)
is a decreasing sequence of continuous functions converging on I to the O-function. We
will show that the convergence is uniform on /.

Given € > 0,1t € I, there exists m , € N such that 0 < gm“(t) < ¢/2. Since gm“ is
continuous at ¢, there exists ,(¢) > 0 such that 0 < gms t(x) <eforallx el satisf)}ing
|x —t] < 8.(1). Thus, §, is a gauge on 1, and if P = {(1,, z‘i)}f‘=1 is a §,-fine partition, we
set M, = max{mg,t yreeamg, }.Ifm > M, and x € I, then (by Lemma 5.5.3) there exists
an index i with [x —7,| <4, (tl.n) and hence

0<g,(0) =g, () <e
Therefore, the sequence (g,,) converges uniformly to the 0-function. QED.

It will be seen in the exercises that we cannot drop any one of the three hypotheses: (i)
the functions f, are continuous, (ii) the limit function f is continuous, (iii) / is a closed
bounded interval.

Exercises for Section 8.2

1. Show that the sequence ((x"/(1 + x")) does not converge uniformly on [0, 2] by showing that
the limit function is not continuous on [0, 2].

2. Prove that the sequence in Example 8.2.1(c) is an example of a sequence of continuous functions
that converges nonuniformly to a continuous limit.

3. Construct a sequence of functions on [0, 1] each of which is discontinuous at every point of [0, 1]
and which converges uniformly to a function that is continuous at every point.

4. Suppose (f,) is a sequence of continuous functions on an interval I that converges uniformly on
I to a function f. If (x,) € I converges to x, € I, show that lim(f, (x,)) = f(x,).

5. Let f: R — R be uniformly continuous on R and let f, (x) := f(x +1/n) for x € R. Show
that (f,) converges uniformly en R to f.

6. Let f (x) :=1/(1 +x)" for x € [0, 1]. Find the pointwise limit f of the sequence (f,) on [0, 1].
Does (f,) converge uniformly to f on [0, 1]?

7. Suppose the sequence (f,) converges uniformly to f on the set A, and suppose that each f, is
bounded on A. (That is, for each n there is a constant M, such that | f, (x)| < M, forallx € A.)
Show that the function f is bounded on A.

8. Let f,(x) :==nx/(1+ nx?) for x € A := [0, o), Show that each f, is bounded on A, but the
pointwise limit f of the sequence is not bounded on A. Does (f,) converge uniformly to f on A?
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9 Let f,(x) == x"/n forx € [0, 1]. Show that the sequence (f,) of differentiable functions con-

10.
1.

12.
13.
14.

15.
16.

17.

18.

19.

20.

verges uniformly to a differentiable function f on [0, 1], and that the sequence ( f,) converges
on [0, 1] to a function g, but that g(1) # f'(1).

Let g, (x) := e~ /n for x > 0, n € N. Examine the relation between lim(g,) and lim(g,).

Let I :=[a, b] and let ( f,) be a sequence of functions on I — R that converges on I to f.
Suppose that each derivative f, is continuous on / and that the sequence (f,) is uniformly
convergent to g on /. Prove that f(x) — f(a) = faJr g(t)dt and that f'(x) = g(x) forallx € I.

Show that lim flz e dx = 0.
If a > 0, show that lim f: (sinnx)/(nx) dx = 0. What happens if a = 0?

Let f,(x) == nx/(1 + nx) for x € [0, 1]. Show that (f,) converges nonuniformly to an inte-
grable function f and that f; f(x) dx = lim f} f, (x) dx.

Letg,(x) := nx(1 —x)" forx € [0, 1], n € N. Discuss the convergence of (g, ) and (fol g,dx).

Let {r,,r,,++-,r, -} be an enumeration of the rational numbers in / := [0, 1], and let f, :
I — R bedefinedtobe 1if x =r,---,r, and equal to 0 otherwise. Show that f, is Riemann
integrable foreachn € N, that f| (x) < f,(x) <--- < f (x) < ---andthat f(x) := lim(f, (x))
is the Dirichlet function, which is not Riemann integrable on [0, 1].

Let f,(x) := 1forx € (0, 1/n) and f,(x) := O elsewherein [0, 1]. Show that (f,) is a decreas-
ing sequence of discontinuous functions that converges to a continuous limit function, but the
convergence is not uniform on [0, 1].

Let f,(x) := x" for x € [0, 1], n € N. Show that ( f,) is a decreasing sequence of continuous
functions that converges to a function that is not continuous, but the convergence is not uniform
on [0, 1].

Let f,(x) := x/nforx € [0, 00), n € N. Show that (f,) is a decreasing sequence of continuous
functions that converges to a continuous limit function, but the convergence is not uniform on
[0, 00).

Give an example of a decreasing sequence (f,) of continuous functions on [0, 1) that converges
to a continuous limit function, but the convergence is not uniform on [0, 1).

Section 8.3 The Exponential and Logarithmic Functions

We will now introduce the exponential and logarithmic functions and will derive some of
their most important properties. In earlier sections of this book we assumed some familiarity
with these functions for the purpose of discussing examples. However, it is necessary at
some point to place these important functions on a firm foundation in order to establish
their existence and determine their basic properties. We will do that here. There are several
alternative approaches one can take to accomplish this goal. We will proceed by first proving
the existence of a function that has itself as derivative. From this basic result, we obtain
the main properties of the exponential function. The logarithm function is then introduced
as the inverse of the exponential function, and this inverse relation is used to derive the
properties of the logarithm function.

The Exponential Function

We begin by establishing the key existence result for the exponential function.
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8.3.1 Theorem There exists a function E : R — R such that:
(i) E'(x) =E(x) forallx € R.
i) E@©) =1.

Proof. We inductively define a sequence (E,) of continuous functions as follows:
¢)) E (x):=1+x,
X
2 E  (x):=1+ f E, (1) dt,
0

for all n € N, x € R. Clearly E, is continuous on R and hence is integrable over any
bounded interval. If E, has been defined and is continuous on R, then it is integrable over
any bounded interval, so that E,  , is well-defined by the above formula. Moreover, it
follows from the Fundamental Theorem (Second Form) 7.3.5 that E, , is differentiable at
any point x € R and that

3 E, . (x)= E, (x) for neN.
An Induction argument (which we leave to the reader) shows that
2 n
x X x

Let A > O be given; theniif |x| < Aandm > n > 2A, we have

n+1 m

x x
©) |E, (x) — E, (x)| = Y +oF ~
An+l A A m—n—1
=+l [1+Z+"'+(7) ]
An+l
< 2.
(n+ 1)

Since lim(A"/n!) = 0, it follows that the sequence (E, ) converges uniformly on the interval
[—A, A] where A > 0 is arbitrary. In particular this means that (E, (x)) converges for each
x € R. Wedefine E : R — R by

E(x) :=limE, (x) for x e R.

Since each x € R iscontainedinside some interval [—A, A], it follows from Theorem 8.2.2
that E is continubus at x. Moreover, it is clear from (1) and (2) that E, (0) = 1foralln € N.
Therefore E(0) = 1, which proves (ii).

On any interval [—A, A] we have the uniform convergence of the sequence (E,). In
view of (3), we also have the uniform convergence of the sequence (E,) of derivatives. It
therefore follows from Theorem 8.2.3 that the limit function FE is differentiable on [— A, A]
and that

E'(x) = lim(E}(x)) = lim(E,_, (x)) = E(x)

for all x € [—A, A]. Since A > 0 is arbitrary, statement (i) is established. QED.

8.3.2 Corollary The function E has a derivative of every order and E ™ (x) = E(x) for
alln e N,x e R.
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Proof. If n =1, the statement is merely property (i). It follows for arbitrary n € N by
Induction. QED.

8.3.3 Corollary Ifx > 0, then1+ x < E(x).

Proof. Itis clear from (4) thatif x > 0, then the sequence (E, (x)) is strictly increasing.

Hence E|(x) < E(x) forallx > 0. Q.E.D.
It is next shown that the function E, whose existence was established in Theorem 8.3.1,

is unique.

8.3.4 Theorem The function E : R — R that satisfies (i) and (ii) of Theorem 8.3.1 is
unique.

Proof. Let E| and E, be two functions on R to R that satisfy properties (i) and (ii) of
Theorem 8.3.1andlet F := E, — E,. Then

F'(x) = E{(®) — Ej(x) = E,(x) — E,(x) = F(x)
for all x € R and
FO)=E 0 —-E,0)=1-1=0.

Itis clear (by Induction) that F has derivatives of all orders and indeed that F ™ (x) = F(x)
forn e N,x e R.

Let x € R be arbitrary, and let I, be the closed interval with endpoints 0, x. Since F
is continuous on I, there exists K > 0 such that |F(¢)| < K forall t € I,. If we apply
Taylor’s Theorem 6.4.1 to F on the interval I, and use the fact that F®(0) = F(0) =0
for all k € N, it follows that for each n € N there is a point ¢, € I, such that

F (0 Ft-D F®™
F(x)=F(0)+ Lx + -+ g (cn) n
1! (n—1! n!
F
_Fl) .,
n!
Therefore we have
K n
|F (x)| < lf' forall neN.
n

But since lim(|x|" /n!) = 0, we conclude that F(x) = 0. Since x € R is arbitrary, we infer
that E, (x) — E,(x) = F(x) =0forallx € R. Q.E.D.

The standard terminology and notation for the function E (which we now know exists
and is unique) is given in the following definition.

8.3.5 Definition The unique function E : R — R such that E'(x) = E(x) forallx € R
and E(0) = 1, is called the exponential function. The number e := E(1) is called Euler’s
number. We will frequently write

exp(x) = E(x) or e’ = E{) for x e R.

The number e can be obtained as a limit, and thereby approximated, in several different
ways. [See Exercises 1 and 10, and Example 3.3.6.]

The use of the notation ¢* for E(x) is justified by property (v) in the next theorem,
where it is noted that if r is arational number, then E () and " coincide. (Rational exponents
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were discussed in Section 5.6.) Thus, the function E can be viewed as extending the idea
of exponentiation from rational numbers to arbitrary real numbers. For a definition of a*
fora > 0 and arbitrary x € R, see Definition 8.3.10.

8.3.6 Theorem The exponential function satisfies the following properties:
(iii) E(x) #0forallx € R;

(ivi E(x+y)=EX)E(y) forallx,y € R;

(v) E(r)=¢€ forallr € Q.

Proof. (iii) Let € R be such that E(a) =0, and let J, be the closed interval with
endpoints 0, . Let K > |E(¢)| forallt € J,. Taylor’s Theorem 6.4.1, implies that for each
n € N there exists a point ¢, € J, such that

7 (n—1)
1=E@©) = E(a) + M (=) +---+ _E__(ot) (—ot)""l
1! (n—1)!
E"@ . E()
! (—a)" = T (—a)*.

Thus we have 0 < 1 < (K/n!) |a|" forn € N. But since lim(|«|"/n!) =0, this is a con-
tradiction.
(iv) Let y be fixed; by (iii) we have E(y) # 0. Let G : R — R be defined by

E
G(x) = _(;(—)I}-—)y)

Evidentlywehave G'(x) = E'(x + y)/E(y) = E(x + y)/E(y) = G(x) forall x € R, and
G(0) = E(0+ y)/E(y) = 1.Itfollows from the uniqueness of E, proved in Theorem 8.3.4,
that G(x) = E(x) for all x € R. Hence E(x + y) = E(x)E(y) forall x € R. Since y € R
is arbitrary, we obtain (iv).

(v) It follows from (iv) and Induction thatif n € N, x € R, then

E(nx) = E(x)".

for x eR.

If we let x = 1/n, this relation implies that

1 Y
e=BD=E(n-7)= (E(;>) '
whence it follows that E(1/n) = e'/". Also we have E(—m) = 1/E(m) = 1/e™ =e™
form € N. Therefore, if m € Z, n € N, we have
E(m/n) = (EQ/m)" = (/)" = ™/,
This establishes (v). QED.

8.3.7 Theorem The exponential function E is strictly increasing on R and has range
equal to {y € R : y > 0}. Further, we have

(vi) lir_nooE(x) =0 and lim E(x) = oo.

Proof. We know that E(0) = 1 > 0 and E(x) # O for all x € R. Since E is continuous
on R, it follows from Bolzano’s Intermediate Value Theorem 5.3.7 that E(x) > O for all
x € R. Therefore E'(x) = E(x) > 0for x € R, so that E is strictly increasing on R.
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It follows from Corollary 8.3.3 that2 < e andthat linolo E(x) = o00. Also, if z > 0, then
x—
since0 < E(—z) = 1/E(z) itfollowsthat lim E(x) = 0. Therefore, by the Intermediate
xX—>—00
Value Theorem 5.3.7, every y € R with y > 0 belongs to the range of E. QED.

The Logarithm Function

We have seen that the exponential function E is a strictly increasing differentiable function
with domain R and range {y € R : y > 0}. (See Figure 8.3.1.) It follows that R has an
inverse function.

____——on (1.0/

Figure 8.3.1 Graph of E. Figure 8.3.2 Graph of L.

8.3.8 Definition The function inverse to E : R — R is called the logarithm (or the
natural logarithm). (See Figure 8.3.2.) It will be denoted by L, or by In.

Since E and L are inverse functions, we have
(LoE)x)=x forall x eR
and
(EoL)y)=y forall yeR,y>0.
These formulas may also be written in the form

Ine* = x, e =y.

8.3.9 Theorem The logarithm is a sirictly increasing function L with domain {x € R :
x > 0} and range R. The derivative of L is given by

(vii) L'(x) =1/x forx > 0.

The logarithm satisfies the functional equation

(viii) L(xy) =L(x)+ L(y) forx > 0,y > 0.

Moreover, we have

(ix) L(1)=0 and L) =1,

x) L&x")=rL(x) for x>0,reQ.

(xi) lim L(x) = —oc0 and lim L(x) = oo.
x—0+ X—>00
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Proof. That L is strictly increasing with domain {x € R : x > 0} and range R follows
from the fact that E is strictly increasing with domain R and range {y e R: y > 0}.

(vii) Since E’(x) = E(x) > 0, it follows from Theorem 6.1.9 that L is differentiable
on (0, oo) and that

1 1 1
(EoL)(x) (EoL)(x) «x

(viii) If x >0,y > 0, let ¥ := L(x) and v := L(y). Then we have x = E(u) and
y = E(v). It follows from property (iv) of Theorem 8.3.6 that

xy =EW)E() = E(u +v),

sothat L(xy) = (L o E)(u +v) =u 4+ v = L(x) + L(y). This establishes (viii).

The properties in (ix) follow from the relations E(0) = 1and E(1) =e.

(x) This result follows from (viii) and Mathematical Induction for n € N, and is
extended to r € Q by arguments similar to those in the proof of 8.3.6(v).

To establish property (xi), we first note that since 2 < e, then lim(e") = oo and
lim(e™) = 0. Since L(e") = n and L(e™) = —n it follows from the fact that L is strictly
increasing that

L'(x) =

for x € (0,00).

lim L(x) =limL(E") =oc0 and lim L(x) =limL(e™) = —00. QED.
X—>00 x—>0+
Power Functions

In Definition 5.6.6, we discussed the power function x — x”, x > 0, where r is a rational
number. By using the exponential and logarithm functions, we can extend the notion of
power functions from rational to arbitrary real powers.

8.3.10 Definition If o € R and x > 0, the number x“ is defined to be

x% = e*"* = E(aL(x)).

The function x — x* for x > 0 is called the power function with exponent .

Note Ifx >0 and @ = m/n where m € Z, n € N, then we defined x* := (x™)/" in
Section 5.6. Hence we have In x* = & In x, whence x® = e™* = ¢*!"* Hence Definition
8.3.10 is consistent with the definition given in Section 5.6.

We now state some properties of the power functions. Their proofs are immediate
consequences of the properties of the exponential and logarithm functions and will be left
to the reader.

8.3.11 Theorem Ifa € R and x, y belong to (0, 00), then:
@ 1"=1, (b) x* >0,
© (xy)* =xy", @ (x/y)* =x*/y".

8.3.12 Theorem Ifo,S € R and x € (0, 00), then:
(@ x*+F =x%xP, (b) x*) =x% = @xF)*,
(© x%=1/x° (d) ifa < B, thenx® < xP forx > 1.

The next result concerns the differentiability of the power functions.
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8.3.13 Theorem Leta € R. Then the function x — x® on (0, o0) to R is continuous
and differentiable, and

Dx® = ax®! for x € (0, 00).

Proof. By the Chain Rule we have

Dx® = De*™* = ¢*"* . D(aInx)
a
=x%. = = ax*"! for x € (0, 00). QED.
x

It will be seen in an exercise that if @ > @, the power function x > x® is strictly
increasing on (0, 00) to R, and that if @ < 0, the function x > x® is strictly decreasing.
(What happens if « = 0?)

The graphs of the functions x > x* on (0, 00) to R are similar to those in Figure 5.6.8.

The Function log,

Ifa > 0, a # 1, it is sometimes useful to define the function log,.
8.3.14 Definition Leta > 0, a # 1. We define

log, (x) := i:—z for x € (0, 00).

For x € (0, 00), the number log,_(x) is called the logarithm of x to the base a. The
case a = e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The
case a = 10 gives the base 10 logarithm (or common logarithm) function log,, often used
in computations. Properties of the functions log, will be given in the exercises.

Exercises for Section 8.3

1. Show thatif x > Oandif n > 2x, then
ex 1+ x 4 + xn 2xn+l
- e e =
1! n! (n+1)!

Use this formula to show that 2% <e<?2 % , hence e is not an integer.

2. Calculate e correct to S decimal places.

Show thatif 0 < x < aandn € N, then

n—1 a..n

X x" X X e’x
1+—4. - +—<e" <14+ —+... —
tatotasesitgtro—Ht T

4. Show thatifn > 2, then

1 1
0<en!—(1+1+—+---+— n!<—e—<1
2! n! n+1

Use this inequality to prove that e is not a rational number.

S. Ifx > 0andn € N, show that

=1- 2_3..._"—1(“_")"
x+1_1 X +x X+ 4 (=x) +1+x.
Use this to show that
2 3 n x n
—t
1n(x+1)=x_x_+x__...+(_1)"—1x_+ Qd,

2 3 n o 1+t
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and that

2 3 “n+1

6. Use the formula in the preceding exercise to calculate In 1.1 and In 1.4 accurate to four decimal
places. How large must one choose n in this inequality to calculate In 2 accurate to four decinfal
places?

2 3 n n+1
1n(x+1)—(x—x—+"——~-+<—1)"—‘%)}< z

7. Show that In(e/2) = 1 — In2. Use this result to calculate In 2 accurate to four decimal places.

Let f : R — R be such that f'(x) = f(x) for all x € R. Show that there exists K € R such
that f(x) = Ke* forall x € R.

9. Letag,>0fork=1,---,n and let A := (g, +---+a,)/n be the arithmetic mean of these
numbers. Foreach k, putx, := a, /A — lintheinequality 1 + x < e (validforx > 0). Multiply
the resulting terms to prove the Arithmetic—-Geometric Mean Inequality

1
©) (al”'an)l/'l = ;(a1+.“+an)'

Moreover, show that equality holds in (6) if and only if @ =a,=---=a

10. Evaluate L'(1) by using the sequence (1 + 1/n) and the fact thate = lim<(1 +1/ n)").
11. Establish the assertions in Theorem 8.3.11.
12. Establish the assertions in Theorem 8.3.12.

13. (a) Show thatifa > 0, then the function x > x® is strictly increasing on (0, 00) to R and that
11m x* = 0and 11m x* = oo.

-0+
(b) Show that if ¢ < 0 then the function x > x® is strictly decreasing on (0, 00) to R and

that hm x* =ocand lim x* =0.
X000

14. Prove thatifa > 0, @ # 1, then @' * = x for all x € (0, o0) and log,(a’) = yforally € R.
Therefore the function x — log, x on (0, 00) to R is inverse to the function y > a” on R.

15. If a > 0,a # 1, show that the function x — log, x is differentiable on (0, 00) and that
Dlog,x = 1/(x1na) for x € (0, 00).

16. Ifa > 0,a # 1, and x and y belong to (0, 00), prove that log (xy) = log, x + log, y.
17. Ifa>0,a #1,and b > 0,b # 1, show that

Inb
1 =|{— )1 .
og,x (lna) og, x for x € (0, 00)

In particular, show that loglox =(ne/In10)Inx = (logm e)Inx for x € (0, 00).

Section 8.4 The Trigonometric Functions

Along with the exponential and logarithmic functions, there is another very important
collection of transcendental functions known as the “trigonometric functions”. These are
the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses,
they are usually inroduced on a geometric basis in terms of either triangles or the unit
circle. In this section, we introduce the trigonometric functions in an analytical manner
and then establish some of their basic properties. In particular, the various properties of
the srigonometric functions that were used in examples in earlier parts of this book will be
derived rigorously in this section.

It suffices to deal with the sine and cosine since the other four trigonometric functions
are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to
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our approach to the exponential function in that we first establish the existence of functions
that satisfy certain differentiation properties.

8.4.1 Theorem There exist functionsC : R — R and S : R — R such that

i) C'(x)=-C(x)andS"(x) =—S(x) forallx € R
(i) CO)=1,C'(0)=0,and S(0) =0, S'(0) =1.

Proof. We define the sequences (C,) and (S,) of continuous functions inductively as
follows:

1 Cilx):=1, S, (x) :=x,
@ 5,(x) 1 = f C (@) dr,
0
3 Cpp(x)i=1— / s (@) dt,
0

foralln e N, x € R.

One sees by Induction that the functions C, and S, arecontinuous on R and hence they
are integrable over any bounded interval; thus these functions are well-defined by the above
formulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that S, and C, , , are
differentiable at every point and that

4) S, (x) = C,(x) and Cp1(x) ==8,(x) for neN,xeR.

Induction arguments (which we leave to the reader) show that

R X2
Coy®) =1 §+E_"'+( D" Zmr
R 2n+1
Spp1(X) =x — o= 3 + =+ (=D Gt )l
Let A > 0 be given. Thenif |[x| < Aand m > n > 2A, we have that (since A/2n < 1/4):
2 242 x2m=2
(5) |C,, (x) = C, ()| = \(2 TR T TR ey

A2n A 2 A 2m-2n-2
= ! [H(Z) +"'+(E) ]
A% (16)

RTTSY '

Since lim(A2” /(2n)!) = 0, the sequence (C, ) converges uniformly on the interval [—A, A],
where A > 0 is arbitrary. In particular, this means that (C, (x)) converges for each x € R.
We define C : R — R by

C(x) =1limC,(x) for x € R.

It follows from Theorem 8.2.2 that C is continuous on R and, since C, (0) = 1foralln € N,
that C(0) = 1.
If x| < Aandm > n > 2A, it follows from (2) that

S, (x) =S, (x) = f {c.®)—C,®)} dt
0
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If we use (5) and Corollary 7.3.15, we conclude that

A” (16
’Sm(x) - S,,(x)| < m (BA)

whence the sequence (S,) converges uniformly on [—A, A]. We define S : R — R by
§(x) = lim§, (x) for x e R.

It follows from Theorem 8.2.2 that S is continuous on R and, since S, (0) = 0 foralln € N,
that S(0) = 0.

Since C, (x) = —S§,_1(x) for n > 1, it follows from the above that the sequence (C )
converges uniformly on [—A, A]. Hence by Theorem 8.2.3, the limit function C is differ-
entiable on [—A, A] and

C'(x) =1im C,(x) = lim(=S§,_,(x)) = —S(x) for x e [—A, A]
Since A > 0 is arbitrary, we have
6) C'(x) =-Sx) for x eR.

A similar argument, based on the fact that S,’l (x) = C,(x), shows that § is differentiable on
R and that

@) S'(x) =C(x) forall x eR.
It follows from (6) and (7) that
C'x) == @) =-Cx) and §'(x) =(C&)) =-S(x)
for all x € R. Moreover, we have
C'(0) = —S(0) =0, §'(0)=C(0) =1.

Thus statements (i) and (ii) are proved. QED.

8.4.2 Corollary IfC, S are the functions in Theorem 8.4.1, then
(ii) C'(x) = —S(x) and S'(x) =C(x) forx € R.
Moreover, these functions have derivatives of all orders.

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher
order derivatives follows by Induction. Q.E.D.

8.4.3 Corollary The functions C and § satisfy the Pythagorean Identity:
(v) (C@)*+ (S(x))?=1forx €R.

Proof. Let f(x) = (C(x))? + (S(x))* forx € R, so that
f(x) =2C(x)(=S(x)) +28x)(C(x)) =0 for x e R.

Thus it follows that f(x) is a constant for all x € R. But since f(0) =1+4+0=1, we
conclude that f(x) = 1 forall x € R. QED.

We next establish the uniqueness of the functions C and S.

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1
are unique.
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Proof. Let C| and C, be two functions on R to R that satisfy C]’f(x) = —Cj (x) for all
x €Rand C;(0) =1,C;(0) =0 for j =1,2. If we let D:=C, —C,, then D"(x) =
—D(x) for x € R and D(0) = 0 and D®(0) = 0 forallk € N.

Now let x € R be arbitrary, and let I be the interval with endpoints 0, x. Since
D=C, —C,andT := S, — §, = C; — C arecontinuous on I, there exists K > 0 such
that |[D(t)| < K and |T'(t)| < K forall ¢ € I . If we apply Taylor’s Theorem 6.4.1 to D
on I, and use the fact that D(0) = 0, D® (0) = 0 for k € N, it follows that foreachn € N
there is a point ¢, € I, such that

D0 p@-b D™
D(x) = D(0) + ( )x-|-... _Q)_ n=1 (Cn)xn
1! (n—1)! n!
D),
n!
Now either D™ (c,) = £D(c,) or D™ (c,) = £T(c,). In either case we have
K |x|"
ID(x)] = ——.
n!

But since lim(|x|"/n!) = 0, we conclude that D(x) = 0. Since x € R is arbitrary, we infer
that C, (x) — C,(x) = O forall x € R.

A similar argument shows that if S, and S, are two functions on R — R such that
S;’(x) = —Sj (x) forallx € Rand Sj(O) =0, Sj'.(O) = 1for j = 1, 2, then we have S, (x) =
§,(x) forallx e R. QE.D.

Now that existence and uniqueness of the functions C and S have been established, we

shall give these functions their familiar names.

8.4.5 Definition The unique functions C : R — R and S : R — R such that C"'(x) =
—C(x) and §"(x) =—S(x) for all xeR and C(0) =1,C'(0) =0, and S(0) =0,
§'(0) = 1, are called the cosine function and the sine function, respectively. We ordi-
narily write

cosx = C(x) and sinx := S(x) for x e R.
The differentiation properties in (i) of Theorem 8.4.1 do not by themselves lead to

uniquely determined functions. We have the following relationship.
8.4.6 Theorem If f: R — R is such that

fl'x)=—fx) for x eR,
then there exist real numbers «, B such that

fx)=aC(x)+ BS(x) for x eR.

Proof. Let g(x):= f(0)C(x) + f'(0)S(x) for x € R. It is readily seen that g"(x) =
—g(x) and that g(0) = f(0), and since

g'(x) = —f(0)S(x) + f'(OC(x),

that g'(0) = f'(0). Therefore the function h := f — g is such that A”(x) = —h(x) for all
x € Rand h(0) = 0, 4'(0) = 0. Thus it follows from the proof of the preceding theorem
that h(x) = Oforall x € R. Therefore f(x) = g(x) forall x € R. QED.
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We shall now derive a few of the basic properties of the cosine and sine functions.

8.4.7 Theorem The function C isevenand S is odd in the sense that

(v) C(—x)=C(x)and S(—x) = —S(x) forx € R.

Ifx,y € R, then we have the “addition formulas”

(vi) Cx+y)=CH)CO)—=SE)SH), Sx+y)=Sx)CH) +CH)SH).

Proof. (v) If p(x) := C(—x) for x € R, then a calculation shows that ¢"(x) = —¢(x)
for x € R. Moreover, ¢ (0) = 1 and ¢’(0) = 0 so that ¢ = C. Hence, C(—x) = C(x) for
all x € R. In a similar way one shows that S(—x) = —S(x) for all x € R.

(vi) Lety € Rbe given andlet f(x) := C(x + y) forx € R. A calculation shows that
f"(x) = — f(x) for x € R. Hence, by Theorem 8.4.6, there exists real numbers ¢, 8 such
that

fxX)=Clx+y)=aCkx)+ BSk) and
f(x) ==8S(x+y) = —aS(x)+ Ckx)

for x € R.Ifwelet x =0, we obtain C(y) = « and —S(y) = 8, whence the first formula
in (vi) follows. The second formula is proved similarly. QE.D.

The following inequalities were used earlier (for example, in 4.2.8).
8.4.8 Theorem Ifx € R, x > 0, then we have

(vii) —x<S@&x)=<x; (viii) 1-Jx*<C(x)<1;

@  x— i <SS <x x) 1— 42 <Ckx) <1 - 35 + 4x*.
Proof. Corollary 8.4.3 implies that —1 < C(r) < 1fort € R, so thatif x > 0, then

—xs/ C() dr <x,
0

whence we have (vii). If we integrate (vii), we obtain

X
1.2 1.2
—3X 5/0 S dr < 3x°,
whence we have
-1 < —C(x)+1<3x%

Thus we have.1 — %xz < C(), which implies (viii).
Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). QE.D.

The number 7 is obtained via the following lemma.

8.49 Lemma There exists a root y of the cosine function in the interval W2, V3.
Moreover C(x) > 0 forx € [0, y). The number 2y isthe smallest positive root of S.

Proof. Inequality (x) of Theorem 8.4.8 implies that C has a root between the positive
root +/2 of x2 —2 =0 and the smallest positive root of x* = 12x? + 24 = 0, which is

V6 —24/3 < /3. We let y be the smallest such root of C.



8.4 THE TRIGONOMETRIC FUNCTIONS 251

It follows from the second formula in (vi) with x = y that S(2x) = 2S(x)C(x). This
relation implies that S(2y) = 0, so that 2y is a positive root of S. The same relation implies
that if 26 > 0 is the smallest positive root of S, then C(§) = 0. Since y is the smallest
positive root of C, we have § = y. Q.E.D.

8.4.10 Definition Let 7 := 2y denote the smallest positive root of S.

Note The inequality v2 <y < v6 — 23 implies that 2.828 < 7w < 3.185.

8.4.11 Theorem The functions C and S have period 2r in the sense that
(xi) C(x +27) =C(x) and S(x + 2m) = S(x) forx € R.

Moreover we have

i) Sx)=C(dr —x) =-C(x+37), C&x) =S (in —x) =S (x+ in) forall
x eR.

Proof. (xi) Since S(2x) = 2S(x)C(x) and S(;r) = 0, then S(27) = 0. Further, if x = y
in (vi), we obtain C(2x) = (C(x))? — (S(x))%. Therefore C(27) = 1. Hence (vi) with
y = 21 gives

Cx+2m)=Cx)CQ2nr) —Sx)S2m) = C(x),
and
Sx+2m) =Sx)CR2r)+ Cx)SQ2r) = S(x).

(xii) We note that C(%n) =0, and it is an exercise to show that S(%n’) = 1. If we
employ these together with formulas (vi), the desired relations are obtained. QED.

Exercises for Section 8.4

1. Calculate cos(.2), sin(.2) and cos 1, sin 1 correct to four decimal places.
2. Show that |sinx| < 1and |cosx| < 1forall x € R.

3. Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have | sinx| < |x|
for all x € R. Also show that | sinx — x| < |x|3/6 forall x € R.

4. Show that if x > 0 then

xr xt %8 x? xt

1= 42 X csx<1-Z 4L
7 T m T sesrsl-5

Use this inequality to establish a lower bound for 7.

5. Calculate & by approximating the smallest positive zero of sin. (Either bisect intervals or use
Newton’s Method of Section 6.4.)

6. Define the sequence (cn) and (s") inductively by c, (x) := 1, 5,(x) := x, and

s, (%) :=/ c,(ndt, Cop (@ =1+ /X s, () dt
0 0

for all n € N, x € R. Reason as in the proof of Theorem 8.4.1 to conclude that there exist
functions ¢ : R - Rand s : R — R suchthat (j) ¢”(x) = c(x) and s”(x) = s(x) for all x € R,
and (jj) ¢(0) =1, ¢'(0) = 0 and s(0) = 0, s"(0) = 1. Moreover, ¢’(x) = s(x) and s'(x) = c(x)
forallx € R.
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Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they
satisfy the identity (c(x))? = (s(x))?> = 1forall x € R. Moreover, they are the unique functions
satisfying (j) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine
functions, respectively.)

If f : R — Ris such that f”(x) = f(x) forall x € R, show that there exist real numbers o,.8
such that f(x) = ac(x) + Bs(x) forall x € R. Apply this to the functions f,(x) := e* and
f,(x) ;== e for x € R. Show that c(x) = %(e" +e ) ands(x) = %((‘ —e ) forx e R.

Show that the functions c, s in the preceding exercises are even and odd, respectively, and that
c(x +y) =c(x)cy) +sx)s@y),  stx+y) =sx)(y) +cx)s(y),
forallx,y € R.

Show that c(x) > 1 for all x € R, that both ¢ and s are strictly increasing on (0, 00), and that
lim ¢(x) = lim s(x) = oo.
X—>00 X—>00



CHAPTER 9

INFINITE SERIES

In Section 3.7 we gave a brief introduction to the theory of infinite series. The reader will
do well to look over that section at this time, since we will not repeat the definitions and
results given there.

Instead, in Section 9.1 we will introduce the important notion of the “absolute conver-
gence” of a series. In Section 9.2 we will present some “tests” for absolute convergence that
will probably be familiar to the reader from calculus. The third section gives a discussion of
series thatare not absolutely convergent. In the final section we study series of functions and
will establish the basic properties of power series which are very important in applications.

Section 9.1 Absolute Convergence

We have already met (in Section 3.7) a number of infinite series that are convergent and
others that are divergent. For example, in Example 3.7.6(b) we saw that the harmonic
series:

> 1
2y
n=1

is divergent since its sequence of partial sums s, := % + % +.--+ nl (n € N) is un-
bounded. On the other hand, we saw in Example 3.7.6(f) that the alternating harmonic
series:

i (_ 1 )n+1
n=1 n
is convergent because of the subtraction that takes place. Since

(_ 1)n+l
n

1

9

n

these two series illustrate the fact that a series D _ x, may be convergent, but the series ) |x, |
obtained by taking the absolute values of the terms may be divergent. This observation leads
u$ to an important definition.

9.1.1 Definition Let X := (x,) be a sequence in R. We say that the series )_x, is
absolutely convergent if the series ) |x, | is convergent in R. A series is said to be
conditionally (or nonabsolutely) convergent if it is convergent, but it is not absolutely
convergent.

253
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It is trivial that a series of positive terms is absolutely convergent if and only if it
is convergent. We have noted above that the alternating harmonic series is conditionally
convergent.

9.1.2 Theorem If a series in R is absolutely convergent, then it is convergent.

Proof. Since ) |x,| is convergent, the Cauchy Criterion 3.7.4 implies that, given & > 0
there exists M (¢) € N suchthatif m > n > M(¢), then

gt + byl + x| <e
However, by the Triangle Inequality, the left side of this expression dominates
|Sm - snl = |xn+1 +xn+2 +-- +xm|‘

Since & > 0 is arbitrary, Cauchy’s Criterion implies that ) _ x, converges. QED.

Grouping of Series

7

Given a series ) _ x,,, we can construct many other series ) y, by leaving the order of the
terms x, fixed, but inserting parentheses that group together finite numbers of terms. For
example, the series indicated by

11+1 1+(l 1+1_1+1 +1
2 \3 4 S5 6 7)) 8 \9 13

is obtained by grouping the terms in the alternating harmonic series. It is an interesting
fact that such grouping does not affect the convergence or the value of a convergent series.

9.1.3 Theorem Ifaseries ) x, is convergent, then any series obtained from it by group-
ing the terms is also convergent and to the same value.
Proof. Suppose that we have

N :=x1+”'+xkl’ y2:=xk]+l+”'+xk2’

If 5, denotes the nth partial sum of ) x, and #, denotes the kth partial sum of ) y,, then
we have

h=Y=S8, L=N+TY)=5;

Thus, the sequence (z,) of partial sums of the grouped series Y Y, is a subsequence of the
sequence (s,) of partial sums of ) _ x, . Since this latter series was assumed to be convergent,
so is the grouped series ) y,. QED.

It is clear that the converse to this theorem is not true. Indeed, the grouping
aI-HD+d-H+d-1D+---

produces a convergent series from ) > /(—1)", which was seen to be divergent in Example
3.7.2(b) since the terms do not approach 0.
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Rearrangements of Series

Loosely speaking, a “rearrangement” of a series is another series that is obtained from the
given one by using all of the terms exactly once, but scrambling the order in which the
terms are taken. For example, the harmonic series has rearrangements

1 1 1 1 1 1

2ritatst ottt
1 1 1 1 1 1
1T2tat3tstat

The first rearrangement is obtained from the harmonic series by interchanging the first and
second terms, the third and fourth terms, and so forth. The second rearrangement is obtained
from the harmonic series by taking one “odd term”, two “even terms”, three “odd terms”,
and so forth. It is obvious that there are infinitely many other possible rearrangements of
the harmonic series.

9.1.4 Definition A series )y, in R is a rearrangement of a series ) x,, if there is a
bijection f of N onto N such that y, = Xty forall k € N.

While grouping series does not affect the convergence of a series, making rearrange-
ments may do so. If fact, there is a remarkable observation, due to Riemann, thatif ) x isa
conditionally convergent series in R, and if ¢ € R is arbitrary, then there is a rearrangement
of ) x, that converges to c.

To prove this assertion, we first note that a conditionally convergent series must contain
infinitely many positive terms and infinitely many negative terms (see Exercise 1), and that
both the series of positive terms and the series of negative terms diverge (see Exercise 2).
To construct a series converging to ¢, we take positive terms until the partial sum is greater
than c, then we take negative terms until the partial sum is less than c, then we take positive
terms until the partial sum is greater than c, then we take negative terms, etc.

In our manipulations with series, we generally want to be sure that rearrangements
will not affect the convergence or the value of the series. That is why the following result
is important.

9.1.5 Rearrangement Theorem Let ) x, be an absolutely convergent series in R. Then
any rearrangement ) y, of ) x, converges to the same value.

Proof. Suppose that ) x, converges to x € R. Thus, if £¢ > 0, let N be such that if
n,g > Nands, = x, +---+x,, then

9

|x —s,| <¢€ and Z x| < e
k=N+1
Let M € N be such that all of the terms Xy, Xy are contained as summands in Ly =

)31 + -+ yy,. Itfollows thatif m > M, thent, — s, is the sum of a finite number of terms
x, withindex k > N. Hence, for some g > N, we have

9

|t, — s, < Z lx | <e.

k=N+1
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Therefore, if m > M, then we have
lt, = x| <|t, —s,|+1|s, — x| <e+¢e=2e

Since & > 0 is arbitrary, we conclude that }_ y, converges to x. QED.

Exercises for Section 9.1

1. Show that if a convergent series contains only a finite number of negative terms, then it is
absolutely convergent.

2. Show that if a series is conditionally convergent, then the series obtained from its positive terms
is divergent, and the series obtained from its negative terms is divergent.

3. If )_a, is conditionally convergent, give an argument to show that there exists a rearrangement
whose partial sums diverge to oo.

4. Where is the fact that the series ) x, is absolutely convergent used in the proof of 9.1.5?

Ity a, is absolutely convergent, is it true that every rearrangement of Y"a, is also absolutely
convergent?

6. Find an explicit expression for the nth partial sum of } oo, In(1 — 1/ n?) to show that this series
converges to — In 2. Is this convergence absolute?

7. @ If Zan is absolutely convergent and (b,) is a bounded sequence, show that Za"b" is
absolutely convergent.
(b) Give an example to show that if the convergence of )_a ., is conditional and (b)) is a
bounded sequence, then ) a, b, may diverge.

8. Give an example of a convergent series ) a, such that ) aﬁ is not convergent. (Compare this
with Exercise 3.7.8)

9. If (a,) is a decreasing sequence of srictly positive numbers and if ) a_ is convergent, show
that lim(na,) = 0

10. Give an example of a divergent series ) a, with (a,) decreasing and such that lim(na,) = 0.
11. If (a,) is a sequence and if lim(nzan) exists in R, show that ) a_ is absolutely convergent.

12. Let a > 0. Show that the series ) (1 + a7 lis divergent if 0 < a <1 and is convergent if

a> 1.
13. (a) Does the series 2 < ntl f) converge?

n=1

7n

) 00 4
(b) Does theseries Y ( ntl f) converge?
n=1

14. If(a, )is a subsequence of (a,), then the series ) a, is called a subseries of ) a, . Show that
Y_a, is absolutely convergent if and only if every subseries of it is convergent.

15. Leta:NxN— R and write a;; :=a(, j). If A, == 372, a;; foreachi € N and if A :=
221 A, we say that A is an iterated sum of the a;; and write A = 372, 372, a,;. We define
the other iterated sum, denoted by 3~72, 372, a;;, in a similar way.

Suppose a; = 0 for i, j € N. If (c,) is any enumeration of {g, TR A N}, show that the
following statements are equivalent:
(i) Theinterated sum ) 72, 32 a,; converges to B.

(i) The series Z e C, converges to C.

In this case, we have B C.
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16. The preceding exercise may fail if the terms are not positive. For example, let a,; == +1 if
i—j=1, a; = —1ifi — j=-1,and a; = 0 elsewhere. Show that the iterated sums

o0 00 00

Z a; and i Z a,;

i=1 j=1 j=1i=1
both exist but are not equal.

Section 9.2 Tests for Absolute Convergence

In Section 3.7 we gave some results concerning the convergence of infinite series; namely,
the nth Term Test, the fact that a series of positive terms is convergent if and only if its
sequence of partial sums is bounded, the Cauchy Criterion, and the Comparison and Limit
Comparison Tests.

We will now give some additional results that may be familiar from calculus. These
results are particularly useful in establishing absolute convergence.

9.2.1 Limit Comparison Test, II. Suppose that X := (x,) and Y := (y,) are nonzero
real sequences and suppose that the following limit exists in R:

i
In

(@ If r#0, then ) x, is absolutely convergent if and only if }_y, is absolutely
convergent.

09) r :=lim

(b) If r =0andif )y, is absolutely convergent, then ) _ x, is absolutely convergent.
Proof. This result follows immediately from Theorem 3.7.8. QE.D.

The Root and Ratio Tests

The following test is due to Cauchy.

9.2.2 Root Test Let X = (x,) be a sequence in R.

(a) Ifthereexistr € R withr < 1 and K € N such that

(2 |xn|1/" <r for n>K,

then the series ) _ x,, is absolutely convergent.
(b) Ifthere exists K € N such that

3) Ix,[”">1  for n>K,

then the series ) x,, is divergent.

Proof. (a) If(2)holds, then wehave |x,| < r” forn > K. Since the geometric series ) _ r"
is convergent for 0 < r < 1, the Comparison Test 3.7.7 implies that ) _ |x, | is convergent.

(b) If (3) holds, then |x,| > 1 forn > K, so the terms do not approach 0 and the nth
Term Test 3.7.3 applies. QED.

In calculus courses, one often meets the following version of the Root Test.
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9.2.3 Corollary Let X = (x,) be a sequence in R and suppose that the limit

4 r = lim|x |'/"

exists in R. Then ) x, is absolutely convergent when r < 1 and is divergent whenr > 1.
Proof. If the limit in (4) exists and r < 1, then there existr | withr <r, <landK € N
such that Ixn|”'l < r,forn > K. In this case we can apply 9.2.2(a).

If r > 1, then there exists K € N such that |x,|"/" > 1 for n > K and the nth Term
Test applies. QED.

Note No conclusion is possible in Corollary 9.2.3 when r = 1, for either convergence or
divergence is possible. See Example 9.2.7(b).

Our next test is due to D’ Alembert.

9.2.4 RatioTest Let X := (x,) be a sequence of nonzero real numbers.
(a) Ifthereexistr € R withO < r <1 and K € N such that

xn+1

Xn

%)

<r for n>K,

then the series ) _ x, is absolutely convergent.
(b) Ifthere exists K € N such that

xn+1

Xn

(6) >1 for n>K,

then the series ) x, is divergent.

Proof. (a) If (5) holds, an Induction argument shows that |x, | < |x xlr™ form e N.
Thus, for n > K the terms in ) |x,| are dominated by a fixed multiple of the terms in
the geometric series ) r™ with 0 < r < 1. The Comparison Test 3.7.7 then implies that
Y Ix,| is convergent.

(b) If (6) holds, an Induction argument shows that |x, . | > |xg| form € N and the
nth Term Test applies. QED.

Once again we have a familiar result from calculus.

9.2.5 Corollary Let X = (x,) be a nonzero sequence in R and suppose that the limit

xn+1

Xn

@) r = lim

exists inR. Then ) x,, is absolutely convergent whenr < 1 and is divergent whenr > 1.

Proof. Ifr <1andifr <r; <1, then there exists K € R such that |x,,/x,| < r, for
n > K. Thus Theorem 9.2.4(a) applies to give the absolute convergence of ) _ x,,.

If r > 1, then there exists K € N such that |x, 41 /x,| > 1forn > K, whence it follows
that |x, | does not converge to 0 and the nth Termn Test applies. QE.D.

Note No conclusion is possible in Corollary 9.2.5 when r = 1, for either convergence or
divergence is possible. See Example 9.2.7(c). ) >
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The Integral Test

The next test—a very powerful one—uses the notion of the improper integral, which is
defined as follows: If f is in R[a, b] for every b > a and if the limit blim fab f (@) dt exists
— 00

in R, then the improper integral fa°° f(t) dt is defined to be this limit.

9.2.6 Integral Test Let f be a positive, decreasing function on {t : t > 1}. Then the
series Y po, f (k) converges if and only if the improper integral

o b
/ f@)dt = lim/ f(tydr
1 b—00 1

exists. In the case of convergence, the partial sum s, = ;_, f(k) and the sum s =
Y re; f (k) satisfy the estimate

®) [ rwarss-s,< [ rwa
n+1 n

+

Proof. Since f is positive and decreasing on the interval [k — 1, k], we have
k
© rws [ foa s fee-.
k-1
By adding this inequality for k = 2, 3, - - -, n, we obtain

%—ﬂnstmmS%w
1

which shows that either both or neither of the limits

n
lim s, and lim f@)dr
n—00 n—>00 1
exist. If they exist, then on adding (9) fork =n + 1, - - -, m, we obtain

m
5, =S, < / f®dt <s,_,—s,_1
n

whence it follows that
m+1 m
f f(t)dt53m~sn5f f@)d:e.
n+1 n
If we take the limit in this last inequality as m — oo, we obtain (8). Q.ED.

We will now show how the results in Theorems 9.2.1-9.2.6 can be applied to the
p-series, which were introduced in Example 3.7.6(d,e).

9.2.7 Examples (a) Consider the case p = 2; that is, the series Y _ 1/ n?. We compare
it with the convergent series Y 1/(n(n + 1)) of Example 3.7.2(c). Since

1 1 1

=+ ‘ Ot N ST

n nn+1) n n

the Limit Comparison Test 9.2.1 implies that Y_ 1/n? is convergent.
(b) We demonstrate the failure of the Root Test for the p-series. Note that

1 |Vn 1 1

Wl T )T @y
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Since (see Example 3.1.11(d)) we know that n'/" > 1,wehaver = 1 in Corollary 9.2.3,
and the theorem does not give any information.

(c) We apply the Ratio Test to the p-series. Since
1 1 n? 1
(n+1)? " nP

= = 1,
n+ D A+1ny?
the Ratio Test, in the form of Corollary 9.2.5, does not give any information.
(d) Finally, we apply the Integral Test to the p-series. Let f(z) :== 1/¢t? for t > 1 and

recall that
f ldt=1nn——ln1,
Lt

fnldt—l L for p#1
ltp _l_p np—l or p .

From these relations we see that the p-series converges if p > 1 and diverges if p < 1, as
we have seen before in 3.7.6(d,e). O

Raabe’s Test

If the limits lim |x,|"/" and lim(|x,,/x,|) that are used in Corollaries 9.2.3 and 9.2.5

equal 1, we have seen that these tests do not give any information about the convergence or
divergence of the series. In this case it is often useful to employ a more delicate test. Here
is one that is frequently useful.

9.2.8 Raabe’s Test Let X := (x,) be a sequence of nonzero real numbers.
(a) If there exist numbersa > 1 and K € N such that
x
(10) !—"*—‘lsl—f for n>K,
x, n

then)_ x, is absolutely convergent.
(b) Ifthere exist real numbersa < 1 and K € N such that

———>l—g for n> K,

(1)

then ) x, is not absolutely convergent.

Proof. (a) If the inequality (10) holds, then we have (after replacing n by k and multi-
plying)
kx| < (k= Dy — @—Dlx,|  for k> K.
On reorganizing the inequality, we have
(12) (k= Dlxy| — kx| = (@ = Dix | >0 for k> K,

from which we deduce that the sequence (k|x, ,|) is decreasing for k > K. If we add (12)
fork = K, - - -, n and note that the left side telescopes, we get

(K — Dlxgl = nlx, 1 > @— D(Ixg |+ +Ix,]).

This shows (why?) that the partial sums of ) |x,| are bounded and establishes the absolute
convergence of the series.



9.2 TESTS FOR ABSOLUTE CONVERGENCE 261

(b) If the relation (11) holds for n > K, then since a < 1, we have
nlx, 1 = (@ —a)lx,| > (@n—1x,| for n> K.

Therefore the sequence (n|x, ,|) is increasing for n > K and there exists a number ¢ > 0
such that |x, | > ¢/n forn > K. But since the harmonic series } _ 1/n diverges, the series
2 |x, | also diverges. QED.

In the application of Raabe’s Test, it is often convenient to use the following limiting

form.

9.29 Corollary Let X := (x,) be anonzero sequence in R and let

Xp+1 D)
9
Xn

whenever this limit exists. Then ) x, is absolutely convergent when a > 1 and is not
absolutely convergent when a < 1.

(13) a:= lim(n(l _

Proof. Suppose the limit in (13) exists and that a > 1. If g, is any number with
a > a, > 1, then there exists K € N such that a; < n(1 — |x,,/x,|) forn > K. There-
fore |x,,,/x,| < 1—a,/nforn > K and Raabe’s Test 9.2.8(a) applies.

The case where a < 1 is similar and is left to the reader. QE.D.

Note There is no conclusion when a = 1; either convergence or divergence is possible,
as the reader can show.

9.2.10 Examples (a) We reconsider the p-series in the light of Raabe’s Test. Applying
L’Hospital’s Rule when p > 1, we obtain (why?)

a = lim (n [1 — L]) = lim (n [M]>
- n+1P]) (n+ 1P

P _

1
1/n ((1+1/n)”

We conclude that if p > 1 then the p-series is convergent, and if 0 < p < 1 then the

series is divergent (since the terms are positive). However, if p = 1 (the harmonic series!),
Corollary 9.2.9 yields no information.

> n
(b) We now consider ; 2l
An easy calculation shows that lim(x,  ,/x,) = 1, so that Corollary 9.2.5 does not
apply. Also, we have lim(n(1 —x,,,/x,)) = 1, so that Corollary 9.2.9 does not apply
either. However, it is an exercise to establish the inequality x, +1 /x, = (n —1)/n, whence
it follows from Raabe’s Test 9.2.8(b) that the series is divergent. (Of course, the Integral
Test, or the Limit Comparison Test with (y,) = (1/n), can be applied here.) d

Although the limiting form 9.2.9 of Rabbe’s Test is much easier to apply, Example
9.2.10(b) shows that the form 9.2.8 is stronger than 9.2.9.
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Exercises for Section 9.2

L

10.
11.
12.

13.
14.
15.

Establish the convergence or the divergence of the series whose nth term is:
1 n

—_—, by ———,

@ GTDe D oy Y

© 27V, (d n/2"

Establish the convergence or divergence of the series whose nth term is:
@ (n+1)7'2 ® @n+1)7"2

(¢) nl/n", @ D"n/(n+1).
Discuss the convergence or the divergence of the series with nth term (for sufficiently large n)
given by

(@ (nn)~?, (®) (nn)™,

© (nn)~"", @ (nn)~ihn,

(e) (nlan)™!, ® (n(lnn)(lnlnn)z)_l.
Discuss the convergence or the divergence of the series with nth term

@ 2"e™", (b) n"e™",

© e, d (nn)e™™,

€ nle™, ® nle ™.

Show that the series 1/1% + 1/23 +1/3%> +1/4° + .- - is convergent, but that both the Ratio
and the Root Tests fail to apply.

If a and b are positive numbers, then Y_(an + b)™? converges if p > 1 and divergesif p < 1.

Discuss the series whose nth term is

n! (n)?
@ 5T s ®
2.4...(2n) 2.4...(2n)
© 3.5-..@2n+1)’ @ 5-7---2n+3)’

Let 0 < a < 1 and consider the series
a2+a+a4+a3+---+a2"+a2"—‘ + .-
Show that the Root Test applies, but that the Ratio Test does not apply.

Ifr € (0, 1) satisfies (2) in the Root Test 9.2.2, show that the partial sums s, of 3 X, approximate
its limit s according to the estimate |s - sn‘ <r*t'/(1 —r) forn>K.

If r € (0, 1) satisfies (5) in the Ratio Test 9.2.4, show that |s - sn| <r |x"| /(1 —r)forn>K.
Ifa > 1 satisfies (10) in Raabe’s Test 9.2.8, show that [s —s,| < n|x,| /(@ — 1) forn > K.

For each of the series in Exercise 1 that converge, estimate the remainder if only four terms are
taken. If only ten terms are taken. If we wish to determine the sum of the series within 1/1000,
how many terms should be taken?

Answer the questions posed in Exercise 12 for the series given in Exercise 2.

Show that the series 1 + % - % + % + % - é + + — - - - is divergent.

Forn € N, let ¢, be defined by ¢, = % + % +---+1/n — Inn. Show that (c,) is a decreasing
sequence of positive numbers. The limit C of this sequence is called Euler’s Constant and is
approximately equal to 0.577. Show that if we put

b'_l 1+1 1
nT 1 23 2n’

then the sequence (b,) converges to In2. [Hint: b, = c,, —c, +1n2.]
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16. Let {n,,n,, -} denote the collection of natural numbers that do not use the digit 6 in their
decimal expansion. Show that )" 1/ n, converges to a number less than 80. If {m ,m,,---} is
the collection of numbers thatend in 6, then )_ 1/m . diverges. If {p,, p,, - - -, } is the collection
of numbers that do not end in 6, then ) 1/p, diverges.

17. If p > 0,q > 0, show that the series
Z (P+D(P+2)---(p+n)

@+D@+2)---(g+n)
converges for ¢ > p + 1 and diverges forg < p + 1.

18. Suppose that none of the numbers a, b, c is a negative integer or zero. Prove that the hyper-
geometric series

ab  a@+Dbb+1) | a@+1)@+2bb+1b+2)
1lc 2lc(c+1) 3le(c + 1)(c+2)
is absolutely convergent for ¢ > a + b and divergent for ¢ < a + b.

19. Leta, > 0 and suppose that ) a, converges. Construct a convergent series ) b, withb, > 0
such that lim(a, /b,) = 0; hence ) b, converges lessrapidly than ) a . [Hint: Let (A,) be the
partial sums of ) "a, and A its limit. Define b, := VA- JA= Alandb = JA—A, _ —
VA—A, forn > 1]

20. Let (a,) be a decreasing sequence of real numbers converging to 0 and suppose that ) a,
diverges. Construct a divergent series ) b, withb, > 0 suchthatlim(b,/a,) = 0; hence > b,
diverges less rapidly than )_a,. [Hint: Let b, := a,/,/A, where A, is the nth partial sum of
Ya,l

Section 9.3 Tests for Nonabsolute Convergence

The convergence tests that were discussed in the preceding section were primarily directed
to establishing the absolute convergence of a series. Since there are many series, such as

00 (_1)n+1

(1) i (_1)n+1 Z
n=1 n ’ n=1 ﬁ ,

that are convergent but not absolutely convergent, it is desirable to have some tests for this
phenomenon. In this short section we shall present first the test for alternating series and
then tests for more general series due to Dirichlet and Abel.

Alternating Series

The most familiar test for nonabsolutely convergent series is the one due to Leibniz that is
applicable to series that are “alternating” in the following sense.

9.3.1 Definition A sequence X := (x,) of nonzeroreal numbers is said to be alternating
if the terms (—1)”+1xn, n € N, are all positive (or all negative) real numbers. If the sequence
X = (x,) is alternating, we say that the series ) _ x, it generates is an alternating series.

In the case of an alternating series, it is useful tosetx, = (—1 )”“zn [orx, = (-1)"z,],
where z, > Oforalln € N.

9.3.2 Alternating Series Test LetZ := (z,) be a decreasing sequence of strictly positive
numbers with 1im(z,) = 0. Then the alternating series Z(—l)"“zn is convergent.
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Proof. Since we have
Syy = (Z1 — 22) + (Z3 - 24) + -+ (Zz,,_l - 22,,)»

and since z, — z,, > 0, it follows that the subsequence (s,,) of partial sums is increasing.
Since

S =21 = (B = 2Z3) =+ = (2Zy,_y = Zy, 1) — Zy,

it also follows that s,, < z, for all n € N. It follows from the Monotone Convergence
Theorem 3.3.2 that the subsequence (s,,) converges to some number s € R.

We now show that the entire sequence (s,) converges to s. Indeed, if ¢ > 0, let K be
such that if n > K then |s,, —s| < 3¢ and |2y | < Le. It follows that if n > K then

|s2n+1 =s|=s,, + Zyyy = 5|
1 1, _
= |32n - S| + |22n+l| = EE + 56 =é.
Therefore every partial sum of an odd number of terms is also within ¢ of s if n is large

enough. Since ¢ > 0 is arbitrary, the convergence of (s,) and hence of > (="t z, is
established. QED.

Note It is an exercise to show that if s is the sum of the alternating series and if s, is its
nth partial sum, then

2) |s~sn|§zn+l.

It is clear that this Alternating Series Test establishes the convergence of the two series
already mentioned, in (1).

The Dirichlet and Abel Tests

We will now present two other tests of wide applicability. They are based on the following
lemma, which is sometimes called the partial summation formula, since it corresponds
to the familiar formula for integration by parts.

9.3.3 Abel’sLemma Let X := (x,) andY := (y,) be sequences in R and et the partial
sums of Y y, be denoted by (s,) with s, := 0. If m > n, then

. m m—1
3 Z NV = FSp = X 1S0) + Z (X = XISy
k=n+1 : k=n+1

Proof. Since y, = s, — s,y fork=1,2,--., the left side of (3) is seen to be equal to
Y kent1 Xk (S, — 8, ;). If we collect the terms multiplying s,, s, ;.- -, $,,, we obtain the

right side of (3). QED.
We now apply Abel’s Lemma to obtain tests for convergence of series of the form

anyn‘

9.3.4 Dirichlet’s Test If X := (x,) is a decreasing sequence with limx, = 0, and if the
partial sums (s,) of 2_ Y, are bounded, then the series )_ x,y, is convergent.
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Proof. Let |s | < Bforalln € N.If m > n, it follows from Abel’s Lemma 9.3.3 and the
fact that x, — X4 = O that

m m—1
D x| = Gt x DB Y (4 —x B
k=n+1 k=n+1
= [(‘xm +X"+1) + (‘xn+1 - xm)]B

=2x,,

Since lim(x,) =0, the convergence of Zxk y, follows from the Cauchy Convergence
Criterion 3.7.4. _ QE.D.

9.3.5 Abel’s Test If X := (x,) is a convergent monotone sequence and the series )_ y,
is convergent, then the series ) x,y, is also convergent.

Proof. If (x,) is decreasing with limit x, let u, := x, — x, n € N, so that (u«,) decreases
to 0. Then x, = x + u,, whence x,y, = xy, + u,y,. It follows from the Dirichlet Test
9.3.4 that Zun Yy, is convergent and, since ny" converges (because of the assumed
convergence of the series ) y,), we conclude that " x, y, is convergent.
If (x,) is increasing with limit x, let v, :== x — x,, n € N, so that (v,) decreases to 0.
Here x,, = x — v,, whence x,y, = xy, —v,¥,, and the argument proceeds as before.
QED.

9.3.6 Examples (a) Since we have
2 (sin 3x) (cosx 4 -+« + cos nx) = sin (n + §) x — sin 3x,
it follows that if x # 2kx (k € N), then

|sin(n+%)x—sin%x‘ 1

lcosx + -+ -+ cosnx| = |2sinlx| h |Sinlx|'
3 2

Hence Dirichlet’s Test implies that if (an) is decreasing with lim (an) = 0, then the series
Y w2 a, cos nx converges provided x # 2k.
(b) Since we have

2(sinix) (sinx + -+ + sinnx) = cos §x — cos (n + 1) x

it follows that if x # 2km (k € N), then
1

[sinx + .- +sinnx| < ———.
|s1n —x|

Asbefore, if (a,) is decreasing and if lim(a, ) = 0, then the series Zn 1 @, sinnx converges
for x # 2km (and it also converges for these values). O

Exercises for Section 9.3

1. Test the following series for convergence and for absolute convergence.

( 1)n+1 ( 1)n+1
()"Zl = (>"§l —
0o (—1)r+!
© » & @ z( Dt — n

n=1 n+2
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If 5, is the nth partial sum of the alternating series Z;’il (=n"H! z,, and if s denotes the sum

of this series, show that [s —s,| < z,, .

Give an example to show that the Alternating Series Test 9.3.2 may fail if (z,) is not a decreasing
sequence.

Show that the Alternating Series Test is a consequence of Dirichlet’s Test 9.3.4.
Consider the series

2737357677
where the signs come in pairs. Does it converge?

Leta, € R forn € Nandlet p < g. If the series )_a,/n” is convergent, show that the series
Y a,/n‘ is also convergent.

If p and g are positive numbers, show that ) (—1)"(Inn)”/n? is a convergent series.

Discuss the series whose nth term is:

n nn
l"—-—-—- b) ——
® il &)~
© oyt @ &+
n

If the partial sums of )_ a, arebounded, show thatthe series ) o | a,e"" converges for 7 > 0.

If the partial sums s, of _
Y, /nn+1).
Can Dirichlet’s Test be applied to establish the convergence of

! 1 1 + 1 + 1 + 1
2 3 4 5 6
where the number of signs increases by one in each “block”? If not, use another method to

establish the convergence of this series.

are bounded, show that the series Y -~ a_/n converges to

n=19, n=1%

Show that the hypotheses that the sequence X := (x,) is decreasing in Dirichlet’s Test 9.3.4 can

be replaced by the hypothesis that Y o, |x, — x,,| is convergent.

If (an) is a bounded decreasing sequence and (b,) is a bounded increasing sequence and if
x, =a, +b, forn € N, show that E:’il |x, — x,,| is convergent.

n
Show that if the partial sums s, of the series Y ¢ a, satisfy |s,| < Mn” for some r < 1, then
the series Y .- | a,/n converges.

Suppose that ) a,, is a convergent series of real numbers. Either prove that ) b, converges or
give a counter-example, when we define b, by

@ a,/n, (b) ‘/a_“'/n (a,, > 0),
(¢) a,sinn, ) Ja,/n (a,=0),
() n'"a, R ® a,/(1+]a,]).

Section 9.4 Series of Functions

Because of their frequent appearance and importance, we now present a discussion of infinite
series of functions. Since the convergence of an infinite series is handled by examining
the sequence of partial sums, questions concerning series of functions are answered by
examining corresponding questions for sequences of functions. For this reason, a portion
of the present section is merely a translation of facts already established for sequences
of functions into series terminology. However, in the second part of the section, where
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we discuss power series, some new features arise because of the special character of the
functions involved.

9.4.1 Definition If (f,)is asequence of functions defined on a subset D of R with values
in R, the sequence of partial sums (s, ) of the infinite series ) £, is defined for x in D by

SI(X) f](x),
5(x) = 5(x) + f,(x)

In case the sequence (s,) of functions converges on D to a function f, we say that the
infinite series of functions ) _ f, converges to f on D. We will often write

Db ot 2,
n=1

to denote either the series or the limit function, when it exists.

If the series ) | f, (x)| converges for each x in D, we say that )_ f, is absolutely
convergent on D. If the sequence (s,) of partial sums is uniformly convergent on D to
f, we say that ) £ is uniformly convergent on D, or that it converges to f uniformly
on D.

One of the main reasons for the interest in uniformly convergent series of functions is
the validity of the following results which give conditions justifying the change of order of
the summation and other limiting operations.

9.4.2 Theorem If f, iscontinuousonD C R to R foreachn € Nandif ) f, converges
to f uniformly on D, then f is continuous on D.

This is a direct wranslation of Theorem 8.2.2 for series. The next result is a translation
of Theorem 8.2.4.

9.4.3 Theorem Suppose that the real-valued functions f,,n € N, are Riemann integrable
on the interval J := [a, b). If the series ) f, converges to f uniformly on J, then f is
Riemann integrable and

1) /abf=§/abfn.

Next we turn to the corresponding theorem pertaining to differentiation. Here we
assume the uniform convergence of the series obtained after term-by-term differentiation
of the given series. This result is an immediate consequence of Theorem 8.2.3.

9.4.4 Theorem Foreachn €N, let f, be a real-valued functionon J := [a, b] that has
a derivative f, on J. Suppose that the series ) f, converges for at least one point of J and
that the series of derivatives Y f, converges uniformly on J.

Then there exists a real-valued function f on J such that ) f, converges uniformly
onJ to f .Inaddition, f has a derivativeon J and f' =) _ f,.
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Tests for Uniform Convergence

Since we have stated some consequences of uniforin convergence of series, we shall now
present a few tests that can be used to establish uniform convergence.

9.4.5 Cauchy Criterion Let (f,) be a sequence of functions on D C R toR. The series
3 £, is uniformly convergent on D if and only if for every & > 0 there exists an M (¢) such
that ifm > n > M(¢), then

| fos1 @)+ -+ f,(x)| <& forall xeD.

9.4.6 Weierstrass M-Test Let (M ) be a sequence of positive real numbers such that
| £ (x)| <M, forx € D,n € N.Ifthe series ) M, is convergent, then ) _ f, is uniformly
convergent on D.
Proof. If m > n, we have the relation
lfop @+ + [, <M, +---+M, for xeD.
Now apply 3.7.4, 9.4.5, and the convergence of )~ M,. QED.
In Appendix E we will use the Weierstrass M-Test to construct two interesting exam-

ples.

Power Series

We shall now turn to a discussion of power series. This is an important class of series of
functions and enjoys properties that are not valid for general series of functions.

9.4.7 Definition A series of real functions ) _ f, is said to be a power series around
x = c if the function f, has the form

fi(x)=a,(x — o),

where a, and c belong to R and wheren =0, 1,2, - - .

For the sake of simplicity of our notation, we shall treat only the case where ¢ = 0.
This is no loss of generality, however, since the translation x’ = x — ¢ reduces a power
series around ¢ to a power series around 0. Thus, whenever we refer to a power series, we
shall mean a series of the form

S B
2) Zanx"=a0+a1x+---+anx"+---.
n=0

Even though the functions appearing in (2) are defined over all of R, it is not to be
expected that the series (2) will converge for all x in R. For example, by using the Ratio
Test 9.2.4, we can show that the series

[o.¢] o0 o0
Zn!x", Zx”, Zx"/n!,
n=0 n=0 n=0

converge for x in the sets

{0}, {x e R: |x] <1}, R,
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respectively. Thus, the set on which a power series converges may be small, medium, or
large. However, an arbitrary subset of R cannot be the precise set on which a power series
converges, as we shall show.

If (b,) is a bounded sequence of nonnegative real numbers, then we define the limit
superior of (b,) to be the infimum of those numbers v such that b, < v for all sufficiently
large n € N. This infimum is uniquely deterined and is denoted by limsup(, ). The only
facts we need to know are (i) that if v > limsup(b,), then b, < v for all sufficiently large
n €N, and (i) that if w < limsup(b,), then w < b, for infinitely many n € N.

9.4.8 Definition Let ) a, x" be a power series. If the sequence (|a,| 1/my is bounded, we
set p := lim sup(|a"|” ™), if this sequence is not bounded we set p = +00. We define the
radius of convergence of ) a,x" to be given by

0 if p=+o0,
R:={1/p if 0<p < +oo,
+oo if p=0.

The interval of convergence is the open interval (—R, R).
We shall now justify the term “radius of convergence”.

9.4.9 Cauchy-Hadamard Theorem If R istheradius of convergence of the power series
Y _a,x", then the series is absolutely convergent if |x| < R and is divergent if |x| > R.

Proof. We shall treat only the case where 0 < R < +o00, leaving the cases R = 0 and
R = 400 as exercises. If 0 < |x| < R, then there exists a positive number ¢ < 1 such
that |x| < cR. Therefore p < ¢/ |x| and so it follows that if n is sufficiently large, then

1 .. .
lan| /n < ¢/ |x|. This is equivalent to the statement that
3) |anx"| <c"

for all sufficiently large n. Since ¢ < 1, the absolute convergence of " a,x" follows from
the Comparison Test 3.7.7.

If x| > R = 1/p, then there are infinitely many n € N for which |an‘1/" > 1/ |x|.
Therefore, |a,x" | > 1 for infinitely many 7, so that the sequence (a,x") does not converge
to zero. QED.

Remark It will be noted that the Cauchy-Hadamard Theorem makes no statement as to
whether the power series converges when |x| = R. Indeed, anything can happen, as the
examples

1 1
DRD DD 9 23

show. Since lim(n'/") = 1, each of these power series has radius of convergence equal to 1.
The first power series converges at neither of the points x = —1 and x = +1; the second
series converges at x = —1 but diverges at x = +1; and the third power series converges at

both x = —1 and x = +1. (Find a power series with R = 1 that converges at x = +1 but
diverges at x = —1.)
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It is an exercise to show that the radius of convergence of the series ) a, x" is also
given by

an

C)) lim
a

n+1

provided this limit exists. Frequently, it is more convenient to use (4) than Definition 9.4.8.

The argument used in the proof of the Cauchy-Hadamard Theorem yields the uniform
convergence of the power series on any fixed closed and bounded interval in the interval of
convergence (—R, R).

9.4.10 Theorem Let R be the radius of convergence of ) a,x" and let K be a closed
and bounded interval contained in the interval of convergence (— R, R). Then the power
series converges uniformly on K . \

Proof. The hypothesis on K € (—R, R) implies that there exists a positive constant
¢ < 1 such that |x| < cR for all x € K. (Why?) By the argument in 9.4.9, we infer that
for sufficiently large n, the estimate (3) holds for all x € K. Since ¢ < 1, the uniform
convergence of ) a,x" on K is a direct consequence of the Weierstrass M -test with
M, :=c". QED.
9.4.11 Theorem The limitofa power series is continuous on the interval of convergence.
A power series can be integrated teri-by-term over any closed and bounded interval
contained in the interval of convergence.

Proof. If |x0‘ < R, then the preceding result asserts that )~ a, x" converges uniformly on
any closed and bounded neighborhood of x,, contained in (—R, R). The continuity at x,,
then follows from Theorem 9.4.2, and the term-by-term integration is justified by Theorem
9.4.3. QED.

We now show that a power series can be differentiated term-by-term. Unlike the
situation for general series, we do not need to assume that the differentiated series is
uniformly convergent. Hence this result is stronger than Theorem 9.4.4.

9.4.12 Differentiation Theorem A power series can be differentiated tenn-by-term
within the interval of convergence. In fact, if

00 00
fx) = Zanx”, then flx) = chznx"_1 for |x| <R.
. n=1

n=0

Both series have the same radius of convergence.

Proof. Since lim(n'/") = 1, the sequence (|na, |'/") is bounded if and only if the sequence
(la, |'/") is bounded. Moreover, it is easily seen that

lim sup (|nan|l/") = limsup (|an|l/") .

Therefore, the radius of convergence of the two series is the same, so the formally differen-
tiated series is uniformly convergent on each closed and bounded interval contained in the
interval of convergence. We can then apply Theorem 9.4.4 to conclude that the formally
differentiated series converges to the derivative of the given series. QED.
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Remark It is to be observed that the theorem makes no assertion about the endpoints of
the interval of convergence. If a series is convergent at an endpoint, then the differentiated
series may or may not be convergent at this point. For example, the series Y .-, x"/ n?
converges at both endpoints x = —1 and x = +1. However, the differentiated series given
by Y o0, x"~!/n converges at x = —1 but diverges at x = +1.

By repeated application of the preceding result, we conclude that if k € N then
Y n2 g a,x" can be differentiated term-by-term k times to obtain

e ! o
) 3 (n—fl_—jaianx"hk.

n=k

Moreover, this series converges absolutely to f ® (x) for |x] < R and uniformly over any
closed and bounded interval in the interval of convergence. If we substitute x = 0 in (5),
we obtain the important formula

f®©) =kla,.

9.4.13 Uniqueness Theorem If ) a,x" and ) b,x" converge on some interval
(—=r,r), r > 0, to the same function f, then

a, =b, forall ne N.
Proof. Our preceding remarks show thatnla, = f ™ (0) = n'b, foralln € N. QED.

Taylor Series

If a function f has derivatives of all orders at a point ¢ in R, then we can calculate the
Taylor coefficientsby ay := f(c),a, = f™(c)/n!forn € Nandin this wayobtainapower
series with these coefficients. However, it is not necessarily true that the resulting power
series converges to the function f in an interval about c. (See Exercise 12 for an example.)
- The issue of convergence is resolved by the remainder term R, in Taylor’s Theorem 6.4.1.
We will write

00 (n)
©) for=3 L0 gy
n=0

n!

for |x — c¢| < R if and only if the sequence (R, (x)) of remainders converges to 0 for each
x in some interval {x: |x — ¢| < R}. In this case we say that the power series (6) is the
Taylor expansion of f at c. We observe that the Taylor polynomials for f discussed in
Section 6.4 are just the partial sums of the Taylor expansion (6) of f. (Recallthat 0! := 1.)

9.4.14 Examples (a) If f(x) :=sinx, x € R, we have f@®(x) = (—=1)"sinx and
f,(2"+1) (x) = (=1)"cosx forn € N, x € R. Evaluating at c = 0, we get the Taylor coeffi-
cients a,, =0 and a,, , = (—1)"/(2n + 1)! for n € N. Since |sinx| <1 and |cosx| < 1
for all x, then |R (x)| < |x|" /n! for n € N and x € R. Since lim(R,(x)) = O for each
x € R, we obtain the Taylor expansion

oo

—1)"
sinx = ZO (2(’1—+)T)~!x2"+' forall x € R.
n=|
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An application of Theorem 9.4.12 gives us the Taylor expansion

[o.¢] _1 n
cosx = z(; ((Zn;! x forall x e R.
n=|

(b) Ifg(x) == e*,x € R,theng™(x) = ¢* foralln € N, and hence the Taylor coefficients
are given by a, = 1/n! forn € N. For a given x € R, we have ]Rn(x)| < e |x|" /n! and
therefore (R, (x)) tends to 0 as n — oo. Therefore, we obtain the Taylor expansion

=1
@) e = Z mx" forall x eR.

n=0
We can obtain the Taylor expansion at an arbitrary ¢ € R by the device of replacing x by
x — ¢ in (7) and noting that

(o

= =€ E ——'(x -t = E —-T(x - for x € R. ]
n! n!
n=0 n=0

Exercises for Section 9.4

1. Discuss the convergence and the uniform convergence of the series ) f,, where f, (x) is given

by:

@ @*+n)7 () (nx)? (x#0),

(©) sin(x/n?), ‘ @ «"+D' @x#0),
€ x"/x"+1) (x>0), O D'"a+x"" x=0).

2. If ) a, is an absolutely convergent series, then the series Y _a, sinnx is absolutely and uni-
formly convergent.

3. Let (c,) be a decreasing sequence of positive numbers. If ) ¢, sin nx is uniformly convergent,
then lim(nc,) = 0.

4. Discuss the cases R = 0, R = +00 in the Cauchy-Hadamard Theorem 9.4.9.

Show that the radius of convergence R of the power series ) a,x" is given by lim (]a,l /a,., |)
whenever this limit exists. Give an example of a power series where this limit does not exist.

6. Determine the radius of convergence of the series ) a,x", where a, is given by:

(@ 1/n", (b) n*/n!,
() n"/n!, d (nn)™', n=>2,
(&) @H*/ @2, H n V7

7. Ifa, := 1 when n is the square of a natural number and a, := 0 otherwise, find the radius of
convergence of Y_a,x". If b_:=1 when n =m! for m € N and b, := 0 otherwise, find the
radius of convergence of the series ) b, x".

Prove in detail that lim sup(|na, ‘l/") = limsup(|a, | iy,
9. If0<p=< ‘a"‘ < g foralln € N, find the radius of convergenée of ) a,x".

10. Let f(x) =) a,x" for |x| < R If f(x) = f(—x) for all |x| < R, show that a, = O for all
odd n.

11. Prove that if f isdefined for |x| < r andifthere exists a constant B such that | f ("’(x)| < B for
all [x| < r and n € N, then the Taylor series expansion

< ™ (0)
>

n!

xﬂ

n=0
converges to f(x) for [x| < r.
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13.

14.

15.
16.

17.

18.

19.

20.
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Prove by Induction that the function given by f (x) := e~!/ ** for x # 0, £(0) := 0, has deriva-
tives of all orders at every point and that all of these derivatives vanish at x = 0. Hence this
function is not given by its Taylor expansion about x = 0.

Give an example of a function which is equal to its Taylor series expansion about x = 0 for
x > 0, but which is not equal to this expansion for x < 0.

Use the Lagrange form of the remainder to justify the general Binomial Expansion

o0

(1+x)'"=z<r::)x" for 0<x<1.

n=0
(Geometric series) Show directly that if |x| < 1, then.1/ (l’ —x) = Z;";G x".
Show by integrating the series for 1/(1 + x) thatif |x| < 1, then

=, (—)™!
In(1+x)= Z x".
n=1 n
: _ & (_1)” 2n+1
Show that if |x| < 1, then Arctanx = )~ ——x .
n=0 2n + 1

© 1.3...2n -1 2n+1
Show that if |x| < 1, then Arcsinx = ) @n-1 X )
o 2:4.--:2n 2n+1

X
. . . 2
Find a series expansion for/ e dtforx e R.
0

If ¢ € Rand |k| < 1, the integral F(a, k) := / (1 - kz(sinx)z)_”2 dx is called an elliptic
0
integral of the first kind. Show that

00

n n 1-3...2n—1D\* ,
F(Zx)=2 AR T U g ,
(2,k) 2"§=0:< YT ) K" for |k <1



CHAPTER 10

THE GENERALIZED
RIEMANN INTEGRAL

In Chapter 7 we gave a rather complete discussion of the Riemann integral of a function
on a closed bounded interval, defining the integral as the limit of Riemann sums of the
function. This is the integral (and the approach) that the reader met in calculus courses; it is
also the integral that is most frequently used in applications to engineering and other areas.
Wehave seen that continuous and monotone functions on [a, b] are Riemann integrable, so
most of the functions arising in calculus are included in its scope.

However, by the end of the 19th century, some inadequacies in the Riemann the-
ory of integration had become apparent. These failings came primarily from the fact that
the collection of Riemann integrable functions became inconveniently small as mathe-
matics developed. For example, the set of functions for which the Newton-Leibniz for-
mula:

b
] F'=F(b) — F(a)
holds, does not include all differentiable functions. Also, limits of sequences of Riemann
integrable functions are not necessarily Riemann integrable. These inadequacies led others
to invent other integration theories, the best known of which was due to Henri Lebesgue
(1875-1941) and was developed at the very beginning of the 20th century. (For an account
of the history of the development of the Lebesgue integral, the reader should consult the
book of Hawkins given in the References.)

Indeed, the Lebesgue theory of integration has become pre-eminent in contemporary
mathematical research, since it enables one to integrate a much larger collection of functions,
and to take limits of integrals more freely. However, the Lebesgue integral also has several
inadequacies and difficulties: (1) There exist functions F that are differentiable on [a, b]
but such that F’ is not Lebesgue integrable. (2) Some “improper integrals”, such as the
important Dirichlet integral:

0o _;
/ S0Y ix,
0 X

do not exist as Lebesgue integrals. (3) Most treatments of the Lebesgue integral have
considerable prerequisites and are not easily within the reach of an undergraduate student
of mathematics.

As important as the Lebesgue integral is, there are even more inclusive theories of
integration. One of these was developed independently in the late 1950s by the Czech
mathematician Jaroslav Kurzweil (b. 1926) and the English mathematician Ralph Henstock
(b. 1923). Surprisingly, their approach is only slightly different from that used by Riemann,
yet it yields an integral (which we will call the generalized Riemann integral) that includes
both the Riemann and the Lebesgue integrals as special cases. Since the approach is so

274
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Ralph Henstock and Jaroslav Kurzweil

Ralph Henstock (pictured on the left) was born on
June 2, 1923, in Nottinghamshire, England, the son of
a mineworker. At an early age he showed that he was a
gifted scholar in mathematics and science. He entered
St. John’s College, Cambridge, in 1941, studying with
J. D. Bemal, G. H. Hardy, and J. C. Burkhill and was
classified Wrangler in Part II of the Tripos Exams in
1943. He earned his B.A. at Cambridge in 1944 and his
Ph.D. at the University of London in 1948. His research
is in the theory of summability, linear analysis, and inte- .
gration theory. Most of his teaching has been in Northern
Ireland. He is presently an Emeritus Professor at the Coleraine Campus of the University of Ulster.

Jaroslav Kurzweil (pictured on the right) was born on May 7; 1926, in Prague. A student of
V.Jarnik, he has done a considerable amount of research in the theory of differential equations and
the theory of integration, and also has had a serious interest in mathematical education. In 1964 he
was awarded the Klement Gottwald State Prize, and in 1981 he was awarded the Bolzano medal
of the Czechoslovak Academy of Sciences. Since 1989 he has been Director of the Mathematical
Institute of the Czech Academy of Sciences in Prague and has had a profound influence on the
mathematicians there.

similar to that of Riemann, it is technically much simpler than the usual Lebesgue integral—
yet its scope is considerably greater; in particular, it includes functions that are derivatives,
and also includes all “improper integrals”.

In this chapter, we give an exposition of the generalized Riemann integral. In Sec-
tion 10.1, it will be seen that the basic theory is almost exactly the same as for the ordinary
Riemann integral. However, we have omitted the proofs of a few results when their proofs
are unduly complicated. In the short Section 10.2, we indicate that improper integrals on
[a, b] are included in the generalized theory. We will introduce the class of Lebesgue in-
tegrable functions as those generalized integrable functions f whose absolute value | f| is
also generalized integrable; this is a very different approach to the Lebesgue integral than
is usual, but it gives the same class of functions. In Section 10.3, we will integrate functions
on unbounded closed intervals. In the final section, we discuss the limit theorems that hold
for the generalized Riemann and Lebesgue integrals, and we will give some interesting ap-
plications of these theorems. We will also define what is meant by a “measurable function”
and relate that notion to generalized integrability.

Readers wishing to study the proofs that are omitted here, should consult the first
author’s book, A Modern Theory of Integration, which we refer to as [MTI], or the books
of DePree and Swartz, Gordon, and McLeod listed in the References.

Section 10.1 Definition and Main Properties

-

In Definition 5.5.2, we defined a gauge on [a, b] to be a strictly positive function$ : [a, b] —
(0, 00). Further, atagged partition P := {(I . ti)}?zl of [a, b], where I, = [x,_,, x;],is said
to be é-fine in case

) el Clt, ~8(t),1,+8¢) for i=1,---,n.

This is shown in Figure 5.5.1. Note that (i) only a tagged partition can be §-fine, and (ii)
the §-fineness of a tagged partition depends on the choice of the tags ¢, and the values é(¢;).



276 CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL

In Examples 5.5.4, we gave some specific examples of gauges, and in Theorem 5.5.5
we showed that if § is any gauge on [a, b], then there exist é-fine tagged partitions of [a, b].

We will define the generalized Riemann (or the “Henstock-Kurzweil”) integral. It
will be seen that the definition is very similar to that of the ordinary Riemann integral,
and that many of the proofs are essentially the same. Indeed, the only difference between
the definitions of these integrals is that the notion of smallness of a tagged partition is
specified by a gauge, rather than its norm. It will be seen that this—apparently minor—
difference results in a very much larger class of integrable functions. In order to avoid some
complications, a few proofs will be omitted; they can be found in [MTI].

Before we begin our study, it is appropriate that we ask: Why are gauges more useful
than norms? Briefly, the reason is that the norm of a partition is a rather coarse measure
of the fineness of the partition, since it is merely the length of the largest subinterval in the
partition. On the other hand, gauges can give one more delicate control of the subintervals
in the partitions, by requiring the use of small subinterals when the function is varying
rapidly but permitting the use of larger subintervals when the function is nearly constant.
Moreover, gauges can be used to force specific points to be tags; this is often useful when
unusual behavior takes place at such a point. Since gauges are more flexible than norms,
their use permits a larger class of functions to become integrable.

10.1.1 Definition A function f : [a, b] — R is said to be generalized Riemann inte-
grable on [a, b] if there exists a number L € R such that for every ¢ > O there exists a
gauge 8, on [a, b] such thatif P is any §,-fine partition of [a, b], then

IS(f; P)—L| <e.
The collection of all generalized Riemann integrable functions will usually be denoted by

R*[a, b].

It will be shown thatif f € R*[a, b], then the number L is uniquely determined; it will
be called the generalized Riemann integral of f over [a, b]. It will also be shown that if
f € Rla, b], then f € R*[a, b] and the value of the two integrals is the same. Therefore,
it will not cause any ambiguity if we also denote the generalized Riemann integral of
f € R*[a, b] by the symbols

b b
/ f or j f(x)dx.

Our first result gives the uniqueness of the value of the generalized Riemann integral.
Although its proof is almost identical to that of Theorem 7.1.2, we will write it out to show
how gauges are used instead of norms of partitions.

10.1.2 Uniqueness Theorem If f € R*[a, b], then the value of the integral is uniquely
determined.

Proof. Assume that L’ and L” both satisfy the definition and let ¢ > 0. Thus there exists
a gauge 9§, /2 such that if P is any s, ,2-fine partition, then
IS(f;P)) = L'| <e/2.

Also there exists a gauge 8;/, such that if 752 is any §;),-fine partition, then

IS(f; P,) — L"| < &/2.
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Wq define §, by §,(2) = mjn{ég/z(t), 6;’/2(t)} fort € [a, b], so that §, is a gauge on [a, b].
If P is a 8, -fine partition, then the partition P is both §; ,-fine and §;,-fine, so that
IS(FsP)—L'l<e/2  and  |S(f;P) - L'l <e/2,
whence it follows that
IL'= L' < L' = S(f; P)I +1S(f; P) — L"|
<g/2+¢e/2 =¢.

Since ¢ > 0 is arbitrary, it follows that L' = L". . . QED.

We now show that every Riemann integrable function f is also generalized Riemann

integrable, and with the same value for the integral. This is done by using a gauge that is a
constant function.

10.1.3 Consistency Theorem If f € R[a, b] with integral L, then also f € R*[a, b]
with integral L.

Proof. Given ¢ > 0, we need to construct an appropriate gauge on [a, b]. Since
f € Rla, b], there exists a number &, > 0 such that if P is any tagged partition with
Pl <8, then |S(f; P) — L| < &. We define the function 8} () := }8, for ¢ € [a, b], so
that 8; is a gauge on [a, b].

If P = {(1;, 1)}/, where I, := [x;_,, x,], is a §7-fine partition, then since
1 1
Licly — 8.t + 8551 = [t; — 38,. 1, + 38,
itisreadily seen that 0 < X, —x_; < %55 <3, foralli =1, - - -, n. Therefore this partition

also satisfies | PIl < 8, and consequently |S(f; P) — Ll <e
Thus every 8:—ﬁne partition P also satisfies |S(f; P) — L| < ¢. Since ¢ > 0 is arbi-
wary, it follows that f is generalized Riemann integrable to L. QED.

From Theorems 7.2.5, 7.2.6 and 7.2.7, we conclude that: Every step function, every
continuous function and every monotone function belongs to R*[a, b]. We will now show
that Dirichlet’s function, which was shown not to be Riemann integrable in 7.2.2(b) and
7.3.13(d), is generalized Riemann integrable.

10.1.4 Examples (a) The Dirichlet function f belongs to R*[0, 1] and has integral 0.

We enumerate the rational numbers in [0, 1] as {r,};2,. Given &£ > 0 we define
8.(r) = 6/2’”? and §(x) .= 1 when x is irrational. Thus §_ is a gauge on [0, 1] and
if thepartition P := {(I;, t;)}i_, is é,-fine, then we have x; — x,_, < 26_(¢,). Since the only
nonzero contributions to S( f; P) come from rational tags t; = r,, where

2e €
0< f(rk)(x,' _x,'_l) =1- (x,' —x,'_l) =< W = Fs

and since each such tag can occur in at most two subintervals, we have

. X 2 i
0<S(fiP) <Y —mr=) z=¢
k=12 k=12

1
Since ¢ > 0 is arbitrary, then f € R*[0, 1] and / f=0.
0
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(b) Let H : [0, 1] — R be defined by H(1/k) := k for k € N and H(x) := 0 elsewhere
on [0, 1].

Since H is not bounded on [0, 1], it follows from the Boundedness Theorem 7.1.5 that
it is not Riemann integrable on [0, 1]. We will now show that H is generalized Riemann
integrable to 0.

Infact, given e > 0, we define 8, (1/k) := &/(k2*?) and set 8, (x) := 1 elsewhere on
[0, 1], so 8, is a gauge on [0, 1]. If Pisa 8, -fine partition of [0, 1] then x; — x;_, < 26,(z,).
Since the only nonzero contributions to S(H; P) come from tags ¢, = 1/k, where

2¢ €

0<HA/k)x, —x,_) =k-(x, —x,_) <k- R = S

and since each such tag can occur in at most two subintervals, we have

oo

. 3
0<SH;P)< ) —=e¢
27
1
Since ¢ > 0 is arbitrary, then H € R*[0, 1] and / H=0. O
0

The next result is exactly similar to Theorem 7.1.4.

10.1.5 Theorem Suppose that f and g are in R*[a, b]. Then:
(@) Ifk € R, the function kf is in R*[a, b] and

b b
/ kf=k/ f
(b) The function f + g is in R*[a, b] and

[aro=[r+s

() Iff(x) <gx)forallx € [a, b), then

/abe/abg-

Proof. (b) Givene > 0, we can use the argument in the proof of the Uniqueness Theorem
10.1.2 to construct a gauge 8, on [a, b] such that if P is any é,-fine partition of [a, b], then

b : b
‘}-S(f; P) — / ~f|'< £/2 and ‘S(g;'P) —/ g‘ < ¢&/2.
Since S(f + g&; P) = §( f; P) + S(g; P), it follows as in the proof of Theorem 7.1.4(b)

that
srramr-([r+ [ 8] scrpr- [ o]+ |swm - [ g
‘ Y e 2te2=s ’

Since ¢ > 0 is arbitrary, then f + g € R*[a, b] and its integral is the sum of the integrals
of f and g.
The proofs of (a) and (c) are analogous and are left to the reader. QE.D.
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It might be expected that an argument similar to that given in Theorem 7.1.5 can be
used to show that a function in R*[a, b] is necessarily bounded. However, that is not the
case; indeed, we have already seen an unbounded function in R*[0, 1] in Example 10.1.4(b)
and will encounter more later. However, it is a profitable exercise for the reader to determine
exactly where the proof of Theorem 7.1.5 breaks down for a function in R*[a, b].

The Cauchy Criterion

There is an analogous form forthe Cauchy Criterion for functions in R*[a, b]. It is important
because it eliminates the need to know the value of the integral. Its proof is essentially the
same as that of 7.2.1.

10.1.6 Cauchy Criterion A function f : [a, b] — R belongs to R*[a, b] if and only if
for every € > O there exist a gauge 1, on [a, b] such that if P and Q are any partitions of
[a, b] that are n,-fine, then

IS(f; P) — S(f; Q) <e.

Proof. (=)If f € R*[a, b] with integral L, let 55/2 be a gauge on [a, b] such that if P
and Q are § . /2-ﬁne partitions of [a, b], then

IS(f;P)—Ll<e/2  and  |S(f; Q) — LI <e/2.
We set n, (1) := 86/2(t) fort € [a, b], so if P and Q are n,-fine, then
IS(fs P) — S(fs DI < IS(f; P) — LI+ IL — S(f; QI
<ef24¢e/2=c¢.

(«) Foreachn € N, let §, be a gauge on [a, b] such that if P and Q are partitions
that are 8, -fine, then

IS(f; P) = S(f; Q) < 1/n.

We may assume that §, (1) > 5, 4@ forallt € [a, b] and n € N; otherwise, we replace §,
by the gauge §,, (+) == min{8,(z), - - -, §,(¢)} forallt € [a, b).

Foreachn € N, let 'Pn be a partition that s §,-fine. Clearly, if m > n then both ’Pm and
'Pn are §,-fine, so that

2 IS(f; B) —S(f;P) <1/n for m>n.

Consequently, the sequence (S(f; ’Pm))j',f:l is a Cauchy sequence in R, so it converges to
some number A. Passing to the limit in (2) as m — oo, we have

IS(f;P)—Al<1/n  forall neN.

To see that A is the generalized Riemann integral of f, given ¢ > 0, let K € N satisfy
K > 2/e. If Qis a & -fine partition, then

IS(f; Q) — Al < IS(f; Q) — S(f; Pl + IS(f3 Py) — Al
<1/K+1/K <e

Since ¢ > 0 is arbitrary, then f € R*[a, b] with integral A. QE.D.
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10.1.7 Squeeze Theorem Let f : [a, b] — R. Then f € R*[a, b] ifand only if for every
€ > 0 there exist functions a, and w, in R*[a, b] with

a(x) < f(x) < o,(x) forall x € [a,b],

b
f (@, —a,) <e

The proof of this result is exactly similar to the proof of Theorem 7.2.3, and will be
left to the reader.

and such that

The Additivity Theorem

We now present a result quite analogous to Theorem 7.2.8. Its proof is a modification of
the proof of that theorem, but since it is somewhat technical, the reader may choose to omit
the proof on a first reading.

10.1.8 Additivity Theorem Let f : [a,b] — R and let ¢ € (a, b). Then f € R*[a, b]
if and only if its resrictions to [a, c] and [c, b] are both generalized Riemann integrable.
In this case

3 fabf=facf+/cbf.

Proof. (<) Suppose that the restriction f; of f to [a,c], and the restriction f2 of
f to [c, b] are generalized Riemann integrable to L, and L,, respectively. Then, given
€ > 0 there exists a gauge & on [a, c] such that if ’P is a 8’-fine partition of [a, c] then
IS(fys P 1) — L,| < £/2. Also there exists a gauge 8" on [c, b] such that 1f’P is a 8"-fine
partition of [c, b] then |S(f,; ’Pz) —L,| <¢g/2.

We now define a gauge§, on [a, b] by

min{8'(t), 3(c—1)}  for te€[a,c),
8.(t) :== { min{&'(c), 8" (c)} for t=c,
min{8"(t), 3t —c)}  for t € (c,bl.

(This gauge hasthe property that any §_-fine partition must have c as a tag for any subinterval
containing the point c.)

We will show that if Q is any 8 -fine partition of [a, b], then there exist a §'-fine
partition Ql of [a, c] and a §”-fine partition Q2 of [c, b] such that

@) S(f;Q) = S(f; Q) + S(fy; @)

Case (i) If c is a partition point of Q, then it belongs to two subintervals of Q and is
the tag for both of these subintervals. If Ql consists of the part of Q having subintervals in
[a, c], then Ql is &'-fine. Similarly, if Q2 consists of the part of Q having subintervals in
[c, b], then Q2 is 8”-fine. The relation (4) is now clear.

Case (i) If c is not a partition point in Q = {(1;,t,)}i~,, then it is the tag for some
subinterval, say [x,_,, xk] ‘We replace the pair ([x,_,, xk] c) by the two pairs ([x,_;, c], ¢)
and ([c, x,], ¢), and let Ql and Q2 be the tagged partitions of [a, c] and [c, b] that result.
Since f(c)(x, —x,_)) = f(c)(c —x,_y) + f(c)x, — c), it is seen that the relation (4)
also holds.
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In either case, equation (4) and the Triangle Inequality imply that

S(f; @ — (L, + L] = (S(f3 Q) + S(f1 Q) — (L) + Ly
< |S(f; Q) — Ly| +|S(f: @) — Ly|-
Since Q, is &'-fine and Q2 is 8”-fine, we conclude that
IS(f;Q — (L, +L,) | <e.

Since ¢ > 0is arbitrary, we infer that f € R*[a, b] and that (3) holds.

(=) Suppose that f € R*[a, b] and, given ¢ > 0, let the gauge , satisfy the Cauchy
Criterion. Let f; be the restriction of f to [a, ¢] and let P,, Q, be n,-fine partitions of
[a, c]. By adding additional partition points and tags from [c, b], we can extend P and

9, to n,-fine partitions P and Q of [a, b]. If we use the same additional points and tags in
[c, b] for both P and O, then

S(fiP) = S(f; Q) = S(f; P) — S(fy: Q-

Since both P and Q are n,-fine, then |S(f; 'Pl) = S(fys Ql)l < ¢ also holds. Therefore
the Cauchy Condition shows that the restriction f; of f to [a, c] is in R*[a, c]. Similarly,
the restriction f, of f to [c, d] is in R*[c, d].

The equality (3) now follows from the first part of the theorem. Q.E.D.

It is easy to see that results exactly similar to 7.2.9-7.2.12 hold for the generalized
Riemann integral. We leave their statements to the reader, but will use these results freely.

The Fundamental Theorem (First Form)

We will now give versions of the Fundamental Theorems for the generalized Riemann
integral. It will be seen that the First Form is significantly stronger than for the (ordinary)
Riemann integral; indeed, we will show that the derivative of any function automatically
belongs to R*[a, b], so the integrability of the function becomes a conclusion, rather than
a hypothesis.

10.1.9 The Fundamental Theorem of Calculus (First Form) Suppose there exists a
countable set E in [a, b), and funckions f, F : [a, b] = R such that:
(a) F iscontinuous on [a, b].
(b) F'(x) = f(x) forallx € [a, b]\ E.
Then f belongs to R*[a, b] and

b
) f F = F(b) - Fla).

Proof. We will prove the theorem in the case where E = (J, leaving the general case to
be handled in the Exercises.

Thus, we assume that (b) holds for all x € [a, b]. Since we wish to show that f €
R*[a, b], given ¢ > 0, we need to construct a gauge §,; this will be done by using the
differentiability of F on [a, b]. If ¢ € I, since the derivative f(t) = F'(t) exists, there
exists 8,(¢) > O such thatif 0 < |z —¢| < §,(¢), z € [a, b], then

lF(z) - F(t)_
z—t

~f| <3
If we multiply this inequality by |z — ¢|, we obtain
IF@) — F(t) = f()(z—1)| < zelz—1|
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whenever z € [t — §,(2), 7 + 8,(¢)] N [a, b]. The function §, is our desired gauge.

Now let u, v € [a, b] withu < vsatisfyt € [u, v] C [t —§,(), t + 8,(¢)]. If we sub-
tract and add the term F(t) — f(¢) -t and use the Triangle Inequality and the fact that
v—t>0andt —u >0, we get

|F () — F) — f(t)(v —u)l
SIF) = F@) = fO@ =D+ [F@) = Fu) = f©)( —w)|

< %s(v -1+ %s(t —u) = %s(v —u).
Therefore, if # € [u, v] € [z —6,(2),t + 8,(2)], then we have
(6) |F(v) — F(u) — f(t)(v —w)| < 3e(v —u).

We will show that f € R*[a, b] with integral given by the telescoping sum
n
@) F(b) - F@) =) _{F(x)) — F(x,_)}.
i=1

For, if the partition P := {([x,_,, x,1, £,)}/, is 6,-fine, then
telx_, xSl —8,t).t,+6.()] for i=1,-,n,

and so we can use (7), the Triangle Inequality, and (6) to obtain

|F(b) — F(a) = S(f; P)| =

S {FG) = Flx_y) = £F6)& — %))
= Z |F(xi) = F(x;_) — f(t)(x; —xi—l)]
i=1

n
< Z %s(x,. —x;_y) <é&b—a).
i=1
Since ¢ > 0 is arbitrary, we conclude that f € R*[a, b] and (5) holds. QE.D.

10.1.10 Examples (a) If H(x) := 2./x for x € [0, b], then H is continuous on [0, b]
and H'(x) = 1/4/x for x € (0, b]. We define h(x) := H'(x) for x € (0, b] and h(0) := 0.
It follows from the Fundamental Theorem 10.1.9 with E := {0} that 4 belongs to R*[0, b]
and that fob h = H(b) — H(0) = H(b), which we write as

./:%dx=2~/l_7.

(b) More generally, if o >0, let H,(x) :=23%/a = e‘““"/a for x € (0, b] and let
H_,(0) := 0 so that H, is continuous on [0, b] and H; (x) = x* ! for all x € (0, b]; see
8.3.10 and 8.3.13. We define h,(x) := H, (x) for x € (0, b] and h,(0) :=0.
Then Theorem 10.1.9 implies that &, € R*[0, b] and that fob h,=H,(b) — H,0) =
H_, (b), which we write as
b o
{ x*ldx = ¥
0 a
(¢) LetL(x):=xInx —x forx € (0,b] and L(0) := 0. Then L is continuous on [0, b]
(use ’Hospital’s Rule at x = 0), and it is seen that L'(x) = Inx for x € (0, b].
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It follows from Theorem 10.1.9 with E = {0} that the unbounded function/(x) :=Inx
for x € (0, b] and /(0) := 0 belongs to R*[0, b] and that fobl = L(b) — L(0), which we
write as

b
/ Inxdx =blnb —b.
0

(d) Let A(x) .= Arcsinx for x € [—1, 1] so that A is continuous on [—1, 1] and
A'(x) =1/v1 —x?* for x € (=1, 1). We define s(x) := A'(x) for x € (=1, 1) and let
s(=D =s1):=0. "

Then Theorem 10.1.9 with E = {—1, 1} implies that s € R*[—1, 1] and that f_'l s =
A(1) — A(—1) = m, which we write as

1

d

/ X = Arcsin1 — Arcsin(—1) = 7. O
-1/1—=x2

The Fundamental Theorem (Second Form)

We now turn to the Second Form of the Fundamental Theorem, in which we wish to
differentiate the indefinite integral F of f, defined by:

8) F(z) = /zf(x) dx for ze€ [a,b].

10.1.11 Fundamental Theorem of Calculus (Second Form) Let f belong to R*[a, b]
and let F be the indefinite integral of f. Then we have:

(a) F iscontinuous on [a, b].

(b) There exists a null set Z such that if x € [a, b]\ Z, then F is differentiable at x and
F'(x) = f(x).

(¢) If f is continuous at ¢ € [a, b], then F'(c) = f(c).

Proof. The proofs of (a) and (b) can be found in [MTI]. The proof of (c) is exactly as the
proof of Theorem 7.3.5 except that we use Theorems 10.1.8 and 10.1.5(c). QE.D.

We can restate conclusion (b) as: The indefinite integral F of f is differentiable to f
almost everywhere on [a, b).

Substitution Theorem

In view of the simplicity of the Fundamental Theorem 10.1.9, we can improve the theorem
justifying the “substitution formula”. The next result is a considerable strengthening of
Theorem 7.3.8. The reader should write out the hypotheses inthe case E, = E, = E = 2.

10.1.12 Substitution Theorem (a) Letl :=[a,b]andJ := [a, B),andletF : I — R
and ¢ : J — R be continuous functions with ¢(J) C I.

(b) Suppose there exist sets E, ClandE, C J suchthat f(x) = F'(x) forx e I\ E,,
that ¢ (t) exists fort € J\ E o and that E = (p‘l(E f) UE 0 is countable.

(c) Set f(x) =O0forx e E, and¢'(t) ;=0 fort € E,.

We conclude that f € R*(¢(J)), that (f o ¢) - ¢’ € R*(J) and that

B (B
- / f
o e(a)

8
© /(fo¢)~¢’=F0<p
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Proof. Since ¢ is continuous on J, Theorem 5.3.9 implies that ¢(J) is a closed interval
in I. Also go_l(Ef) is countable, whence Ef Ne(J) = el Y (E Jf)) is also countable.
Since f(x) = F'(x) forall x € ¢(J)\ E,, the Fundamental Theorem 10.1.9 implies that
f € R*(¢(J)) and that

»(B) o(B)
[ s =F[" = Flew®) - F @y
() (@)

Ifte J\E thent € J\ E¢ and p(¢) € I\ Ef. Hence the Chain Rule 6.1.6 implies
that
(Foo) ) = flp@t))-¢'t)  for teJ\E.

Since E is countable, the Fundamental Theorem implies that (f o @) - ¢’ € R*(J) and that

B B
/ (fop)-¢ = Fo¢|a = F(¢(B)) — F(p(@)).

The conclusion follows by equating these two terms. QED.

osf
, i

Since the integrand is unbounded as ¢ — 0+, there is some doubt about the existence
of the integral. Also, we have seen in Exercise 7.3.19(b) that Theorem 7.3.8 does not apply
with ¢(t) := +/t. However, Theorem 10.1.12 applies.

Indeed, this substitution gives ¢'(z) = 1/ (2+4/1) for t € (0, 4] and we set (0) := 0. If
we put F(x) := 2sinx, then f(x) = F'(x) = 2cosx and the integrand has the form

10.1.13 Examples (a) Consider the integral

1
fle®) ¢'@ = (2cos «/5) (Z_J?) for t#0.

Thus, the Substitution Theorem 10.1.12 with E o = {0}, E = @, E := {0} implies that

t=4 x=2

t

/ cosvit ) _ 2cosxdx = 2sin2.
s ¥=0

(b) Consider the integral /

x/t——t/f«/lT

Note that this integrand is unbounded as ¢t — 0+ and as ¢t — 1—. As in (a), we let
x = @(t) ;= +/t for t € [0,1] so that ¢'(t) = 1/(2+/t) for t € (0,1]. Since V1 —t =
1 — x2, the integrand takes the form

2 1 2

which suggests f(x) =2/v1— x? forx # 1. Therefore, we are led to choose F(x) :=
2 Arcsin x for x € [0, 1], since

2
V1—x?
Consequently, we have E o= {0} and E = {1}, so that E = {0, 1}, and the Substitution
Theorem yields

= F'(x) = (2 Arcsinx)’ for x € [0, 1).

1
= 2 Arcsinx 0= 2 Arcsinl = 7. O

/'1 d 7' 2dx
t=0 «/;Vl—t x=0 \/]—x2
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Other formulations of the Substitution Theorem are given in [MTI].

The Multiplication Theorem

In Theorem 7.3.16 we saw that the product of two Riemann integrable functions is Rie-
mann integrable. That result is not true for generalized Riemann integrable functions; see
Exercises 18 and 20. However, we will state a theorem in this direction that is often useful.
Its proof will be found in [MTI].

10.1.14 Multiplication Theorem If f € R*[a, b] and if g is a monotone function on
[a, b], then the product f - g belongs to R*[a, b].

Integration by Parts
The following version of the formula for integration by parts is useful.

10.1.15 Integration by Parts Theorem Let F and G be differentiable on [a, b]. Then
F'G belongs to R*[a, b] if and only if F G’ belongs to R*[a, b]. In this case we have

b b
— / FG'.
a a

The proof uses Theorem 6.1.3(c); it will be left to the reader. In applications, we usually
have F'(x) = f(x) and G’ (x) = g(x) for all x € [a, b]. It will be noted that we need to
assume that one of the functions fG = F’G and Fg = F G’ belongs to R*[a, b].

b
(10) / F'G=FG

a

The reader should contrast the next result with Theorem 7.3.18. Note that we do not
need to assume the integrability of f@*D.

10.1.16 Taylor’s Theorem Suppose that f, f', f”,---, f® and £ exist on [a, b].
Then we have

’ (n)
L@ gygny LD
1! n!

where the remainder is given by

(1) fb) = fla)+ (b—-a)"+R,

b
(12) R = i' / D@y (b — )" dr.

n
Proof. Since f®*V is a derivative, it belongs to R*[a, b]. Moreover, since t > (b — )"

is monotone on [a, b], the Multiplication Theorem 10.1.14 implies the integral in (12)
exists. Integrating by parts repeatedly, we obtain (11). QE.D.

Exercises for Section 10.1

1. Let 8 be a gauge on [q, b] and let P= {(fx,_y x;1, t,)}/_, be a 8-fine partition of [a, b].
(@) ShowthatO <x, —x,_, <28(t)fori=1,---,n.
(b) If 8* :=sup{8(t) : ¢ € [a, b]} < 00, show that ||P|| < 26*.
(c) If 8, :=inf(8(z) : t € [a, b]} satisfies §, > O, and if Qisa tagged partition of [a, b] such
that we have | Q| < 3,, show that Q is é-fine.
(d) If e = 1, show that the gauge §, in Example 10.1.4(a) has the property that inf{5,(¢) : ¢ €
[0,1]} =0.
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@ If P is a tagged partition of [a, b], show that each tag can belong to at most two subintervals
in P.

(b) Are there tagged partitions in which every tag belongs to exactly two subintervals?

Let § be a gauge on [a, b] and let Pbea J-ﬁn‘e partition of [a, b].

(a) Show that there exists a §-fine partition Ql such that (i) no tag belongs to two subintervals
in Ql, and (ii) S(f; Ql) = S(f; P) for any function f on [a, b].

(b) Does there exist a -fine partition Q, such that (j) every tag belongs to two subintervals in
Q,, and (jj) S(f; Q,) = S(f; P) for any function f on [a, b]?

(c) Show that there exists a 5-f_'1ne partition Q3 such that (k) every tag is an endpoint of its
subinterval, and (kk) S(f; Q3) = S(f; P) for any function f on [a, b].

If é is defined on [0, 2] by 8(¢) := %|t — 1j for x # 1 and §(1) := 0.01, show that every §-fine
partition P of [0, 2] has r =1 as a tag for at least one subinterval, and that the total length of
the subintervals in P having 1 as a tag is < 0.02.

(a) Construct a gauge § on [0, 4] that will force the numbers 1, 2, 3 to be tags of any é-fine
partition of this interval.

(b) Given a gauge §, on [0, 4], construct a gauge &, such that every §,-fine partition of [0, 4]
will (i) have the numbers 1, 2, 3 in its collection of tags, and (ii) be §,-fine.

Show that f € R*[a, b] with integral L if and only if for every & > 0 there exists a gauge y,
on [a, b] such thatif P = {(x;_ s x;1, 1)}, is any tagged partition such that0 < x, —x,_| <
v.@¢)fori=1,..-,n,then|S(f; P)— L| < e (This provides an alternate—but equivalent—
way of defining the generalized Riemann integral.)

Show that the following functions belong toR*[0, 1] by finding a function F, that is continuous
on [0, 1] and such that F(x) = fi,(x) forx € [0, 1]\ E,, for some finite set E, .

@ fi(x) =+ 1)//x forx € (0,1] and f,0) =0.

(b) f,(x):=x/vy1—x forx €[0, 1) and f,(1) :=0.

(©) f;(x):=+xInx forx € (0, 1] and £;(0) := 0.

(d) f,(x) :==(nx)/v/x forx € (0, 1] and £,(0) := 0.

(&) fy(x):=/T+x)/0=x) forxel0,1)an’ 1):=0.

0 fo(x):=1/(Jxv/2—=x) forx e (0,11and f,, ,=0.

Explain why the argument in Theorem 7.1.5 does not apply to show that a functionin R*[a, b]
is bounded.

Let f(x) = 1/xforx € (0, 1] and f(0) := 0; then f is continuous except at x = 0. Show that
f does not belong to R*[0, 1]. [Hint: Compare f with s (x) :=1on (1/2,1], 5,(x) = 2 on
(1/3,1/2],s,(x) :=3o0n(1/4,1/3],---,5,(x) :=non [0, 1/n].]

Let k : [0, 1] — R be defined by k(x) := 0if x € [0, 1] is O or is irrational, and k(m/n) :=n
if m, n € N have no common integer factors other than 1. Show that k € R*[0, 1] with integral

equal to 0. Also show that k is not continuous at any point, and not bounded on any subinterval
[c,d] withc < d. S

Let f be Dirichlet’s function oﬁ[O, 11and F(x) := Oforall x € [0, 1]. Since F'(x) = f(x) for
all x € [0, 1]\ Q show that the Fundamental Theorem 10.1.9 implies that f € R*[0, 1].

Let M(x) :=In|x| for x # 0 and M (0) := 0. Show that M'(x) = 1/x for all x # 0. Explain
why it does not follow that f_zz(l/x) dx=In|—-2|—-In2=0.

Let L,(x) := xIn|x| — x forx # Oand L,(0) := 0,and let/, (x) := In|x|if x # Oand!/ (0) :=
0.1If [a, b] is any interval, show that [/, € R*[a, b] and that fablnlxldx =L, (b)— L,(a).

Let E :={c,,c,, -} and let F be continuous on [a, b] and F'(x) = f(x) for x € [a,b]\ E
and f(c,) := 0. We want to show that f € R*[a, b] and that equation (5) holds.

(a) Given e >0 andt € [a, b]\E, let 3,(t) be defined as in the proof of 10.1.9. Choose
8,(c,) > O such thatif |z— ¢,| < 8,(c,) and z € [a, b], then |F(2) — F(c,)| < &/2**2.
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(b) Show that if the partition P is 8 .-fine and has a tag f, =c,, then we have
|F(x) = Fx,_) = fle)x, — x,_ )| < /2",

(c) Usethe argument in 10.1.9 to get |S(f; P) — (F(b) — F(a))| < (b —a +1).

Show that the function g,(x) := x " Y2sin(1/x) for x € (0, 1] and £,(0) := 0 belongs to

R*[0, 1]. [Hint: Differentiate C, (x) := x*/*cos(1/x) forx € (0, 1] and C, (0) := 0.]

Show that the function g,(x) := (1/x)sin(1/x) for x € (0,1] and g,(0) := 0 belongs to

R0, 1]. [Hint: Differentiate C,(x) := x cos(1/x) for x € (0, 1] and C,(0) := 0, and use the
result for the cosine function that corresponds to Exercise 7.2.12.]

Use the Substitution Theorem 10.1.12 to evaluate the following integrals.

3 4
(a) /_3(2t+1)sgn(t2+t—2)dt=6, (b) A l*f‘f/’;,

5 dt 1
=2 Arctan 2, d V1—1ttdr.
(©) [ e rctan (d) fo

Give an example of a function f € R*[0, 1] whose square f> does not belong to R*[0, 1].

Let F(x) := x cos(r/x) for x € (0, 1] and F(0) := 0. It will be seen that f := F' € R*[0, 1]

but that its absolute value | f| = |F'| ¢ R*[0, 1]. (Here f(0) :=0.)

(a) Show that F’ and | F’| are continuous on any interval [c, 1],0 < ¢ < 1and f € R*[0, 1].

(b) Ifa, :=2/(2k+1)andd, := 1/kfork € N, then the intervals [a,, b,] are non-overlapping
and 1/k < f,,": I£1.

(c) Since the series Y o, 1/ k diverges, then | f| ¢ R*[0, 1].

Let f be as in Exercise 19 and let m(x) := (=1 for x € la,.b,](k € N), and m(x) :=0
elsewhere in [0, 1]. Show thatm - f = |m - f|. Use Exercise 7.2.11 to show that the bounded
functions m and |m| belong to R[0, 1]. Conclude that the product of a function in R*[0, 1] and
a bounded function in R[0, 1] may not belong to R*[0, 1].

Let ®(x) := x| cos(rr/x)| for x € (0, 1] and let ®(0) := 0. Then &P is continuous on [0, 1] and
®’(x) exists for x ¢ E == {0} U {a, : k € N}, where a, = 2/(2k + 1). Let p(x) = d'(x) for
x ¢ E and ¢(x) := 0 for x € E. Show that ¢ is not bounded on [0, 1]. Using the Fundamental
Theorem 10.1.9 with E countable, conclude that ¢ € R*[0, 1] and that fab ¢ = d(b) — P(a)
fora, b € [0, 1]. As in Exercise 19, show that |p| ¢ R*[O0, 1].

Let W(x) := x?| cos(rr/x)| for x € (0,1] and W(0) := 0. Then W is continuous on [0, 1] and
W'(x) exists for x ¢ E :={a}. Let ¥(x) = W'(x) for x ¢ E, and ¥(x) =0 for x € E,.
Show that v is bounded on [0, 1] and (using Exercise 7.2.11) that ¥ € R[0, 1]. Show that
j;b v =W (b) — ¥Y(a)fora, b € [0, 1]. Also show that || € R[O, 1].

If f:[a,b] — Ris continuous and if p € R*[a, b] does not change sign on [a,b],andif fp €
R*[a, b}, then there exists & € [a, b] such that fab fp=f¢) fab p. (This is a generalization of
Exercise 7.2.16; it is called the First Mean Value Theorem for integrals.)

Let f € R*[a, b), let g be monotone on [a, b] and suppose that f > 0. Then there exists

£ € [a, bl suchthat [7 fg = g(a) [} f + g(b) J; f.(This is aform of the Second Mean Value
Theorem for integrals.)

Section 10.2 Improper and Lebesgue Integrals

We have seen in Theorem 7.1.5 that a function f in R[a, b] must be bounded on [a, b]
(although this need not be the case for a function in R*[a, b]). In order to integrate certain
functions that have infinite limits at a point c in [a, b], or which are highly oscillatory
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at such a point, one learns in calculus to take limits of integrals over subintervals, as the
endpoints of these subintervals tend to the point c.

For example, the function 2(x) := 1/./x for x € (0, 1] and £(0) := 0is unbounded on
a neighborhood of the left endpoint of [0, 1]. However, it does belong to R[y, 1] for every
y € (0, 1] and we define the “improper Riemann integral” of 4 on [0, 1] to be the limit

| LS|
—dx = 1i —dx.
[ Jpa=jim [ S
We would treat the oscillatory function k(x) :=sin(1/x) for x € (0, 1] and £(0) := 0 in
the same way.
One handles a function that becomes unbounded, or is highly oscillatory, at the right
endpoint of the interval in a similar fashion. Furthermore, if a function g is unbounded, or

is highly oscillatory, near some ¢ € (a, b), then we define the “improper Riemann integral”
to be

b a b
['eeto oo s
These limiting processes are not necessary when one deals with the generalized
Riemann integral.
For example, we have seen in Example 10.1.10(a) that if H (x) = 2,/x forx € [0, 1]
then H'(x) = 1//x =: h(x) for x € (0, 1] and the Fundamental Theorem 10.1.9 asserts
that 2 € R*[0, 1] and that

1
1
/(; ﬁdx=H(l)—H(O)=2.

This example is an instance of a remarkable theorem due to Heinrich Hake, which we now
state in the case where the function becomes unbounded or is oscillatory near the right
endpoint of the interval.

10.2.1 Hake’s Theorem If f : [a,b] — R, then f € R*[a, b] if and only if for every
y € (a, b) the restriction of f to [a, y] belongs to R*[a, y] and

14
(2 lim f=AcR.

y—b-J,

b
In thiscase/ f =A.
a,

The idea of the proof of the (<) part of this result is to take an increasing sequence
(¥,) converging to b so that f € R*[a, y,] and lim, [7» f = A. In order to show that
f € R*[a, b], we need to conswruct gauges on [a, b]. This is done by carefully “piecing
together” gauges that work for the intervals [y;_,, ¥;] to obtain a gauge on [a, b]. Since the
details of this construction are somewhat delicate and not particularly informative, we will
not go through them here but refer the reader to [MTI].

It is important to understand the significance of Hake’s Theorem.

« It implies that the generalized Riemann integral cannot be extended by taking limits as
in (2). Indeed, if a function f has the property that its restriction to every subinterval
[a, Y], where y € (a, b), is generalized Riemann integrable and such that (2) holds, then
f already belongs to R*[a, b].
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An alternative way of expressing this fact is that the generalized Riemann integral does
not need to be extended by taking such limits.

* One can test a function for integrability on [a, b] by examining its behavior on subin-
tervals [a, y] with y < b. Since it is usually difficult to establish that a function is in
R*[a, b] by using Definition 10.1.1, this fact gives us another tool for showing that a
function is generalized Riemann integrable on [a, b].

+ Itis often useful to evaluate the integral of a function by using (2).

We will use these observations to give an important example that provides insight into
the set of generalized Riemann integrable functions. . ’

10.2.2 Example (a) Let ) 2, a, be any series of real numbers converging to A € R.
We will construct a function ¢ € R*[0, 1] such that

1 o
f w:Zak=A.
0 k=1

Indeed, we define ¢ : [0, 1] — R to be the function that takes the values 2a,, 22a2,

23a3, -+ on the intervals [0, %), [%, %), [%, %), -+ . (See Figure 10.2.1.) For convenience,
letc, =1—1/2*fork=0,1,---, then
_|2*a, for ¢ <x<c keN),
v0) = [0 for x=1.
U—T———a 2%,
4
] 2,
2a,;
¢ | é
0 1 3 17151
2 4 8 16
2333
4——l—$

Figure 10.2.1 The graph of ¢.

Clearly the restriction of ¢ to each interval [0, y] for y € (0, 1), is a step function and
therefore is integrable. In fact, if y € [c,, c, +l) then

Y 1 1 n 1
/0 (p=(2al)-(§)+(2202)'(5§)+--'+(2 a,,)~<5,;)+r,
=a +a,+---+a,+r,

where |ry| < la,,|. But since the series is convergent, then r , = 0 and so

Y n
lim ¢ = lim Zak=A.
y—l- 0 n—00 =1
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(b) If the series ) -, a, is absolutely convergent in the sense of Definition 9.1.1, then it
follows as in (a) that the function |g| also belongs to R*[0, 1] and that

1 00
[ o=
0 k=1

However, if the series Z,fil |a,| is not convergent, then the function |¢| does not belong to
R*[0, 1].

Since there are many convergent series that are not absolutely convergent (for example,
pBre) (=1)*/ k), we have examples of functions that belong to R*[0, 1] but whose absolute
values do not belong to R*[0, 1]. We have already encountered such functions in Exercises
10.1.19 and 10.1.21. a

The fact that there are generalized Riemann integrable functions whose absolute value
is not generalized Riemann integrable is often summarized by saying that the generalized
Riemann integral is not an “absolute integral”. Thus, in passing to the generalized Riemann
integral we lose an important property of the (ordinary) Riemann integral. But that is the
price that one must pay in order to be able to integrate a much larger class of functions.

Lebesgue Integrable Functions

In view of the importance of the subset of functions in R*[a, b] whose absolute values also
belong to R*[a, b], we will introduce the following definition.

10.2.3 Definition A function f € R*[a, b] such that |f| € R*[a, b] is said to be
Lebesgue integrable on [a, b]. The collection of all Lebesgue integrable functions on
[a, b] is denoted by L[a, b].

Note The collection of all Lebesgue integrable functions is usually introduced in a
totally different manner. One of the advantages of the generalized Riemann integral is
that it includes the collection of Lebesgue integrable functions as a special—and easily
identifiable—collection of functions.

It is clear that if f € R*[a, b] and if f(x) >0 for all x € [a, b], then we have
|fl = f € R*a, b], so that f € L[a, b]. That is, a nonnegative function f € R*[a, b]
belongs to L[a, b]. The next result gives a more powerful test for a function in R*[a, b] to
belong to L[a, b].

10.2.4 Comparison Test If f,w € R*[a b] and | f(x)] < w(x) for all x € [a, b], then

f € L[a, b] and
b b b
= lfls/ v

Partial Proof. Thefactthat |f| € R*[a, b]is provedin [MTI]. Since | f| > 0, this implies
that f € L[a, b].
To establish (3), we note that —| f| < f < | f| and 10.1.5(c) imply that

—/abeIS/abe/ablfl,

3
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whence the first inequality in (3) follows. The second inequality follows from another
application of 10.1.5(c). QED.

The next result shows that constant multiples and sums of functions in L[a, b] also
belong to Lla, b].

10.2.5 Theorem If f, g € L[a, b] andifc € R, then cf and f + g alsobelongto L[a, b].
Moreover

@ fabcf=cfabf and ]ab|f+g|s/:|f|+/ab|g1.

Proof. Since |cf(x)| = |c||f(x)| for all x € [a, b], the hypothesis that | f| belongs to
R*[a, b] implies that cf and |cf| also belong to R*[a, b], whence cf € L[a, b).

The Triangle Inequality implies that |f(x) + g(x)| < |f(x)| + |g(x)| for all x €
[a, b]. But since w = | f| + |g| belongs to R*[a, b], the Comparison Test 10.2.4 implies
that f + g belongs to L[a, b] and that

[1r+s= [ansvin= [+ [0 QED

The next result asserts that one only needs to establish a one-sided inequality in order
to show that a function f € R*[a, b] actually belongs to L[a, b].

10.2.6 Theorem If f € R*[a, b), the following assertions are equivalent:
(@) f € L[a,b]

(b) There exists w € L[a, b] such that f(x) < w(x) for all x € [a, b].

(¢) Thereexistsa € L[a, b] such thata(x) < f(x) forall x € [a, b].

Proof. (a) = (b) Letw = f.
(b) = (a) Note that f = w — (w — f). Since w — f > 0 and since w — f belongs
to R*[a, b}, it follows thatw — f € L[a, b]. Now apply Theorem 10.2.5.

We leave the proofthat (a) <= (c) to the reader. QED.

10.2.7 Theorem If f, g € L[a, b), then the functions max{ f, g} and min{f, g} also be-
long to L[a, b].
Proof. 1t follows from Exercise 2.2.16 that if x € [a, b], then

max{f(x), g(x)} = J(f(x) + g(x) + | f (x) — gD,
min{ £ (x), g(x)} = 2(f(x) + g(x) — | f (x) — g(x)]).

The assertions follow from these equations and Theorem 10.2.5. QED.
In fact, the preceding result gives a useful conclusion about the maximum and the
minimum of two functions in R*[a, b].
10.2.8 Theorem Suppose that f, g, « and w belong to R*[a, b]. If
fsw,g<w orif a=<fac<yg,

then max{ f, g} and min{f, g} also belong to R*[a, b].
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Proof. Suppose that f < w and g < w; then max{f, g} < w. It follows from the first
equality in the proof of Theorem 10.2.7 that

O0<|f—gl=2max{f,g}— f—-g<2w—f—g.

Since 2w — f — g > 0, this function belongs to L[a, b]. The Comparison Test 10.2°4
implies that 2 max{ f, g} — f — g belongs to L[a, b], and so max{f, g} belongstoR*[a, b].
The second part of the assertion is proved similarly. QED.

The Seminorm in L[a, b]

We will now define the “seminorm” of a function in L[a, b] and the “distance between”
two such functions.

10.2.9 Definition If f € L[a, b], we define the seminorm of f to be

b
A1 :=] Lf1.

If £, g € L[a, b], we define the distance between f and g to be
b
dist(f, ) = 1f gl = [ 1 =gl
a
We now establish a few properties of the seminorm and distance functions.

10.2.10 Theorem The seminorn function satisfies:
@ |IfIl=0 forall f € L[a, b].

(ii) If f(x) =0 forx € [a, b}, then || f|| = 0.

(iii) If f € Lla,b)andc € R, then |cf| = lc| - I f]l.
(iv) Iff, g € Lla, b, then||f +gll <1 fII+1gl-

Proof. Parts (i)—(iii) are easily seen. Part (iv) follows from the factthat | f + g| < | f| +
|g| and Theorem 10.1.5(c). QE.D.

10.2.11 Theorem The distance function satisfies:

(j) dist(f,g) >0 forall f,g € L[a,b].

(Ji) Iff(x) = gx) forx € [a, b], thendist(f, g) = 0.

(Jiy) dist(f, g) = dist(g, f) for all f, g € L[a, b].

(Jv) dist(f, h) < dist(f, g) + dist(g, h) forall f, g, h € L[a, b].

These assertions follow from the corresponding ones in Theorem 10.2.10. Their proofs
will be left as exercises.

Using the seminorm (or the distance function) we can define what we mean for a
sequence of functions (f,) in L[a, b] to converge to a function f € L[a, b]; namely, given
any € > 0 there exists K (&) such that if n > K (¢) then

If, — fll =dist(f,, f) <e.

This notion of convergence can be used exactly as we have used the distance function in R
for the convergence of sequences of real numbers.
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We will conclude this section with a statement of the Completeness Theorem for
L[a, b] (also called the Riesz-Fischer Theorem). It plays the same role in the space L[a, b]
that the Completeness Property plays in R.

10.2.12 Completeness Theorem A sequence (f,) of functions in L[a, b] converges to
a function f € L[a, b] if and only if it has the property that for every ¢ > 0O there exists
H(e) such that if m,n > H(e) then

£, — full = dist(f,,, f,) <e.

The direction (=) is very easy to prove and is left as an exercise. A proof of
the direction (<) is more involved, but can be based on the following idea: Find a
subsequence (g,) = (f"k) of (f,) such that ||g,,, — &Il < 1/2* and define f(x):=
8,(X) + X521 (8441(x) — 8,(x)), where this series is absolutely convergent, and f (x) := 0
elsewhere. It can then be shown that f € L[a, b] and that || f, — f|| — 0. (The details are
given in [MTI].)

Exercises for Section 10.2

1. Show that Hake’s Theorem 10.2.1 can be given the following sequential formulation: A function
f € R*[a, b]if and only if there exists A € R such that for any increasing sequence (c,) in (a, b)
withc, — b, then f € R*[a, c,] and [* f — A.

2. (a) Apply Hake’s Theorem to conclude that g(x) = 1/x2/ 3 forx € (0, 1]and g(0) := Obelongs
to R*[0, 1].
(b) Explain why Hake’s Theorem does not apply to f(x) :=1/x for x € (0, 1] and f(0) :=0
(which does not belong to R*[0, 1]).
Apply Hake’s Theorem to g(x) := (1 —x)~"/? for x € [0, 1) and g(1) := 0.
4. Suppose that f € R*[a, c]forall ¢ € (a, b) and that there exists y € (a, b) and w € L[y, b] such
that | f(x)| < w(x) forx € [y, b]. Show that f € R*[a, b].
5. Show that the function g (x) := x~/?sin(1/x) for x € (0, 1] and g, (0) := O belongs to L[0, 1].
(This function was also considered in Exercise 10.1.15.)

6. Show that the following functions (properly defined when necessary) are in £[0, 1].

xInx sinmx
(@) 1422 (®) Inx ’
© (nx)(n(l — x)), @ —2x

\/l—xz'

7. Determine whether the following integrals are convergent or divergent. (Define the integrands to
be 0 where they are not already defined.)

! sinx dx l cosxdx
(a) /O_X.B_/z__, (b) A x3/2 3
' Inxdx 'Inxdx
_Inxdx d :
© b= @ f I—x
dx
1 in(1 d , —_—
(e) /O(nx)(sm( /x)ydx ® fo Jx(1—x)

8. If f € Rla, b), show that f € L[a, b].
9. If f € L[a, b), show that f 2 is not necessarily in L[a, b].
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10. If f, g € L[a, b] and if g is bounded and monotone, show that fg € L[a, b). More exactly, if
|g(x)| < B, show that || fgll < Bl fIl-

11. (a) Give an example of a function f € R*[0, 1] such that max{f, 0} does not belong to
R0, 1].
(b) Can you give an example of f € L[0, 1] such that max{f, 0} ¢ L£[0, 1]?

12. Write out the details of the proofthat min{f, g} € R*[a, b] in Theorem 10.2.8 whena < f and
a<g.

13.  Write out the details of the proofs of Theorem 10.2.11.

14. Give an f € L[a, b] with f not identically O, but such that || f|| = 0.

15. If f, g € Lla, b], showthat || fIl — llgl| < 1 £ gll.

16. Establish the easy part of the Completeness Theorem 10.2.12.

17. If f,(x) :=x" for n € N, show that f € L[0, 1] and that | f,| — 0. Thus || f, — 6| = O,
where 6 denotes the function identically equal to 0.

18. Letg,(x) :=—1forx € [-1,—-1/n),letg, (x) :=nx forx € [-1/n,1/n] and let g (x) :=1
forx € (1/n,1]. Show that ||g, — g, | — 0as m,n — 00, so that the Completeness Theorem
10.2.12 implies that there exists g € L[—1, 1] such that (g ,) converges to g in L[—1, 1]. Find
such a function g.

19. Leth, (x) :=nforx € (0, 1/n)and h, (x) := Oelsewherein [0, 1]. Does there exist b € L[0,1]
such that ||k, — h|| — 0?

20. Letk, (x) :==nforx € (0,1/ n?) and k, (x) := Oelsewherein [0, 1]. Does there existk € £[0, 1]
such that [k, — k|| — 0?

Section 10.3 Infinite Intervals

In the preceding two sections, we have discussed the integration of functions defined
on bounded closed intervals [a, b]. However, in applications we often want to integrate
functions defined on unbounded closed intervals, such as

[a, 00), (—o0, b], or (—o00, 00).

In calculus, the standard approach is to define an integral over [a, 00) as a limit:

00 14
/ f = lim £
a y—00 a
and to define integrals over the other infinite intervals similarly. In this section, we will
treat the generalized Riemann 1ntegrable (and Lebesgue integrable) functions defined on
infinite intervals.

In defining the generalized Riemann integral of a function f on [a, 00), we will adopt a
somewhat different procedure from thatin calculus. We note that if Q = {([xg: X1, 2)), -
(Ix,_1»x,], t”), ([x,, o], th)} is a tagged partition of [a, oc], then X,=a and X4 =00
and the Riemann sum corresponding to Q has the form:

0] Fa)Gxy —xp)+ -+ f)x, —x,_)) + [, )00 —x,).

Since the final term f (¢ ,+1)(00 — x,) in (1) is not meaningful, we wish to suppress this
term. We can do this in two dlfferent ways: (i) define the Riemann sum to contain only the
first n terms, or (ii) have a procedure that will enable us to deal with the symbols + oo in
calculations in such a way that we eliminate the final term in (1).
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We choose to adopt method (i): instead of dealing with partitions of [a, 0o) into a
finite number of non-overlapping intervals (one of which must necessarily have infinite
length), we deal with certain subpartitions of [a, co), which are finite collections of
non-overlapping intervals of finite length whose union is properly contained in [a, 00).

We define a gauge on [a, oo] to be an ordered pair consisting of a strictly positive
function 8 defined on [a, 00) and a number d* > 0. When we say that a tagged subpartition
P = {xg, x, 1. 1), -, ((x,_y, x,1, £,) } is (8, d*)-fine, we mean that

) [a,00) = [x;_;» ;] U [x,, o),
i=1
that
) b x1C0y =80, 1, +8@)]  for i=1,--,n,
and that
4 [x,, 00) € [1/d*, 00)

or, equivalently, that

@) 1/d* < x,.

Note Ordinarily we consider a gauge on [a, oo] to be a strictly positive function § with
domain [a, 00] = [a, 00) U {oo} where §(00) = d*.

We will now define the generalized Riemann integral over [a, 00).

10.3.1 Definition (a) A function f : [a, 00) — R is said to be generalized Riemann
integrable if there exists A € R such thatforevery & > 0 there exists a gauge §, on [a, o0]
such thatif P is any 8,-fine tagged subpartition of [a, 00), then |S(f; P) — A| < & In this
case we write f € R*[a, 00) and
oo
/ f:=A.
a

(b) A function f : [a, c0) — R issaid to be Lebesgue integrable if both f and | f| belong
to R*[a, o0). In this case we write f € L[a, 00).

Of particular importance is the version of Hake’s Theorem for functions in R*[a, 00).
Other results for functions in £[a, co) will be given in the exercises.

10.3.2 Hake’s Theorem If f : [a, 0c0) — R, then f € R*[a, 0o) ifand only if for every
y € (a, 00) the restriction of f to [a, y] belongs to R*[a, y] and

) im [ f=AcR

y—>00 a

(o ¢]
In this case / f=A.
a

The idea of the proof of Hake’s theorem is as before; the details are given in [MTI].

The generalized Riemann integral on the unbounded interval [a, 00) has the same
properties as this integral on a bounded interval [a, b] that were demonstrated in Section
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10.1. They can be obtained by either modifying the proofs given there, or by using Hake’s
Theorem. We will give two examples.

10.3.3 Examples (a) If f, g € R*[a, 00), then f + g € R*[a, 00) and

/aoo(f+g)=/aoof+/aoog-

If ¢ > Ois given let 6f be a gauge on [a, oo] such that ifPis Sf-ﬁne, then |S(f; P) —
fa°° f| < &/2, and there exists a gauge & o such thatif P is § g-ﬁne, then |S(g; P) — faoo gl <
€/2.Now leté, (1) := min{af(t), 8 (t)}fort € [a, oo] andargue as in the proofof 10.1.5(b).

(b) Let f : [a, 00) —> Randletc € (a, o0). Then f € R*[a, co) if and only if its restric-
tions to [a, c] and [c, 0o) are integrable. In this case,

®) wa=/acf+/;wf.

We will prove (<) using Hake’s Theorem. By hypothesis, the restriction of f to
[c, 00) is integrable. Therefore, Hake’s Theorem implies that for every y € (c, 00), the
restriction of f to [c, y] is integrable and that

00 Y
/ f=1m | f
c y=00 J,

If we apply the Additivity Theorem 10.1.8 to the interval [a, y] = [a, c] U [c, y], we
conclude that the restriction of f to [a, y] is integrable and that

Y c Y
[r=[r+[r
a a (4
whence it follows that

ylir{go/ayf=/acf+ylj§golyf=/acf+/cmf-

Another application of Hake’s Theorem establishes (6). d

10.3.4 Examples (a) Let @ > 1 and let f,(x) := 1/x® for x € [1, 00). We will show
that f, € R*[1, 00).
Indeed, if y € (1, 00) then the restriction of f, to [1, y] is continuous and therefore
belongs to R*[1, y]. Moreover, we have
Y
= ! . [1 - ! ] .
1 a—1 yot—l

Y1 1
—dx =

But since the last term tends to 1/(a — 1) as y — 00, Hake’s Theorem implies that f, €

R*[1, 0o) and that

-«

-
 x° 11—«

®© 1 1
/ x—adxz ] when o > 1.
1 o —

(b) Let > 72, a, be a series of real numbers that converges to A € R. We will construct a
function s € R*[0, co) such that

fo'e) 00
/ S=Zak=A.
0 k=1
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Indeed, we define s(x) := a, forx € [k — 1, k), k € N.Itis clear that the restriction of
s toevery subinterval [0, y] is a step function, and therefore belongs to R*[0, y]. Moreover,
if y € [n,n + 1), then

Y
/ S=ay+---+a, +r,
0
where lry | < la,,|-Butsince the series is convergent, then r , = 0 andso Hake’s Theorem
10.3.2 implies that
Y

n
lim s = lim E a, = A.
y—00 Jq n—00 = .

(c) If the function s is defined as in (b), then |s| has the value |g,| on the interval
[k — 1, k), k € N. Thus s belongs to L£[0, co) if and only if the series Z,fil |a, | is conver-
gent; that is, if and only if Z,fil a, is absolutely convergent.

(d) Let D(x) := (sinx)/x for x € (0, co) and let D(0) := 1. We will consider the impor-

tant Dirichlet integral:
o 00 L3
f D(x)dx:/ SIBY dx.
0 o X

Since the restriction of D to every interval [0, y] is continuous, this restriction belongs
to R*[0, ¥]. To see that fo" D(x)dxhasalimitasy — oo, welet0 < 8 < y.Anintegration
by parts shows that

4 A ¥ sinx
/ D(x)dx —/ D(x)dx = —dx

0 0 B X
14 Y co
cos x _/ c szx dox.
B JB X

But since | cos x| < 1, it is an exercise to show that the above terms approach 0 as 8 < y
tend to oco. Therefore the Cauchy Condition applies and Hake’s Theorem implies that
D € R*0, 00).

However, it will be seen in Exercise 13 that | D| does not belong to R*[0, co). Thus
the function D does not belong to L[0, 00). O

X

We close this discussion of integrals over [a, co) with a version of the Fundamental
Theorem (First Form).

10.3.5 Fundamental Theorem Suppose that E is a countable subset of [a, 00) and that
f, F : [a, 00) — R are such that:
(a) F is continuous on [a, 00) and xlirgo F(x) exists.
(b) F'(x) = f(x) forallx € (a, ), x ¢ E.
Then f belongs to R*[a, o0) and

%) / . lim F(x) - F@).

Proof. If y is any number in (a, 00), we can apply the Fundamental Theorem 10.1.9 to
the interval [a, y] to conclude that f belongs to R*[a, y] and

Y
f f=F@) - F.
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Letting y — oo, we conclude from Hake’s Theorem that f € R*[a, co) and that equation
(7) holds. QE.D.

Integrals over (—oo, b]

We now discuss integration over closed intervals that are unbounded below.

Letb € Rand g : (—oo, b] — R be a function that is to be integrated over the infinite
interval (—oo, b]. By a gauge on [—oo, b] we mean an ordered pair consisting of a number
d, > 0 and a strictly positive function § on (—o0, b). We say that a tagged subpartition

P = {(lxg x1), 1), (%), %,), ), - -+, ([x,_, b), 2,)} of (=00, b] is (d,, §)-fine in case
that

(=00, b] = (=00, ) U | [x,_y, %],

i=1

that
[x;_x 1 St —8@), 1, +8(2))] for i=1,---,n,

and that

(=00, x5] € (—00, ~1/d,]
or, equivalently, that

x, < -1/d,.
Note Ordinarily we consider a gauge on [—00, b] tobe a swictly positive function § with
domain [—00, b] == {—~00} U (00, b] where §(—o0) :=d,.
Here the Riemann sum of g for P is S(g; P) = anlg(t,.)(x,. - X;_)-
i=

Finally, we say that g : (—oo, b] — R is generalized Riemann integrable if there
exists B € R such that for every ¢ > 0 there exists a gauge §, on [—00, b] such that if
P is any §-fine subpartition of (—oo, b], then [S(g; P) — B| < . In this case we write
g € R*(—o0, b] and

b
/ g = B.
—00

Similarly, a function g : (—o0, b] — R is said to be Lebesgue integrable if both g and | g|
belong to R* (—oo, b]. In this case we will write g € L(—o0, b].

The theorems valid for the integral over [a, 00] are obtained in this case as well. Their
formulation will be left to the reader.

Integrals over (—oo, 00)

Let h : (—oo0,00) — R be a function that we wish to integrate over the infinite interval
(—00, 00). By a gauge on (—oo, 00) we mean a triple consisting of a strictly positive
function & on (—o0, 00) and two strictly positive numbers d, , d *. We say that a tagged sub-
partition P = {([xo,xl], 1), (x5 %51, 8), -+, (x> X, 1, tn)} is (d,, 4, d*)-fine in case
that

(=00, 00) = (—00, xy] U U [x;_;»x;1U [x,,, 00),

i=1



10.3 INFINITE INTERVALS 299

that
[, x,1 St —8@), ¢, +6()] for i=1,..--,n,
and that
(=00, x,] € (=00, —1/d,] and [x,,00) C [1/d*, o0)
or, equivalently, that

X, < —1/d, and l/d* < x,.

Note Ordinarily we consider a gauge on [—00, oc] to be a strictly positive function § with
domain [—00, 00] := {—00} U (00, 00) U {00} where §(—00) = d, and §(00) := d*.

. . n
Here the Riemann sum of 4 for P is S(h; P) = 3" h(5,)(x; — x;_))-
i=1

Finally, we say that h : (—o0, 00) — R is generalized Riemann integrable if there
exists C € R such that for every ¢ > O there exists a gauge §, on [—00, 00] such that if
Pis any 4 -fine subpartition of (—o0, 00), then |S(h; P) — C| < ¢. In this case we write
h € R*(—o0, o0) and

oo
/ h=C.
—00

Similarly, a function & : (—o00, 00) — R is said to be Lebesgue integrable if both 4 and
|| belong to R*(—o0, 00). In this case we write h € L(—00, 00).

In view of its importance, we will state the version of Hake’s Theorem that is valid for
the integral over (—o0, 00).

10.3.6 Hake’s Theorem Ifh : (—o0,00) = R, thenh € R*(—00, 0co) ifand only if for
every B < y in (—00, 00), the restriction of h to [ B8, y] is in R*[8, y] and

Y
lim h=CeR
B——00 B

Y—>+oo

[e ¢}

In this casef h=C.

—00

As before, most of the theorems valid for the finite interval [a, b] remain true. They
are proved as before, or by using Hake’s Theorem. We also state the first form of the
Fundamental Theorem for this case.

10.3.7 Fundamental Theorem Suppose that E is a countable subset of (—oo, o) and
that h, H : (—oo, 00) — R satisfy:

(a) H is continuous on (—o0, 00) and the limits li? H (x) exist.
x—>»=300

(b) H'(x) =h(x) forall x € (—o0, ), x ¢ E.
Then h belongs to R*(—o0, oo) and

®) /°° h = lim H(x) — )'Er_noo H(y).

—00
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10.3.8 Examples (a) Let h(x) := 1/(x + 1) for x € (—o00, 00). If we let H(x) =
Arctan x, then H'(x) = h(x) for all x € (—o0, 00). Further, we have hm H(x) = 27r and

lim H(x) = —%n. Therefore it follows that

x——00

* 1 1 1
[oo de: §ﬂ —(—EJT)=JT.

(b) Letk(x) := |x|e"‘2 for x € (—o00, 00). If we let K(x) = %(1 - e"‘z) for x > 0 and

Kx) = ——(1 "2) for x < 0, then it is seen that K is continuous on (—o00, 00) and

that K'(x) = k(x) forx # 0. Further, lim K(x) = % and lim K(x) = —%. Therefore it
X —>00 X —>—00

follows that

* —x2 1 1
/_ lxle™ dx =5 —(-3) =1 O

o}

Exercises for Section 10.3

1. Leté be a gauge on [a, oo]. From Theorem 5.5.5, every bounded subinterval [a, b] has a §-fine
partition. Now show that [a, oo] has a §-fine partition.

2. Let f € R*[a, y] forall y > a. Show that f € R*[a, co) if and only if for every € > O there
exists K (¢) > a such thatif g > p > K (¢), then |f: fl<e.

3. Let f and | f| belong to R*[a, y]for all y > a. Show that f € L[a, 00) if and only if for every
& > 0 there exists K(¢) > a such thatif g > p > K(¢) then f: | fl <e.

4. Let f and | f| belong to R*[a, y] for every y > a. Show that f € L[a, oo) if and only if the
set V := ([ | f|: x > a} is bounded in R.

S. If f,g € L[a, 00), show that f + g € L[a, 00). Moreover, if || = fa°° |h| for any h e
L[a, c0), show that | f + gl < | £l + lgll-

If f(x) :=1/x for x € [1, 00), showthat f ¢ R*[1, 00).
If f is continuous on [1, 0o) and if | f(x)] < K /x? for x € [1, 00), show that f € L[1, 00).
Let f(x) := cosx for x € [0, 00). Show that f ¢ R*[0, 00).

Y o N

Ifs > 0,let g(x) := e ** for x € [0, 00).
(a) Use Hake’s Theorem to show that g € L[0, oo) and f°° S dx =1/s.
(b) Use the Fundamental Theorem 10.3.5.

10. (a) Use Integration by Partsand Hake’s Theorem to show that f0°° xe ¥ dx = 1/sfors > 0.
(b) Usethe Fundamental Theorem 10.3.5.

11. Show thatifn € N,s > 0, then [;° x"e™** dx = n!/s"*".

12. (a) Show thatthe integral [ x © x~'Inx dx does not convcrge
(b) Show thatif @ > 1, then fl “lnxdx =1/(a —1)%

13. (a) Show that ["*V7 |x~!sinx|dx > 1/4(n + 1).
(b) Show that |[D| ¢ R*[0, 00), where D isasin Example 10.3.4(d).

14. Show that the integral f0°° (1/4/x) sinx d x converges. [Hint: Integrate by Parts.]

15. Establish the convergence of Fresnel’s integral f0°° sin(x?) dx. [Hint: Use the Substitution
Theorem 10.1.12.]
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16. Establish the convergence or the divergence of the following integrals:

@ [o"lnxdx ®) f°° lnxdx
x“+1
dx xdx
© | wrm o [ i
o dx Arctanxdx

17. Let f,o: [a 00) — R. Abel’s Test asserts thatif f € R*[a, 00) and ¢ is bounded and mono-
tone on [a, 00), then fg € R*[a, 00).

(a) Show that Abel’s Test does not apply to establish the convergence of fo (1/x) sinx dx by

taking @(x) := 1/x. However, it does apply if we take ¢(x) := 1/,/x and use Exercise 14.

(b) Use Abel’s Test and Exercise 15 to show the convergence of f0°° (x/(x + 1)) sin(x?) dx.
(c) Use Abel’s Test and Exercise 14 to show the convergence of fow x73%(x + 1) sinx dx.
(d) Use Abel’s Test to obtain the convergence of Exercise 16(f).

18. With the notation as in Exercise 17, the Chartier-Dirichlet Test asserts that if f € R*[a, y]
forall y > a,if F(x) := f: f is bounded on [a, 00), and if ¢ is monotone and lim ¢(x) = 0
X—>00
then fo € R*[a, oo].
(a) Show that the integral j;)w(l /x) sin x dx converges.
(b) Show that f2°° (1/Inx)sinx dx converges.
(c) Show that [;°(1/4/X) cos x dx converges.
(d) Show that the Chartier-Dirichlet Test does not apply to establish the convergence of
fooo(x/(x + 1)) sin(x?) dx by taking f(x) = sin(x?).

19. Show that the integral f0°° Vx -sin(x?)dx is convergent, even though the integrand is not
bounded as x — oo. [Hint: Make a substitution.]

20. Establish the convergence of the following integrals.

(a) / e Wdx, (b) / oo(x—2)e""'dx,

© / e"‘zdx, (d)/ 2xdx

Section 10.4 Convergence Theorems

We will conclude our discussion of the generalized Riemann integral with an indication of
the convergence theorems that are available for it. It will be seen that the results are much
stronger than those presented in Section 8.2 for the (ordinary) Riemann integral. Finally,
we will introduce a “measurable” function on [a, b] as the almost everywhere limit of a
sequence of step functions. We will show that every integrable function is measurable, and
that a measurable function on [a, b] is generalized Riemann integrable if and only if it
satisfies a two-sided boundedness condition.

We proved in Example 8.2.1(c) that if (f,) is a sequence in R[a, b] that converges on
[a, b] to a function f € R[a, b], then it need not happen that

b b
W / f=k1_i)r§o/ Jie
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However, in Theorem 8.2.4 we saw that uniform convergence of the sequence is sufficient
to guarantee that this equality holds. In fact, we will now show that this is even true for a
sequence of generalized Riemann integrable functions.

10.4.1 Uniform Convergence Theorem Let (f,) be a sequence inR*[a, b] and suppese
that (f,) converges uniformly on [a, b] to f. Then f € R*[a, b] and (1) holds.

Proof. Given ¢ > 0, there exists K (¢) such thatif k > K (¢) and x € [a, b], then we have
| f,(x) = f(x)| < &.Consequently, if h, k > K (&), then
—2e < fi(x) = f,(x) <2¢ for x € [a,b].

Theorem 10.1.5 implies that
b b
—2e(b—a) < / S —[ f, <2¢e(b—a).
a a
Since ¢ > 0 is arbitrary, the sequence ( fab f.) is a Cauchy sequence in R and therefore
converges to some number, say A € R. We will now show that f € R*[a, b] with integral

A. For, if € > 0 is given, let K(¢) be as above. If P = {([x,._l, x;], zl.)}f'=1 is any tagged
partition of [a, b] and if k > K (¢), then

[SC P) = SC5 P = | 2o0A ) = £ — %)
i=1
=D AGES{OICEERY
i=1

< Zs(xi —x;_) =¢b—a).

Now fix r > K (¢) such that |fab f, — A| < & and let 8, be a gauge on [a, b] such that
| fab f, = S(f,; P)| < & whenever P is 8, ,-fine. Then we have
b
[id
a

Butsince € > 0 is arbitrary, it follows that f € R*[a, b] and fab f =A. QED.

. b
[SCP) = Al < [ P) = S P + (8P = [ £+

<eb—a)+e+e=¢ecb—a+?2).

It will be seen in Example 10.4.6(a) that the conclusion of 10.4.1 is false for an infinite
interval.

Equi-integrability

The hypothesis of uniform convergence in Theorem 10.4.1 is a very stringent one and
restricts the utility of this result. Consequently, we now show that another type of uniformity
condition can be used to obtain the desired limit. This notion is due to Jaroslav Kurzweil,
as is Theorem 10.4.3.

10.4.2 Definition A sequence (f,) in R*(I) is said to be equi-integrable if for every
€ > 0 there exists a gauge 8, on I such that if P is any §,-fine partition of I and k € N,
then |S(f,; P) — i fil <e
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10.4.3 Equi-integrability Theorem If (f,) € R*(I) is equi-integrable on I and if
f(x) =lim f,(x) forallx € I, then f € R*(I) and

@) f f = lim / fe
I 2>0Jr

Proof. We will treat the case I = [a, b]; the general case can be found in [MTI].

Givene > 0, by the equi-integrability hypothesis, there exists a gauge §, on I such that
ifP = {([x;_y» x;1, ))}_; is a & -fine partition of I, then we have [S(f; 'P) — f, fil <e¢
forallk € N. Since P has only a finite number of tags and since f, (t) — f(¢) fort € [a, b],
there exists a K, such thatif h, k > K, then ‘

3) SUs )= SU P < Y 1£) = £,()|(x, — x,_y) < (b — ).
i:l
If welet h — oo in (3), we have
4) IS PY=S(f;P) <etb—a)  for k=K,
Moreover, if h, k > K, then the equi-integrability hypothesis and (3) give
/% - [5)= [ =5GP+ I ) - 5,5
+ |s<f,,;7>>—/f,,y <eteb-a)te=c2+b—a).
1

Since £ > 0is arbitrary, then ([, f,) is a Cauchy sequence and converges to some A € R.
If we let h — oo in this last inequality, we obtain

®) ‘/;fk—A‘§£(2+b—a) for k> K,

We now show that f € R*([) with integral A. Indeed, given € > 0, if Pisa 8 -fine
partition of I andk > K, then

s P = Al < |0 P) = S P)| + s P - [ 1]+ [ fi- 4]
<eb—a)+e+e+b—a)=¢eB+2b-2a),

where we used (4) for the first term, the equi-integrability for the second, and (5) for the
third. Since € > 0 is arbitrary, f € R*(I) with integral A. Q.ED.

The Monotone and Dominated Convergence Theorems

Although the Equi-integrability Theorem is interesting, it is difficult to apply because it is
not easy to construct the gauges .. We now state two very important theorems summarizing
the most important convergence theorems for the integral that are often useful. McLeod
[pp. 96-101] has shown that both of these theorems can be proved by using the Equi-
integrability Theorem. However, those proofs require a delicate construction of the gauge
functions. Direct proofs of these results are given in [MTI], but these proofs also use results
not given here; therefore we will omit the proofs of these results.

We say that a sequence of functions on an interval / C R is monotone increasing if it
satisfies f)(x) < f,(x) < - < fi(x) < fi; (x) <---forallk € N, x € I.1tis said to be
monotone decreasing if it satisfies the opposite string of inequalities, and to be monotone
if it is either monotone increasing or decreasing.
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10.4.4 Monotone Convergence Theorem Let ( fk) be a monotone sequence of functions
inR*(I) such that f (x) = lim f, (x) almost everywhere on I. Then f € R*(I) ifand only
if the sequence of integrals ([, f,) is bounded in R, in which case

©® [ £=im [ £

The next result is the most important theorem concerning the convergence of integrable
functions. It is an extension of the celebrated “Lebesgue Dominated Convergence Theorem”
from which it can also be proved.

10.4.5 Dominated Convergence Theorem Let (f,) be a sequence in R*(I) and let
f (x) = lim f, (x) almost everywhere on I. If there exist functions &, w in R*(I) such that
@) a(x) £ f(x) o) foralmostevery x € 1,

then f € R*(I) and

() /f:klim/fk.
I - Jr

Moreover, if & and w belong to L(I), then f, and f belong to L(I) and

) Ilfk—fll=/llfk—f|—>0-

Note If o and w belongto L£(I), and we put ¢ := max{|a|, |w|}, then ¢ € L(I) and we
can replace the condition (7) by the condition

(7 |f, ()] < o(x) for almost every x € I.

Some Examples

10.4.6 Examples (a) Ifk € N,let f, (x) :=1/kforx € [0, k] and f, (x) := Oelsewhere
in [0, 00).

Then the sequence converges uniformly on[0, co) tothe O-function. However f0°° fi=
1 forall k € N, while the integral of the O-function equals 0. It is an exercise to show that
the function sup{f, (x) : k € N} does not belong to R*[0, 00), so the domination condition
(7) is not satisfied.

1k
1
(®) Wehave lim [ “ - dx=1,
“k—>oo Jg x* 43
For, if g,(x) := (x* + 1)/(x* +3), then 0 < g,(x) <1 and g, (x) > 1/3 for x €
[0, 1). Thusthe Dominated Convergence Theorem 10.4.5 applies.

‘ 1+J—c ke'“"dx:
L (1+3)

Leth, (x) :=(1+ x/k)ke_‘”‘ for x € [0, k] and h, (x) := 0 elsewhere on [0, 00). The
argument in Example 3.3.6 shows that () is an increasing sequence and converges to
e*e % = ¢17% on [0, 00). If a > 1 this limit function belongs to £[0, co). Moreover, if
F(x) := "% /(1 — a),then F'(x) = ¢! ~®* sothat the Monotone Convergence Theorem
10.4.4 and the Fundamental Theorem 10.3.5 imply that

if a > 1.

(¢) Wehave lim
k=00

00 00 00 1
lim [ h, = / ¥ dx = F(x)| = —.
k—o00 Jo 0 0 a—1
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(d) If f is bounded and continuous on [0, 0o) and if a > 0, then the function defined by
L@) == [;° e f(x) dx is continuous for t € J, = (a, 00).

Since |e ™ f(x)| < Me™ for t € J,, if (¢,) is any sequence in J, converging to
ty € J,, the Dominated Convergence Theorem implies that L(z,) — L(t,). But since the
sequence (¢,) — ¢, is arbitrary, then L is continuous at ¢,

() The integral in (d) is differentiable for ¢ > a and

(10) L'(t)= / (—x)e ™ f(x)dx,
0

which is the result obtained by “differentiating under the integral sign” with respect to .
Fix a number ¢z, € J,. If t € J_, then by the Mean Value Theorem applied to the
function ¢ — e™**, there exists a point t. between ¢, and ¢ such that we have e —eh* =
—xe~'*(t —1,), whence
‘ e—t): —e
r—t,

—IOX
< xe—tx).’ ax .

< xe~

Since w(x) = xe™ f(x) belongs to L[0, c0), then for any sequence (z,) in J, with
ty # t, = 1, the Dominated Convergence Theorem implies that

0

k—00 tk — tO k—o00

r — o
o0
= / (—=x)e 0" f(x)dx.
0
Since (z,) is an arbitrary sequence, then L/(tO) exists and (10) is proved.

k .
® LetD,(r):= / e (fm—x) dx fork € N, 1 > 0.
0 X

Since [(e™* sinx)/x| < e=* < 1 fort > 0, x > 0, the integral defining D, exists. In

particular, we have

k sin x
D0 = | =X4x.
0 X

We want to show that D, (0) — %n as k - oco. By Example 10.3.4(d), this will show

that fow(sinx)/x dx = %n’. The argument is rather complex, and uses the Dominated
Convergence Theorem several times.
e ¥ sinx

J .
Since the partial derivative satisfies 'E ) ‘ =|—e*sinx| < 1forz >0,
x

x > 0, an argument as in (e) and the Dominated Convergence Theorem imply that

k
Dy (1) = —/ e ™ sinxdx for keN,r>0.
0

= —e " sinx, then an

] (e‘”‘(t sinx + cosx))

Since a routine calculation shows that — 5
ax t°+1
application of the Fundamental Theorem gives

e **(r sink + cosk) 1

Di(t) = — .
WD) 241 2+ 1
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e~**(t sink + cosk)

Ifweputg, (1) := 21 for0 <t < kand g, (¢) := Ofort > k, then another
application of the Fundamental Theorem gives
k k ko gy
(11) D, (k) — D,(0) = / Dy(t)dt = / g, (1) dt — / 5
0 0 o t°+1

o ¢]
= [ 8, (¢) dt — Arctank.
0
If we note that g, (t) — 0 for¢ > Oask — 0o and that (since k > 1)

e k@ +1)
lge()| < ——— <
k 41

then the Dominated Convergence Theorem gives f0°° g, (t)dt — 0.
In addition, since |(sinx)/x| < 1, we have

2¢~" for t >0,

k . k —kx |x=k
|Dk(k)| = / e"”s—m—idx 5/ e dx = ¢

0 X 0 -~k x=0

1—e® 1,

= —-———— — ﬁ .

k ~k
Therefore, as k — oo, formula (11) becomes
0 kll)r{.lo D,(0)=0 kllglo Arctank 37

As we have noted before, this gives an evaluation of Dirichlet’s Integral:

o
(12) / 2o dx = 1. O
0 X

Measurable Functions

We wish to characterize the collection of functions in R*(1). In order to bypass a few minor
details, we will limit our discussion to the case I := [a, b]. We need to introduce the notion
of a “measurable function”; this class of functions contains all the functions the reader is
ever likely to encounter. Measurable functions are often defined in terms of the notion of
a “measurable set”. However, the approach we will use is somewhat simpler and does not
require a theory of measurable sets to have been developed first. (In fact, the theory of
measure can be derived from properties of the integral; see Exercises 15 and 16.)

We recall from Definition 5.4.9 that a function s : [a, b] — R is a step function if
it has only a finite number of values, each value being assumed on a finite number of
subintervals of [a, b].

10.4.7 Definition A function f : [a, b] — R is said to be (Lebesgue) measurable if
there exists a sequence (s,) of step functions on [a, b] such that

(13) flx)= klim 5, (x) for almost every x € [a, b].
—00

We denote the collection of all measurable functions on [a, b] by M|a, b].

We can reformulate the definition as: A function f is in M|a, b] if there exists a null
set Z C [a, b] and a sequence (s,) of step functions such that

(14) fx)= kl_i’rg)sk(x) for all x € [a,b]\ Z.
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It is trivial that every step function on [a, b] is a measurable function. By Theorem
5.4.10, a continuous function on [a, b] is a uniform limit of a sequence of step functions;
therefore, every continuous function on an interval [a, b] is measurable. Similarly, every
monotone function on [a, b] is a uniform limit of step functions (see the proof of Theorem
7.2.7); therefore, every monotone function on an interval is measurable.

At first glance, it might seem that the collection of measurable functions might not be
so very large. However, the requirement that the limit (13) is required to hold only almost
everywhere (and not everywhere), enables one to obtain much more general functions. We
now give a few examples.

10.4.8 Examples (a) The Dirichlet function, f(x) =1 for x € [0, 1] rational and
f(x) = 0forx € [0, 1] irrational, is a measurable function.
Since Q N [0, 1] is a null set, we can take each s, to be the O-function. We then obtain
5,(x) > f(x)forx € [0, 1]\ Q.
(b) Thomae’s function & (see Examples 5.1.5(h) and 7.1.6) is a measurable function.
Again, take s, to be the O-function. Then s, (x) — h(x) forx € [0, 1] \ Q.
(¢) The function g(x) := 1/x for x € (0, 1] and g(0) := 0 is a measurable function.
This can be seen by taking a step function s,(x) := 0 for x € [0, 1/ k) and (using
5.4.10) such that |s,(x) — 1/x| < 1/k for x € [1/k, 1]. Then s,(x) — g(x) for all x €
[0, 1].
d) If f e M[a,b] and if ¥ : [a,b] — R is such that ¥ (x) = f(x) a.e., then ¥ €
Mla, b].
For, if f(x) =lims,(x) forx € [a, b] \ Z, andif Y (x) = f(x) forallx € [a, b]\ Z,,
then ¥ (x) = lims, (x) forall x € [a, b]\ (Z, U Z,). Since Z, U Z, is a null set when Z,
and Z, are, the conclusion follows. O

The next result shows that elementary combinations of measurable functions lead to
measurable functions.

10.4.9 Theorem Let f and g belong to M|a, b] and letc € R.

(a) Then the functions cf, |f|, f + & f — g and f - g also belong to M[a, b].
(b) Ify:R — R is continuous, then the composition ¢ o f € M|a, b].

(c) If(f,) is a sequence in M[a, b] and f(x) = lim f, (x) almost everywhere on I, then
f € Mla, b].

Proof. (a) We will prove that | | is measurable. Let Z C [a, b] be a null set such that
(14) holds. Since |s, | is a step function, the Triangle Inequality implies that

0 < |[If)] = Is;N] < | f(x) = 5,(x)| = 0

forall x € [a, b] \ Z. Therefore | f| € M|a, b].

The other assertions in (a) follow from the basic properties of limits.

(b) If s, is a step function on [a, b], it is easily seen that ¢ o s, is also a step function
on[a, b]. Since ¢ is continuous on R and f (x) = lims, (x) for all x € [a, b] \ Z, it follows
that (¢ o f)(x) = @(f(x)) =lime(s,(x)) = lim(p o 5,)(x) for all x € [a, b] \ Z. There-
fore ¢ o f is measurable.

(c) This conclusion is not obvious; a proof is outlined in Exercise 14. Q.E.D.
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The next result is that we can replace the step functions in Definition 10.4.7 by
continuous functions. Since we will use only one part of this result, we content ourselves
with a sketch of the proof of the other part.

10.4.10 Theorem A function f : [a, b] — R is in M[a, b] if and only if there exists a
sequence (g,) of continuous functions such that

(15) fx)= klim 8 (x) for almost every x € [a, b].
—00

Proof. (<) Let Z C [a, b] be a null set and (g, ) be a sequence of continuous functions
such that f (x) = lim g, (x) forx € [a, b] \ Z. Since g, is continuous, by 5.4.10 there exists
a step function s, such that

g, (x) —s,(x)| <1/k  for all x € [a,b].
Therefore we have

0<|f(x) —5,®)] < [f ) — 8] + |8(x) — 5,(0)|
< |f(x) — g ()| + 1/k,

whence it follows that f (x) = lim g, (x) forall x € [a, b] \ Z.

Sketch of (=) Let Z be a null set and (s,) be a sequence of step functions such that
f(x) =lims,(x) for all x € [a, b] \ Z. Without loss of generality, we may assume that
each s, is continuous at the endpoints a, b. Since s, is discontinuous at only a finite number
of points in (a, b), which can be enclosed in a finite union J, of intervals with total length
< 1/k, we can construct a piecewise linear and continuous function & which coincides
with s, on [a, b] \ J,. It can be shown that g, (x) = f(x) a.e. on I. (See [MTI] for the
details.) QED.

Functions in R*[a, b] are Measurable

We now show that a generalized Riemann integrable function is measurable.
10.4.11 Measurability Theorem If f € R*[a, b], then f € M[a, b].
Proof. Let F :[a, b+ 1] > R be the indefinite integral

F(x) :=/xf if x€l[a, bl

andlet F(x) .= F(b) forx € (b, b + 1]. 1t follows from the Fundamental Theorem (Second
Form) 10.1.11(a) that F is continuous on [a, b]. From 10.1.11(c), there exists a null set Z
such that the derivative F'(x) = f(x) exists for x € [a, b]\ Z. Therefore, if we introduce
the difference quotient functions

F(x +1/k) — F(x)

g (%) == 1k for x €[a,b),k €N,
then g, (x) — f(x) forall x € [a, b] \ Z. Since the g, are continuous, it follows from the
part of Theorem 10.4.10 we have proved that f € M]a, b]. QED.

Are Measurable Functions Integrable?

Not every measurable function is generalized Riemann integrable. For example, the function
g(x) =1/xforx € (0, 1] and g(0) := 0 was seen in Example 10.4.8(c) to be measurable;
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however it is not in R*[a, b] because it is “too large” (as x — 0+). However, if the graph of
ameasurable function on [a, b] lies between two functions in R*[a, b], then it also belongs
to R*[a, b].

10.4.12 Integrability Theorem Letf € M|a, b]. Then f € R*[a, b]ifand only ifthere
exist functions o, w € R*[a, b] such that

(16) a(x) < f(x) <wx) for almost every x € [a,b].

Moreover, if either a or @ belongs to L[a, b), then f € E[&, b].

Proof. (=) This implication is trivial, since one can take ¢ = w = f.

(<) Since f € M(a, b], there exists a sequence (s, ) of step functions on [a, b] such
that (13) holds. We define 5, := mid{a, s,, ®} for k € N, so that 5, (x) is the middle of the
numbers a(x), 5, (x) and w(x) for each x € [a, b]. It follows from Theorem 10.2.8 and the
facts

mid{a, b, ¢} = min{max{a, b}, max{b, c}, max{c, a}},
min{a’, ¥, ¢’} = min{min{a’, b'}, ¢},

that 5, € R*[a, b] and that @ <5, < w. Since f =lims, =lim5, a.e., the Dominated
Convergence Theorem now implies that f € R*[a, b].

If either o or w belongs to L[a, b], then we can apply Theorem 10.2.6 to conclude that
f belongs to L[a, b]. QED.

A Final Word

In this chapter we have made frequent reference to Lebesgue integrable functions on an
interval I, which we have inwroduced as functions in R*(I) whose absolute value also
belongs to R*(I). While there is no single “standard approach” to the Lebesgue integral,
our approach is very different from any that are customary. A critic might say that our
approach is not useful because our definition of a function in £() is not standard, but that
would be wrong.

After all, one seldom uses the definition to confirm that a specific function is Lebesgue
integrable. Instead, one uses the fact that certain simpler functions (such as step functions,
polynomials, continuous functions, bounded measurable functions) belong to £(I), and
that more complicated functions belong to £(I) by taking algebraic combinations or vari-
ous limiting operations (e.g., Hake’s Theorem or the Dominated Convergence Theorem).
A famous analyst once said, “No one ever calculates a Lebesgue integral; instead, one
calculates Riemann integrals and takes limits”.

It is the same as with real numbers: we listed certain properties as axioms for R and
then derived consequences of these properties which enable us to work quite effectively
with the real numbers, often by taking limits.

Exercises for Section 10.4

1. Consider the following sequences of functions with the indicated domains. Does the sequence
converge? If so, to what? Is the convergence uniform? Is it bounded? If not bounded, is it
dominated? Is it monotone? Evaluate the limit of the sequence of integrals.
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11.

12.
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@ T?E’ [0, 11, ® —— 02

(© T [0, 11, (d) T+ [0, 2].

Answer the questions posed in Exercise 1 for the following sequences (when properly defined).
@) %; [0, 11, ® = oo

© ﬁll__'_;k_) [1,2], (d) ﬁ—(zl_—;k—) [0, 1].

Discuss the following sequences of functions and their integrals on [0, 1]. Evaluate the limit of
the integrals, when possible.

@ e, (b) e /x,
(c) kxe *, d) kK2xe*x,
() kxe ¥+ ) kxe .
1 kd 1 k kd
(a) Show that lim f aELL I} (b) Show that lim [ —— =1
k>0 Jo (14 x) ks Jo 14x

If f,(x) := kfor x € [1/k,2/k] and f, (x) := O elsewhere on [0, 2], show that f, (x) — O but
that [y f, = 1.

Let (f,) be a sequence on [a, b] such that each f, is differentiable on [a, b] and fi(x) > g(x)
with | f;(x)| < K for all x € [a, b]. Show that the sequence (f, (x)) either converges for all
x € [a, b] or it diverges for all x € [a, b].

If £, are the functions in Example 10.4.6(a), show that supf f,} does not belong to R*[0, 00).

Show directly that f;° e~ dx = 1/t and f;° xe™* dx = 1/t* fort > 0, thus confirming the
results in Examples 10.4.6(d,e) when f(x) := 1.

Use the differentiation formula in 10.4.6(f) to obtain fooo e Psinxdx =1/ 2 +1).

Ift > 0, define E(t) := [;°[(e™ sinx)/x] dx.
(a) Show that E exists and is continuous fort > a > 0. Moreover, E(t) — Oast — oo.

. 9 (e ™sinx
(b) Since m (_x—)

(¢) Deducethat E(t) = 3w — Arctant fort > 0.
(d)  Explain why we cannot use the formula in (c) to obtain equation (12).

fort > 0.

<e*fort > a > 0, show that E'(f) =

2 +1

In this exercise we will establish the important formula:
oo
a7 : f e dx=1ym.
. 0

@ Let G() = [1e™"“*D/(x? + I)]dx for ¢ > 0. Since the integrand is dominated by
1/ (x2 + 1) forr = 0, then G- is continuous on [0, 00). Moreover, G(0) = Arctan1 = %zr
and it follows from the Dominated Convergence Theorem that G(r) — 0 as t — oo.

(b) The partial derivative of the integrand with respect to ¢ is bounded for ¢t > 0, x € [0, 1],
s0G/(1) = —2te™” [l e dx = —2¢"" [f e du.

2
(c) Ifweset F(t) := [fo' e_"2 dx] , then the Fundamental Theorem 10.1.11 yields F'(t) =

2e" fot e~*" dx for 1 > 0, whence F'(t) + G'(t) = 0 for all ¢ > 0. Therefore, F(t) +
G((t) =Cforallt > 0.

(d) Using F(0) =0,G(0) = J—‘JT andlim, | G(t) = 0, weconclude thatlim, |  F(t) = },n,
so that formula (17) holds.

Suppose I C R is a closed interval and that f :[a, b] x I — R is such that 3f/at ex-
ists on [a, b] x I, and for each ¢ € [a, b] the function x > f(¢, x) is in R*(I) and there
exist @, w € R*(I) such that the partial derivative satisfies a(x) < df(t, x)/dt < w(x) for



13.

14.

15.

16.

104 CONVERGENCE THEOREMS 311

ae.x € I.If F(t) := [, f(z,x)dx, show that F is differentiable on [a, b] and that F'(z) =
J;0f(t,x)/drdx.

(@)
(b)

(a)
(b)
(©)

If f, g € Mia, b), show that max{ f, g} and min(f, g} belong to M|a, b].
If f, g, h € Mla, b], show that mid{f, g, h} € Mla, bl.

If (f,) is a bounded sequence in M(a, b] and f, — f a.e., show that f € M(a, b]. [Hint:
Use the Dominated Convergence Theorem.]

If (g,) is any sequence in M(a, b] and if f, := Arctan o g,, show that (f,) is a bounded
sequence in Ma, b].

If (g,) is asequence in M[a, b] and if g, — g a.e., show that g € M[a, b].

A set E in [a, b] is said to be (Lebesgue) measurable if its characteristic function 1 g (defined
byl (x) :=1ifx € Eand1.(x) := 0if x € [a, b] \ E) belongs to M[a, b]. We will denote
the collection of measurable sets in [a, b] by M[a, b]. In this exercise, we develop a number of
properties of Mla, b]. :

(@)
(b

()
(d)

(e)

®

Show that E € M([aq, b] if and only if 1, belongs to R*[a, b].

Show that @ € Ma, b] and that if [c,d] C [a, b], then the intervals [c,d], [c,d), (c,d]
and (c, d) are in M[a, b].

Show that E € Mg, b] if and only if E’ := [a, b] \ E is in M[a, b].

If E and F areinM[a, b],then EU F, EN F and E \ F are alsoin M[a, b]. [Hint: Show
that 1, . = max{1., 1.}, etc]

If (E, ) is an increasing sequence in M[a, b], showthat E := Uf‘;l E, is in M[a, b]. Also,
if (F}) is a decreasing sequence in M[a, b] show that F := ﬂfil F, isin M[a, b]. [Hint:
Apply Theorem 10.4.9(c).]

If (E,) is any sequence in M[a, b), show that  J;2 | E, and (2, E, are in M[a, b].

If E € M[a, b], we define the (Lebesgue) measure of E to be the number m(E) := fab 1,.In
this exercise, we develop a number of properties of the measure function m : M[a, b] — R.

(a)
(b)
(©
(d)
(e)

®

@

Show thatm(@) = 0and 0 < m(E) < b —a.

Show that m([c, d]) = m([c,d)) = m({c,d]) = m((c,d)) =d — c.

Show that m(E’) = (b — a) — m(E).

Show that m(E U F) + m(E N F) = m(E) + m(F).

If EN F =@, show that m(E U F) = m(E) + m(F). (This is the additivity property of
the measure function.)

If (E,) is an increasing sequence in M[a, b], show that m(UE‘J=l E,) =lim, m(E)). [Hint:
Use the Monotone Convergence Theorem.]

If (C,) is a sequence in M[a, b] that is pairwise disjoint (in the sense that Cj NC, =90
whenever j # k), show that

(18) m(UCk) =Y m(C)).
k=1 k=1

(This is the countable additivity property of the measure function.)



CHAPTER 11

A GLIMPSE INTO TOPOLOGY

For the most part, we have considered only functions that were defined on intervals. Irdeed,
for certain important results on continuous functions, the intervals were also assumed to
be closed and bounded. We shall now examine functions defined on more general types
of sets, with the goal of establishing certain important properties of continuous functions
in a more general setting. For example, we proved in Section 5.3 that a function that is
continuous on a closed and bounded interval attains a maximum value. However, we will
see that the hypothesis that the set is an interval is not essential, and in the proper context
it can be dropped.

In Section 11.1 we define the notions of an open set, and a closed set. The study
of open sets and the concepts that can be defined in terms of open sets is the study of
point-set topology, so we are in fact discussing certain aspects of the topology of R. (The
mathematical area called “topology” is very abstract and goes far beyond the study of
the real line, but the key ideas are to be found in real analysis. In fact, it is the study of
continuous functions on R that motivated many of the concepts developed in topology.)

The notion of compact set is defined in Section 11.2 in terms of open coverings.
In advanced analysis, compactness is a powerful and widely used concept. The compact
subsets of R are fully characterized by the Heine-Borel Theorem, so the full strength of the
idea is not as apparent as it would be in more general settings. Nevertheless, as we establish
the basic properties of continuous functions on compact sets in Section 11.3, the reader
should begin to appreciate how compactness arguments are used.

In Section 11.4 we take the essential features of distance on the real line and introduce
a generalization of distance called a “metric”. The much-used triangle inequality is the key
property in this general concept of distance. We present examples and show how theorems
on the real line can be extended to the context of a metric space.

The ideas in this chapter are somewhat more abstract than those in earlier chapters;
however, abstraction can often lead to a deeper and more refined understanding. In this
case, it leads to a.more general setting for the study of analysis.

Section 11.1 Open and Closed Sets in R

There are special types of sets that play a distinguished role in analysis—these are the open
and the closed sets in R. To expedite the discussion, it is convenient to have an extended
notion of a neighborhood of a point.

11.1.1 Definition A neighborhood of a point x € R is any set V that contains an
e-neighborhood V,(x) := (x — ¢, x + &) of x for some ¢ > 0.

312
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While an e-neighborhood of a point is required to be “symmeitric about the point”, the
idea of a (general) neighborhood relaxes this particular feature, but often serves the same

purpose.

11.1.2 Definition (i) A subset G of R is open in R if for each x € G there exists a
neighborhood V of x suchthat V C G.

(if) A subset F of Ris closed in R if the complement C(F) := R\ F is open in R.

To show that a set G € R is open, it suffices to show that each point in G has an
e-neighborhood contained in G. In fact, G is open if and only if for each x € G, there exists
g, > Osuch that (x — ¢, x + ¢,) is contained in G.

To show that a set F C R is closed, it suffices to show that each point y ¢ F has an
e-neighborhood disjoint from F. In fact, F is closed if and only if for each y ¢ F there
exists £, > 0 such that F N (y — €, + sy) =4{.

11.1.3 Examples (a) The entire set R = (—o0, 00) is open.

For any x € R, we may take ¢ := 1.

(b) ThesetG:={x € R: 0 < x < 1} is open.

Forany x € G we may take ¢ to be the smaller of the numbers x, 1 — x. We leave it
to the reader to show that if [u — x| < ¢ thenu € G.

(c) Any openinterval I := (a, b) is an open set.

In fact, if x € I, we can take e, to be the smaller of the numbers x —a, b — x.
The reader can then show that (x — £,,x +¢,) C I. Similarly, the intervals (—oo, b) and
(a, 00) are open sets.

(d) Theset I := [0, 1] is not open.

This follows since every neighborhood of 0 € I contains points not in /.
(e) Theset I := [0, 1] is closed.

To see this let y ¢ I;theneithery <QOory > 1.If y < 0, we take €, = |yl, and if
y > 1 we take g, =y— 1. We leave it to the reader to show that in either case we have
Iﬂ(y—ey,y+sy)=(2).

() Theset H := {x : 0 < x < 1} is neither open nor closed. (Why?)

(g) The empty set @ is open in R.

In fact, theempty set contains no points at all, so the requirement in Definition 11.1.2(i)
is vacuously satisfied. The empty set is also closed since its complement R is open, as was
seen in part (a). O

In ordinary parlance, when applied to doors, windows, and minds, the words “open”
and “closed” are antonyms. However, when applied to subsets of R, these words are not
antonyms. For example, we noted above that the sets @, R are borh open and closed in R.
(The reader will probably be relieved to learn that there are no other subsets of R that have
both properties.) In addition, there are many subsets of R that are neither open nor closed,;
in fact, most subsets of R have this neuwral character.

The following basic result describes the manner in which open sets relate to the
operations of the union and intersection of sets in R.

11.1.4 Open Set Properties (a) The unionof an arbitrary collection of open subsets in
R is open.

(b) The intersection of any finite collection of open sets in R is open.
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Proof. (a) Let {G, : A € A} be a family of sets in R that are open, and let G be their
union. Consider an element x € G; by the definition of union, x must belong to G, for
some A, € A. Since G*o is open, there exists a neighborhood V of x such that V C G
But G 3 S C G, sothat V C G. Since x is an arbitrary element of G, we conclude that G_ 1s
open in R.

(b) Suppose G, and G, are open and let G := G, N G,. To show that G is open, we
consider any x € G; then x € G, and x € G,. Since G, is open, there exists &, > 0 such
that (x —¢,, x + ¢,) is contained in G,. Similarly, since G, is open, there exists ¢, > 0
such that (x — ¢,, x +¢,) is contained in G,. If we now take ¢ to be the smaller of ¢,
and ¢,, then the e-neighborhood U = (x — ¢, x + s) satisfies both U € G, and U C G,.
Thus, x € U C G. Since x is an arbitrary element of G, we conclude that G is open in R.

It now follows by an Induction argument (which we leave to the reader to write out)
that the intersection of any finite collection of open sets is open. QED.

The corresponding properties for closed sets will be established by using the general
De Morgan identities for sets and their components. (See Theorem 1.1.4.)

11.1.5 Closed Set Properties (a) The intersection of an arbitrary collection of closed
sets in R is closed.

(b) The union of any finite collection of closed sets in R is closed.

Proof. (a) If {F, : A € A} is afamily of closed sets in R and F := N F,,then C(F) =
AEA

U C(F,) is the union of open sets. Hence, C(F) is open by Theorem 11.1.4(a), and

reA

consequently, F is closed.

(b) Suppose F|, F,,---, F, are closed in R and let F := F;, U F,U---UF,. By the
De Morgan identity the complement of F is given by

C(F) =C(F)N---NC(F,)

Since each set C(F}) is open, it follows from Theorem 11.1.4(b) that C(F) is open. Hence
F is closed. QED.

The finiteness restrictions in 11.1.4(b) and 11.1.5(b) cannot be removed. Consider the
following examples:

11.1.6 Exarhples (@ Let G,:=(0,1+1/n) forne N. Then G, is open for each
n € N, by Example 11.1.3(c). However the intersection G = ﬂ G, is the interval (0, 1]
whichis not open. Thus, the intersection of infinitely many open sets in R need not be open.
(b) Let F, :=[1/n, 1] forn € N. Each F, is closed, but the union F := U F, is the set

n=1
(0, 1] which is not closed. Thus, the union of infinitely many closed sets in R need not be
closed. O

The Characterization of Closed Sets

We shall now give a characterization of closed subsets of R in terms of sequences. As we
shall see, closed sets are precisely those sets F that contain the limits of all convergent
sequences whose elements are taken from F'.
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11.1.7 Characterization of Closed Sets Let F C R; then the following assertions are
equivalent.

(i) F isaclosed subset of R.
(ii) IfX = (x,) is any convergent sequence of elements in F, thenlim X belongs to F.

Proof. (i) = (ii) Let X = (x,) be a sequence of elementsin F and let x := lim X; we
wish to show that x € F. Suppose, on the contrary, that x ¢ F; that is, that x € C(F)
the complement of F. Since C(F) is open and x € C(F), it follows that there exists an
e-neighborhood V, of x such that V, is contained in.C(F). Since x = lim(x,), it follows
that there exists a natural number K = K (¢) such that x,, € V. Therefore we must have
X € C(F); but this contradicts the assumption that x, € F for all n € N. Therefore, we
conclude that x € F. A

(i) = (i) Suppose, on the contrary, that F is not closed, so that G := C(F) is not
open. Then there exists a point y, € G such that for each n € N, there is a number y, €
C(G) = F suchthat |y, — y,| < 1/n.Itfollowsthat y, := lim(y, ), and since y, € F forall
n € N, the hypothesis (ii) implies that y, € F, contrary to the assumption y, € G = C(F).
Thus the hypothesis that F is not closed implies that (ii) is not true. Consequently (ii)
implies (i), as asserted. QE.D.

The next result is closely related to the preceding theorem. It states that a set F is
closed if and only if it contains all of its cluster points. Recall from Section 4.1 that a point
x is a cluster point of a set F if every e-neighborhood of x contains a point of F different
from x. Since by Theorem 4.1.2 each cluster point of a set F is the limit of a sequence
of points in F, the result follows immediately from Theorem 11.1.7 above. We provide a
second proof that uses only the relevant definitions.

11.1.8 Theorem A subset of R is closed if and only if it contains all of its cluster points.

Proof. Let F be a closed set in R and let x be a cluster point of F; we will show that
x € F.If not, then x belongs to the open set C(F'). Therefore there exists an e-neighborhood
V. of x such that V, C_'Z C(F). Consequently V, N F = @, which contradicts the assumption
that x is a cluster point of F.

Conversely, let F' be a subset of R that contains all of its cluster points; we will show
that C(F') is open. For if y € C(F), then y is not a cluster point of F. It follows that there
exists an e-neighborhood V, of y that does not contain a point of F' (except possibly y).
Butsince y € C(F), it follows that V. C C(F). Since y is an arbitrary element of C(F), we
deduce that for every point in C (F) there is an e-neighborhood that is entirely contained in
C(F). But this means that C(F) is open in R. Therefore F is closed in R. QED.

The Characterization of Open Sets

The idea of an open set in R is a generalization of the notion of an open interval. That this
generalization does not lead to extremely exotic sets that are open is revealed by the next
result.

11.1.9 Theorem A subset of R is open if and only if it is the union of countably many
disjoint open intervals in R.

Proof. Suppose that G # @ is an open set in R. For each x € G, let A :={a e R:
(@, x] € G}andlet B, .= {b € R: [x, b) C G}. Since G is open, it follows that A, and B
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are not empty. (Why?) If the set A, is bounded below, we set a, :=inf A ; if A  is not
bounded below, we set a, = —oo. Note that in either case a, ¢ G. If the set B, is bounded
above, wesetb, :=sup B, ; if B;"i‘snotbounded above, we set b, := 00. Note that in either
case b, ¢ G. i

We now define I, := (a,, b,); clearly I_is an open interval containing x. We claim
that /I, C G. To see this, let y € I, and suppose that y < x. It follows from the definition
of a_ that there exists a’ € A, with a’ <y, whence y € (a’,x] € G. Similarly, if y € I,
and x < y, there exists b’ € B, with y < b’, whence it follows that y € [x, b") C G. Since
y € I is arbitrary, we have thatI C G.

Since x € G is arbitrary, weconclude that | J I, € G.Onthe other hand, since for each
xeG
x € G there is an open interval I, with x € I, C G, we also have G C | I . Therefore
xeG

we conclude that G = | 1.

We claim that if ;,eg € G and x # y, then either I, = I,or I, N1, =@. To prove
this suppose that z € I, N I , whence it follows thata, < z < by and a,<z< b..(Why?)
We will show thata, = a,. If not, it follows from the Trichotomy Property that either (i)
a, <a,or (>ii) a, <a,. In case (i), then a, € I. = (a,, b,) C G, which contradicts the
fact that a, ¢ G. Similarly, in case (ii), then a, € Iy = (ay, by) C G, which contradicts
the fact that a, ¢ G. Therefore we must have a, = a, and a similar argument implies that
b, = by. Therefore, we conclude thatif I N1 # @, then I = Iy‘

It remains to show that the collection of distinct intervals {/ : x € G} is countable.
To do this, we enumerate the set Q of rational numbers Q = {r,,r,,---,r,, -} (see
Theorem 1.3.11). It follows from the Density Theorem 2.4.8 that each interval I, contains
rational numbers; we select the rational number in /_ that has the smallest index #n in
this enumeration of Q. That is, we choose Tnir) € @ such that Ir"(x) =1, and n(x) is the

smallestindex n such that I, = I . Thus the set of distinct intervals I , x € G, is put into
. n . . . . .
correspondence with a subset of N. Hence this set of distinct intervals is countable. Q.E.D.

It is left as an exercise to show that the representation of G as a disjoint union of open
intervals is uniquely determined.

It does not follow from the preceding theorem that a subset of R is closed if and only if
it is the intersection of a countable collection of closed intervals (why not?). In fact, there
are closed sets in R that cannot be expressed as the intersection of a countable collection of
closed intervals in R. A set consisting of two points is one example. (Why?) We will now
describe the construction of a much more interesting example called the Cantor set.

The Cantor Set

The Cantor set, which we will denote by F, is a very interesting example of a (somewhat
complicated) set that is unlike any set we have seen up to this point. It reveals how in-
adequate our intuition can sometimes be in trying to picture subsets of R.

The Cantor set [F can be described by removing a sequence of open intervals from the
closed unit interval 7 := [0, 1]. We first remove the open middle third (%, %) of [0, 1] to
obtain the set

o 1 2
F =0, 3]u[.1].
We next remove the open middle third of each of the two closed intervals in F| to obtain
the set
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We see that F, is the union of 22 = 4 closed intervals, each of which is of the formn
[k / 32, k+1 /32]. We next remove the open middle thirds of each of these sets to get F,,
which is union of 2> = 8 closed intervals. We continue in this way. In general, if F, has
been constructed and consists of the union of 2" intervals of the form [k/3", k+1) /3"],
then we obtain the set F, | by removing the open middle third of each of these intervals.
The Cantor set [F is what remains after this process has been carried out for every n € N.
(See Figure 11.1.1.)

Fy

-

Figure 11.1.1 Construction of the Cantor set.

11.1.10 Definition The Cantor set F is the intersection of the sets F.,ne N, obtained
by successive removal of open middle thirds, starting with [0, 1].

Since it is the intersection of closed sets, F is itself a closed set by 11.1.5(a). We now
list some of the properties of F that make it such an interesting set.

(1) The total length of the removed intervals is 1.

We note that the first middle third has length 1/3, the next two middle thirds have
lengths that add up to 2/32, the next four middle thirds have lengths that add up to 22/33,
and so on. The total length L of the removed intervals is given by

pole2 _155 2\"
- 3 32 3n+1 - 3 3 .

n=0
Using the formula for the sum of a geometric series, we obtain

1

1
L=31"@3 !

Thus F is a subset of the unit interval [0, 1] whose complement in [0, 1] has total length 1.

Note also that the total length of the intervals that make up F, is (2/3)", which has
limit 0 as n — oo. Since F C F, foralln € N, we see that if IF can be said tohave “length”,
it must have length 0.

(2) The set IF contains no nonempty open interval as a subset.

Indeed, if F contains a nonempty open interval J := (a, b), then since J C F, forall
n € N, we musthave 0 < b —a < (2/3)" for all n € N. Therefore b — a = 0, whence J is
empty, a contradiction.

(3) The Cantor set I has infinitely (even uncountably) many points.

The Cantor set contains all of the endpoints of the removed open intervals, and these
are all points of the form 2% /3" where k = 0, 1, - - -, n for each n € N. There are infinitely
many points of this form.
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The Cantor set actually contains many more points than those of the form 2¢/3"; in fact,
[F is an uncountable set. We give an outline of the argument. We note that each x € [0, 1]
can be written in a ternary (base 3) expansion

a
x =Z_Z = (_alaz...an )3
n=1

where each a,, is either 0 or 1 or 2. (See the discussion at the end of Section 2.5.) Indeed,
each x that lies in one of the removed open intervals has a, = 1 for some n; for example,
each point in (%, %) has a; = 1. The endpoints of the removed intervals have two possible
ternary expansions, one having no 1s; for example, 3 = (.100--.); = (.022--.),. If we
choose the expansion without 1s for these points, then [F consists of all x € [0, 1] that have
ternary expansions with no 1s; that is, a, is 0 or 2 for all n € N. We now define a mapping
¢ of F onto [0, 1] as follows:

¢’(Z Z—Z) 1= i (agﬁz) for x eF.

That is, (p((.a1a2 . -)3) = (.byb,---), where b, = a, /2 foralln € Nand (.b,b, ), de-
notes the binary representation of a number. Thus ¢ is a surjection of F onto [0, 1].
Assuming that F is countable, Theorem 1.3.10 implies that there exists a surjection ¥ of
N onto F, so that ¢ o ¥ is a surjection of N onto [0, 1]. Another application of Theorem
1.3.10 implies that [0, 1] is a countable set, which contradicts Theorem 2.5.5. Therefore F
is an uncountable set.

Exercises for Section 11.1

1. Ifx €(0,1),let ¢ beasinExample 11.1.3(b). Show thatif |u — x| < ¢ , thenu € (0, 1).

N

Show that the intervals (a, 00) and (—o0, a) are open sets, and that the intervals [b, oo) and
(—o00, b] are closed sets.

Write out the Induction argument in the proof of part (b) of the Open Set Properties 11.1.4.
Prove that (0, 1] = N2, (0, 1 + 1/n), as asserted in Example 11.1.6(a).

Show that the set N of natural numbers is a closed setin R.

Show that A = {1/n: n € N} is not a closed set, but that A U {0} is a closed set.

Show that the set Q of rational numbers is neither open nor closed.

© N o AW

Show thatif G is an open set and F is a closed set, then G\ F is an open set and F\G is a closed
set. o '

9, A point ¥ € R is said to be art interior point of A C R in case there is a neighborhood V of x
" _$uch that V C A. Show that a set A C R is open if and only if every point of A is an interior
point of A.

10. A point x € R is said to be a boundary point of A C R in case every neighborhood V of x
contains points in A and pointsin C(A). Show thata set A and its complement C(A) have exactly
the same boundary points.

11. Show thata set G C R is open if and only if it does not contain any of its boundary points.
12. Show that a set F C R is closed if and only if it contains all of its boundary points. -

13. If A C R, let A° be the union of all open sets that are contained in A; the set A° is called the
interior of A. Show that A° is an open set, that it is the largest open set contained in A, and that
a point z belongs to A° if and only if z is an interior point of A.



14.
15.
16.

17.
18.
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20.

21.
22.
23.
24.
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Using the notation of the preceding exercise, let A, B be sets in R. Show that A° C A, (A°)° =
A°, and that (A N B)° = A° N B°. Show also that A° U B° C (A U B)°, and give an example
to show that the inclusion may be proper.

If ACR, let A~ be the intersection of all closed sets containing A; the set A~ is called the
closure of A. Show that A~ is a closed set, that it is the smallest closed set containing A, and
that a point w belongs to A~ if and only if w is either an interior point or a boundary point of A.

Using the notation of the preceding exercise, let A, B be sets in R. Show that we have A C
A7,(A7)" = A7, andthat (AU B)” = A~ U B™.Showthat (AN B)” € A~ N B7, and give
an example to show that the inclusion may be proper.

Give an example of a set A C R such that A° =@ and A~ =R.
Show that if F C R is a closed nonempty set that is bounded above, then sup F belongs to F.

If G is open and x € G, show that the sets A, and B, in the proof of Theorem 11.1.9 are not
empty.

If the set A, in the proof of Theorem 11.1.9 is bounded below, show that a, := inf A, does not
belong to G.

Ifin the notation used in the proof of Theorem 11.1.9, wehavea, <y < x, show thaty € G.
If in the notation used in the proof of Theorem 11.1.9, wehave I N I y # 0, show thatb, = by.
Show that each point of the Cantor set [F is a cluster point of F.

Show that each point of the Cantor set F is a cluster point of C(F).

Section 11.2 Compact Sets

Inadvanced analysis and topology, the notion of a “compact” set is of enormous importance.
This is less true in R because the Heine-Borel Theorem gives a very simple characterization
of compact sets in R. Nevertheless, the definition and the techniques used in connection
with compactness are very important, and the real line provides an appropriate place to see
the idea of compactness for the first time.

The definition of compactness uses the notion of an open cover, which we now define.

11.2.1 Definition Let A be a subset of R. An open cover of A is a collection G = {G,}
of open sets in R whose union contains A; thatis,

Acl e,
o

If G’ is a subcollection of sets from G such that the union of the sets in G’ also contains
A, then G’ is called a subcover of G. If G’ consists of finitely many sets, then we call G’ a
finite subcover of G.

There can be many different open covers for a given set. For example, if A := [1, 00),

then the reader can verify that the following collections of sets are all open covers of A:

Go = {(0, 20)},

G ={r-1L,r+1):reQr>0}
G,:={n—1Ln+1):neN},
G,:={0,n):neN},
G,:={0,n):neN,n>23}.
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We note that G, is a subcover of G, and that G, is a subcover of G,. Of course, many other
open covers of A can be described.

11.2.2 Definition A subset K of R is said to be compact if every open cover of K has a
finite subcover.

In other words, a set K is compact if, whenever it is contained in the union of a
collection G = {G_} of open sets in R, then it is contained in the union of some finite
number of sets in G.

It is very important to note that, in order to apply the definition to prove that a set K
is compact, we must examine an arbitrary collection of open sets whose union contains
K, and show that X is contained in the union of some finite number of sets in the given
collection. That is, it must be shown that any open cover of K has a finite subcover. On
the other hand, to prove that a set H is not compact, it is sufficient to exhibit one specific
collection G of open sets whose union contains H, but such that the union of any finite
number of sets in G fails to contain H. That is, H is not compact if there exists some open
cover of H that has no finite subcover.

11.2.3 Examples (a) Let K := {x,, x,, - -, x,} be a finite subset of R. If G = {G} is
an open cover of K, then each x; is contained in some set G, in G. Then the union of the
sets in the collection {G, , G, ,---, G, } contains K, so that it is a finite subcover of g.
Since G was arbitrary, it follows that the 'hnite set K is compact.

(b) Let H := [0, 0o). To prove that H is not compact, we will exhibit an open cover that

o0
has no finite subcover. If we let G, := (—1, n) for each n € N, then H C U G, so that

=1
G :={G, : n € N} isan open cover of H. However, if {G“1’ Gaz, e Gan} is any finite
subcollection of G, and if we let m = sup{n,, n,, - -+, n,}, then "

Gn1 UGnZU---UGnk =G, =(-1,m).
Evidently, this union fails to contain H = [0, oo). Thus no finite subcollection of G will

have its union contain H, and therefore H is not compact.

() LetJ:=(0,1).If welet G, := (1/n,1) for each n € N, then it is readily seen that
oo
J=U G,.Thus G := {G, : n € N} is an open cover of J. If {Gnl,an“",G" } is any

n=1
finite subcollection of G, and if we set s = sup {nl, n,y, -, nr} then

Gn“ U an U.--UG, =G, =(1/s,1).
Since 1/s is in J but not in G, we see that the union does not contain J. Therefore, J is

not compact. g

We now wish to describe all compact subsets of R. First we will establish by rather
straightforward arguments that any compact set in R must be both closed and bounded.
Then we will show that these properties in fact characterize the compact sets in R. This is
the content of the Heine-Borel Theorem.

11.2.4 Theorem If K is a compact subset of R, then K is closed and bounded.
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Proof. We will first show that K is bounded. For eachm € N, let H,, := (—m, m). Since
oo
each H, isopenandsince K € |J H,, = R, we see thatthe collection {H, :m € N}isan

m=1
open cover of K. Since K is compact, this collection has a finite subcover, so there exists
M € N such that

M
k< |JH,=H,= (M M.
m=1

Therefore K is bounded, since it is contained in the bounded interval (—M, M).
We now show that X is closed, by showing that its complement C(K) is open. To do
so, let u € C(K) be arbitrary and foreachn e N, welet G, :={y e R: |y —u| > 1/n}.

o)
It is an exercise to show that each set G, is open and that R\{u} = | J G,. Since u ¢ K,

n=1
%)

wehave K C | G,,. Since K is compact, there exists m € N such that
n=1

Kc LMJG,, =G,
n=1

Now it follows from this that K N (u — 1/m, u + 1/m) = @, so that the interval (u — 1/m,
u+1/m) € C(K). But since # was an arbitrary point in C(K), we infer that C(K) is
open. QED.

We now prove that the conditions of Theorem 11.2.4 are both necessary and sufficient
for a subset of R to be compact.

11.2.5 Heine-Borel Theorem A subset K of R is compact if and only if it is closed and
bounded.

Proof. We have shown in Theorem 11.2.4 that a compact set in R must be closed and
bounded. To establish the converse, suppose that K is closed and bounded, andlet G = {G ,}
be an open cover of K. We wish to show that K must be contained in the union of some
finite subcollection from G. The proof will be by contradiction. We assume that:

(€9 K is not contained in the union of any finite number of setsin G.

By hypothesis, K is bounded, so there exists r > 0 such that K C [—r,r]. We let I, :=
(—r, r] and bisect I, into two closed subintervals /| := [—r,0] and I}’ := [0, r]. At least
one of the two subsets X N I{, and K N I{ must be nonvoid and have the property that
it is not contained in the union of any finite number of sets in G. [For if both of the sets
K N1 and K N 1}’ are contained in the union of some finite number of sets in G, then K
= (K N1I)) U (K N1 is contained in the union of some finite number of sets in G, con-
trary to the assumption (1).] If K N I is not contained in the union of some finite number
of sets in G, we let 1, := I{; otherwise K N I{" has this property and we let I, := I},

We now bisect 7, into two closed subintervals I; and I, If K N I} is nonvoid and is
nét contained in the union of some finite number of sets in G, we let I, := I;; otherwise
K N1, has this property and we let I, :== I

Continuing this process, we obtain a nested sequence of intervals (/). By the Nested
Intervals Property 2.5.2, there is a point z that belongs to all of the I, n € N. Since each
interval I, contains infinitely many points in K (why?), the point z is a cluster point of XK.
Moreover, since K is assumed to be closed, it follows from Theorem 11.1.8 that z € K.
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Therefore there exists a set G, in G with z € G,. Since G, is open, there exists £ > 0 such
that

(z—¢,z+¢) CG,.

On the other hand, since the intervals I, are obtained by repeated bisections of I|,=
[—r, r], the length of I, is r/2"72. It follows that if n is so large that r/2"~% < ¢, then
I, € (z—¢ 2+ ¢) C G,. But this means that if n is such that r/2"_2 <eé¢thenKNI is
contained in the single set G, in G, contrary to our construction of I,. This contradiction
shows that the assumption (1) that the closed bounded set K requires an infinite number of
sets in G to cover it is untenable. We conclude that K is compact. QED.

Remark Itwasseenin Example 11.2.3(b) thatthe closed set H := [0, 00) is not compact;
note that H is not bounded. It was also seen in Example 11.2.3(c) that the bounded set
J := (0, 1) is not compact; note that J is not closed. Thus, we cannot drop either hypothesis
of the Heine-Borel Theorem.

We can combine the Heine-Borel Theorem with the Bolzano-Weierstrass Theorem
3.4.8 to obtain a sequential characterization of the compact subsets of R.

11.2.6 Theorem A subset K ofR is compact if and only if every sequence in K has a
subsequence that converges to a pointin K.

Proof. Suppose that K is compact and let (x, ) bea sequence withx, € K foralln € N. By
the Heine-Borel Theorem, the set K is bounded so thatthe sequence (x,,) is bounded; by the
Bolzano-Weierstrass Theorem 3.4.8, there exists a subsequence (xnk) that converges. Since
K is closed (by Theorem 11.2.4), the limit x := lim(xnk) is in K. Thus every sequence in
K has a subsequence that converges to a point of K.

To establish the converse, we will show that if K is either not closed or not bounded,
then there must exist a sequence in K that has no subsequence converging to a point of X.
First, if K is not closed, then there is a cluster point ¢ of X that does not belongto K. Since
c is a cluster point of K, there is a sequence (x,) withx, € K and x, # c foralln € Nsuch
that lim(x,) = c. Then every subsequence of (x,) also converges to c, and since ¢ ¢ K,
there is no-subsequence that converges to a point of XK.

Second, if X is not bounded, then there exists a sequence (x,) in K such that |xn | >n
foralln € N. (Why?) Then every subsequence of (x,) is unbounded, so that no subsequence
of it can converge to a point of K. QED.

Remark The reader has probably noticed that there is a similarity between the compact-
ness of the ‘interval [a, b] and-the existence of -fine partitions for [a, b]. In fact, these
properties are equivalent, each being deducible from the other. However, compactness
applies to sets that are more general than intervals.

Exercises for Section 11.2

1. Exhibit an open cover of the interval (1, 2] that has no finite subcover.
2. Exhibit an open cover of N that has no finite subcover.

3. Exhibit an open cover of the set {1/n: n € N} that has no finite subcover.
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4. Prove, using Definition 11.2.2, that if F is a closed subset of a compact set K in R, then F is
compact.

5. Prove, using Definition 11.2.2, that if X, and K, are compact sets in R, thentheirunion X, U K,
is compact.

6. Use the Heine-Borel Theorem to prove the following version of the Bolzano-Weierstrass The-
orem: Every bounded infinite subset of R has a cluster point in R. (Note that if a set has no
cluster points, then it is closed by Theorem 11.1.8.)

o0
7. Find an infinite collection {K, : n € N} of compact sets in R such that the union [ J K, is not
! n=1
compact.

8. Prove that the intersection of an arbitrary collection of compact sets in R is compact.

9. Let (K, : n € N) be a sequence of nonempty compact sets in R such that K, 2 K, 2 --- 2

K, 2 -- . Prove that there exists at least one point x € R such that x € K, for all n € N; that
oo

is, the intersection (1) K, is not empty.
n=1

10. Let K # @ be a compact set in R. Show that inf K and sup K exist and belong to K.

11. Let K # @ be compact in R and let ¢ € R. Prove that there exists a point a in K such that
|c —a| =inf{lc — x| : x € K}.

12. let K # 0 be compact in R and let ¢ € R. Prove that there exists a point b in K such that
ic —b| =sup{lc —x| : x € K}.

13. Use the notion of compactness to give an alternative proof of Exercise 5.3.18.

14. If K, and K, are disjoint nonempty compact sets, show that there exist k; € K, such that
0 <k, —k,| =inf{|lx, — x,| : x, € K}}

15. Givean example of disjoint closed sets F,, F, suchthat 0 = inf{|x, —x,| : x, € F;}.

Section 11.3 Continuous Functions

In this section we will examine the way in which the concept of continuity of functions can
be related to the topological ideas of open sets and compact sets. Some of the fundamental
properties of continuous functions on intervals presented in Section 5.3 will be established
in this context. Among other things, these new arguments will show that the concept
of continuity and many of its important properties can be carried to a greater level of
abstraction. This will be discussed briefly in the next section on metric spaces.

Continuity

In Section 5.1 we were concerned with continuity at a point, that is, with the “local”
continuity of functions. We will now be mainly concerned with “global” continuity in the
sense that we will assume that the functions are continuous on their entire domains.

The continuity of a function f : A — R at a point ¢ € A was defined in Section 5.1.
Theorem 5.1.2 stated that f is continuous at ¢ if and only if for every e-neighborhood
V.(f(c)) of f(c) there exists a §-neighborhood V;(c) of ¢ such thatif x € V;(c) N A, then
f(x) € V.(f(c)). We wish to restate this condition for continuity at a point in terms of
general neighborhoods. (Recall from 11.1.1 that a neighborhood of a point c is any set U
that contains an e-neighborhood of ¢ for some ¢ > 0.)
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11.3.1 Lemma A function f : A — R is continuous at the point c in A if and only if for
every neighborhood U of f(c), there exists a neighborhood V of ¢ such thatifx € VN A,
then f(x) € U.

Proof. Suppose f satisfies the stated condition. Then given & > 0, welet U = V_(£(c))
and then obtain aneighborhood V for whichx € V N A implies f(x) € U. If we choose § >
O suchthat V,(c) € V, then x € V,(c) N A implies f(x) € U therefore f is continuous at
¢ according to Theorem 5.1.2.

Conversely, if f is continuous at ¢ in the sense of Theorem 5.1.2, then since any
neighborhood U of f(c) contains an e-neighborhood V,(f(c)), it follows that taking the
8-neighborhood V = V;(c) of ¢ of Theorem 5.1.2 satisfies the condition of the lemma.

QED.

We note that the statement that x € V N A implies f(x) € U is equivalent to the
statement that f(V N A) C U, that is, that the direct image of V N A is contained in U.
Also from the definition of inverse image, this is the same as VN A C f ~“LU). (See
Definition 1.1.7 for the definitions of direct and inverse images.) Using this observation,
we now obtain a condition for a function to be continuous on its domain in terms of open
sets. In more advanced courses in topology, part (b) of the next result is often taken as the
definition of (global) continuity.

11.3.2 Global Continuity Theorem Let A C R and let f : A — R be a function with
domain A. Then the following are equivalent:

(@) f iscontinuous at every point of A.
(b) ForeveryopensetG in R, there existsanopenset H in R suchthat H N A = f~'(G).

Proof. (a) = (b). Assume that f is continuous at every point of A, and let G be a
given open set in R. If ¢ belongs to f~!(G), then f(c) € G, and since G is open, G is a
neighborhood of f(c). Therefore, by the preceding lemma, it follows from the continuity
of f that there is an open set V (¢) such that x € V (c) implies that f (x) € G; that is, V(c)
is contained in the inverse image f ~“1(G). Select V(c) foreachc in f~'(G), andlet H be
the union of all these sets V (c). By the Open Set Properties 11.1.4, the set H is open, and
we have H N A = f~!(G). Hence (a) implies (b).

(b) = (a). Let c be any point€A, and let G be an open neighborhood of f(c). Then
condition (b) implies that there exists an open set H in R such that HNA = f “1(G).
Since f(c) € G, it follows that c € H, so H is a neighborhood of c. If x € H N A, then
f(c) € G, and therefore f is continuous at c. Thus (b) implies (a). QED.

In the case that A = R, the pfeceding result simplifies to some extent.

11.3.3 Corollary A function f : R — R is continuous if and only if f “1G) is open in
R whenever G is open.

It must be emphasized that the Global Continuity Theorem 11.3.2 does not say that if
f is acontinuous function, then the direct image f(G) of an open set is necessarily open. In
general, a continuous function will not send open sets to open sets. For example, consider
the continuous function f : R — R defined by

f(x)::x2+l for x e R.
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If G is the open set G := (—1, 1), then the direct image under f is f(G) = (1, 2), which
is not open in R. See the exercises for additional examples.

Preservation of Compactness

In Section 5.3 we proved that a continuous function takes a closed, bounded interval [a, b]
onto a closed, bounded interval [m, M], where m and M are the minimum and maximum
values of f on [a, b], respectively. By the Heine-Borel Theorem, these are compact subsets
of R, so that Theorem 5.3.8 is a special case of the following theorem.

11.3.4 Preservation of Compactness IfK is a compact subset of Randif f : K — R
is continuous on K, then f(K) is compact.

Proof. LetG = {G,} be an open cover of the set f(K). We must show that G has a finite
subcover. Since f(K) C U G,, it follows that K C U f_l(GA). By Theorem 11.3.2, for
each G, there is an open set H, suchthat H, N K = f -1 (G,). Then the collection {H, }

is an open cover of the set K. Since K is compact, this open cover of K contains a finite
subcover {HM’ sz, -++, H, }. Then we have
n

Lan" (6,)= LnJHM NK2K.
i=1 i=1

From this it follows that U G 2 f(K). Hence we have found a finite subcover of G.

=1
Since G was an arbitrary open cover of f(K), we conclude that f(K) is compact. Q.E.D.

11.3.5 Some Applications We will now show how to apply the notion of compactness
(and the Heine-Borel Theorem) to obtain alternative proofs of some important results that
we have proved earlier by using the Bolzano-Weierstrass Theorem. In fact, these theorems
remain true if the intervals are replaced by arbitrary nonempty compact sets in R.

(1) The Boundedness Theorem 5.3.2 is an immediate consequence of Theorem 11.3.4
and the Heine-Borel Theorem 11.2.5. Indeed, if K € R is compact and if f: K — R is
continuous on K, then f(K) is compact and hence bounded.

(2) The Maximum-Minimum Theorem 5.3.4 also is an easy consequence of Theorem
11.3.4 and the Heine-Borel Theorem. As before, we find that f(K) is compact and hence
bounded in R, so that s* := sup f(K) exists. If f(K) is a finite set, then s*e f(K). If
f(K) is an infinite set, then §* is a cliis‘téf?)bmt of f(K) [see Exercise 11.2.6]. Since
f(K) is a closed set, by the Heine-Borel Theorem, it follows from Theorem 11.1.8 that

s* € f(K). We conclude that s* = f(x*) for some x* € K.

(3) We can also give a proof of the Uniform Continuity Theorem 5.4.3 based on the notion
of compactness. To do so, let K € R be compact and let f : K — R be continuous on XK.
Thengivene > O and u € K, thereis anumber$, := & (3¢, u) > Osuch thatif x € K and
lx.— u| <, then | f(x) — f(u)| < }¢. Foreachu € K,letG, == (u — 38,, u + 18,) so
that G, is open; we consider the collection G = {G, : u € K}. Smce ueG, foruek,

it is trivial that K € | G,. Since K is compact, there are a finite number of sets, say
uek

G, ., --,G, whose union contains K. We now define
1 M

8(e) := %inf{aul, 8, )
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so that §(¢) > 0. Now if x,u € K and |x — u| < 8(¢), then there exists some u, with
k=1,---, M such that x € Guk; therefore |x — u, | < %Suk. Since we have 8(¢) < %Suk
it follows that

lu—u | <lu—x|+|x —u] < Suk.
But since §, = 8(%¢, u,) it follows that both

If@)—Fwp| <ie  and  |f@) - fa)| < e

Therefore we have | f(x) — f(u)| < e.

We have shown thatif e > 0, then there exists §(¢) > 0 such thatif x, u are any points
in K with |x — u| < 8(¢),then | f(x) — f(u)| < . Since & > 0 is arbitrary, this shows that
f is uniformly continuous on K, as asserted. g

We conclude this section by extending the Continuous Inverse Theorem 5.6.5 to func-
tions whose domains are compact subsets of R, rather than intervals in R.

11.3.6 Theorem If X is a compact subset of R and f : K — R is injective and contin-
uous, then f ! is continuous on f(K).

Proof. Since K is compact, then Theorem 11.3.4 implies that the image f(K)iscompact.
Since f is injective by hypothesis, the inverse function f~! is defined on f(K) to K. Let
(»,) be any convergent sequence in f(K), and let y, = lim(y, ). To establish the continuity
of f~!, we will show that the sequence (f -1 (y,)) convergesto f -1 (y)-

Letx, == f I y,) and, by way of contradiction, assume that (x,) does not converge to
x,=f 'l(yo). Then there exists an ¢ > 0 and a subsequence (x;) such that |x,’( — x0| >e
forall k. Since K is compact, we conclude from Theorem 11.2.6 that there is a subsequence
(x)) of the sequence (x;) that converges to a point x* of K. Since \x* —xol > &, we
have x* # x,. Now since f is continuous, we have lim( f (x])) = f(x*). Also, since the
subsequence (y,) of ( y,) that corresponds to the subsequence (x) of (x,) must converge
to the same limit as (y,) does, we have

Lim(f(x,)) = lim(y,) = y, = f(xp)

Therefore we conclude that f(x*) = f (x,). However, since f is injective, this implies that
x* = x,,, which is a contradiction. Thus we conclude that f ! takes convergent sequences
in f(K) to convergent sequences in K, and hence f~! is continuous. QED.

Exercises for Section 11.3

1. Let f : R — R be defined by f(x) = x? for x € R.
(a) Showthattheinverseimage f~! (1) of an open interval I := (a, b) is either an open interval,
the union of two open intervals, or empty, depending on a and b.
(b) Show thatif 7 is an open interval containing 0, then the direct image f (/) is not open.

2. Let f : R — Rbedefined by f(x) :=1/(1 +x2) forx e R.
(a) Find an open interval (a, b) whose direct image under f is not open.
(b) Show that the direct image of the closed interval [0, 0o) is not closed.

3. Let]:=[1,00)andlet f(x) :== +/x — 1forx € I. For each e-neighborhood G = (—¢, +¢) of
0, exhibit an open set H such that H N I = f~'(G).
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4. Leth :R — Rbedefined by h(x) :=1if0 < x <1, h(x) := 0 otherwise. Find an open set G
such that A~ (G) is not open, and a closed set F such that B! (F) is not closed.

5. Show that if f : R — R is continuous, then the set {x € R: f(x) < «} is open in R for each
aeR.

6. Show that if f: R — R is continuous, then the set {x € R: f(x) < o} is closed in R for each
a €R.

7. Show that if f : R — R is continuous, then the set {x € R : f(x) = k} is closed in R for each
k € R.

8. Give anexample of a function f : R — R such that the set {x € R : f(x) = 1} is neither open
nor closed in R.

9. Provethat f : R — Ris continuous if and only if for each closed set F in R, the inverse image
7' (F) is closed.

10. LetI :=[a,blandlet f: I — R andg : I — R be continuous functions on /. Show that the
set {x € I : f(x) = g(x)}isclosed in R.

Section 11.4 Maetric Spaces

This book has been devoted to a careful study of the real number system and a number of
different limiting processes that can be defined for functions of a real variable. A central
topic was the study of continuous functions. At this point, with a strong understanding of
analysis on the real line, the study of more general spaces and the related limit concepts
can begin. It is possible to generalize the fundamental concepts of real analysis in several
different ways, but one of the most fruitful is in the context of metric spaces, where a metric
is an abstraction of a distance function.

In this section, we will introduce the idea of metric space and then indicate how certain
areas of the theory developed in this book can be extended to this new setting. We will
discuss the concepts of neighborhood of a point, open and closed sets, convergence of
sequences, and continuity of functions defined on metric spaces. Our purpose in this brief
discussion is not to develop the theory of metric spaces to any great extent, but to reveal how
the key ideas and techniques of real analysis can be put into a more abstract and general
framework. The reader should note how the basic results of analysis on the real line serve
to motivate and guide the study of analysis in more general contexts.

Generalization can serve two important purposes. One purpose is that theorems derived
in general settings can often be applied in many particular cases without the need of a
separate proof for each special case. A second purpose is that by removing the nonessential
(and sometimes distracting) features of special situations, it is often possible to understand
the real significance of a concept or theorem.

Metrics

On the real line, basic limit concepts were defined in terms of the distance |x — y| between
two points x, y in R, and many theorems were proved using the absolute value function.
Actually, a careful study reveals that only a few key properties of the absolute value were
required to prove many fundamental results, and it happens that these properties can be
extracted and used to define more general distance functions called “metrics”.
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11.4.1 Definition A metric on a set S is a function d : § x § — R that satisfies the
following properties:

(@) d(x,y) >O0forallx,y € S (positivity),

(b) d(x,y)=0if and only if x = y (definiteness);

() d(x,y)=d(y,x) forall x, y € S (symmetry);

d) dx,y) <d(x,z)+d(z, y)forall x, y, z € S (triangle inequality).

A metricspace (S, d) is a set S together with a metric d on .
We consider several examples of metric spaces.

11.4.2 Examples (a) The familiar metric on R is defined by
dix,y) = |x—Yy| for x,ye R.

Property 11.4.1(d) for d follows from the Triangle Inequality for absolute value because
we have

dx,y)=lx—yl=1x -2+ (z—y)l
<lx—zl+lz—yl=d(x,2) +d(z ),

forallx, y, ze R.

(b) The distance function in the plane obtained from the Pythagorean Theorem provides
one example of a metric in RZ2. That is, we define the metric d on R? as follows: if
P, :=(x}, y;) and P, := (x,, y,) are points in R?, then

d(P,, Py) =[x, — 5"+ (7, — 1,)?

(c) Itis possible to define several different metrics on the same set. On R?, we can also
define the metric d, as follows:

d,(P, P) := |x1 _le + Iyl - y2|
Still another metric on R? is doo defined by
d, (P}, Py = SuP{|x1 —x2| ) Iyl _)’2”-

The verifications that d; and d_j satisfy the properties of a metric are left as exercises.
(d) Let C[0, 1] denote the set of all continuous functions on the interval [0, 1] to R. For

f, g in C[0, 1], we define
d(f, 8 = sup{|f(x) — g(x)|: x € [0, 1]}.

Then it can be verified that d__ is a metric on C[0, 1]. This metric is the uniform norm of
f — g on|[0, 1] as defined in Section 8.1; that is, d_(f, g = | f — gll, where | f | denotes
the uniform norm of f on the set [0, 1].

(e) We again consider C[0, 1], but we now define a different metric d, by

1
qu£w=ﬁ|f—m for f,g e C[o, 1]

The properties of the integral can be used to show that this is indeed a metric on C[O0, 1].
The details are left as an exercise.
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(f) Let S be any nonempty set. For s, ¢t € S, we define

1o if s=¢,

ds, 1) "{1 if s#1.
It is an exercise to show that d is a metric on S. This metric is called the discrete metric
on the set S. O

We note that if (S5, d) is a metric space, and if T C S, then d’ defined by d(x,y) :=
d(x,y) for all x,y € T gives a metric on 7, which we generally denote by d. With this
understanding, we say that (T, d) is also a metric space. For example, the metric d on R
defined by the absolute value is a metric on the set QQ of rational numbers, and thus (Q, d)
is also a metric space.

Neighborhoods and Convergence

The basic notion needed for the introduction of limit concepts is that of neighborhood, and
this is defined in metric spaces as follows.

11.4.3 Definition Let (S, d) be a metric space. Then for ¢ > 0, the e-neighborhood of
a point x,, in § is the set

V.(xy) = {x € S: d(x,, x) < gl

A neighborhood of x ; is any set U that contains an e-neighborhood of x ; for some & > 0.

Any notion defined in terms of neighborhoods can now be defined and discussed in
the context of metric spaces by modifying the language appropriately. We first consider the
convergence of sequences.

A sequence in a metric space (5, d) is a function X : N — S with domain N and range
in S, and the usual notations for sequence are used; we write X = (x,), but now x, € S for
all n € N. When we replace the absolute value by a metric in the definition of sequential
convergence, we get the notion of convergence in a metric space.

11.4.4 Definition Let (x,) be a sequence in the metric space (S, d). The sequence (x,)
is said to converge to x in S if for any &€ > O there exists K € N such that x, € V_(x) for
alln > K.

Note that since x, € V_(x) if and only if d(x,,, x) < &, a sequence (x,) converges to x
if and only if for any ¢ > O there exists K such that d(x,, x) < ¢ for all n > K. In other
words, a sequence (x,) in (S, d) converges to x if and only if the sequence of real numbers
(d(x,, x)) converges to 0.

11.4.5 Examples (a) Consider R? with the metric d defined in Example 11.4.2(b). If
P =(x,y, € R? for each n € N, then we claim that the sequence (P,) converges to
P-= (x, y) with respect to this metric if and only if the sequences of real numbers (x,) and
(y,) converge to x and y, respectively.

First, we note that the inequality ]xn - x| <d(P,, P) implies that if (P,) converges
to P with respect to the metric d, then the sequence (x,) converges to x; the convergence
of (y,) follows in a similar way. The converse follows from the inequality d(P,, P) <
|x, — x| + |y, — ¥| which is readily verified. The details are left to the reader.




330 CHAPTER 11 A GLIMPSE INTO TOPOLOGY

(b) Letd_ be the metric on C[0, 1] defined in Example 11.4.2(d). Then a sequence (f,)
in C[0, 1] converges to f with respect to this metric if and only if (f,) converges to f
uniformly on the set [0, 1]. This is established in Lemma 8.1.8 in the discussion of the
uniform norm. O

Cauchy Sequences

The notion of Cauchy sequence is a significant concept in metric spaces. The definition is
formulated as expected, with the metric replacing the absolute value.

11.4.6 Definition Let (S, d) be a metric space. A sequence (x,) in § is said to be a
Cauchy sequence if for each £ > 0, there exists H € N such that d(x,,, x,) < ¢ for all
n,m> H.

The Cauchy Convergence Theorem 3.5.5 for sequences in R states that a sequence in
R is a Cauchy sequence if and only if it converges to a point of R. This theorem is not true
for metric spaces in general, as the examples that follow will reveal. Those metric spaces
for which Cauchy sequences are convergent have special importance.

11.4.7 Definition A metric space (S, d) is said to be complete if each Cauchy sequence
in S converges to a point of S.

In Section 2.3 the Completeness Property of R is stated in terms of the order properties
by requiring that every nonempty subset of R that is bounded above has a supremum in R.
The convergence of Cauchy sequences is deduced as a theorem. In fact, it is possible to
reverse the roles of these fundamental properties of R: the Completeness Property of R
can be stated in terms of Cauchy sequences as in 11.4.7, and the Supremum Property can
then be deduced as a theorem. Since many metric spaces do not have an appropriate order
structure, a concept of completeness must be described in terms of the metric, and Cauchy
sequences provide the natural vehicle for this.

11.4.8 Examples (a) The metric space (QQ, d) of rational numbers with the metric
defined by the absolute value function is not complete.

For example, if (x,) is a sequence of rational numbers that converges to /2, then it is
Cauchy in Q, but it does not converge to a point of Q. Therefore (Q, d) is not a complete
metric space.

(b) The space C[0, 1] with the metric d_ defined in 11.4.2(d) is complete.

To prove this, suppose that (f,) is a Cauchy sequence in C[0, 1] with respect to the

metric d__. Then, given ¢ > 0, there exists H such that

(1) |f,0) = f,0)] <¢

forallx € [0, 1] and all n, m > H. Thus for each x, the sequence ( f, (x)) is Cauchy in R,
and therefore converges in R. Wedefine f to be the pointwise limit of the sequence; that is,
f(x) == lim(f,(x)) foreachx € [0, 1]. It follows from (1) that foreachx € [0, 1] and each
n > H,wehave | f,(x) — f(x)| < e. Consequently the sequence (f,) converges uniformly
to f on [0, 1]. Since the uniform limit of continuous functions is also continuous (by 8.2.2),
the function f is in C[0, 1]. Therefore the metric space (C[0, 1], d ) is complete.

(c) If d, is the metric on C[0, 1] defined in 11.4.2(e), then the metric space (C[0, 1], d,)
is not complete.
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a
limit in the space. We define the sequence (f,) for n > 3 as follows (see Figure 11.4.1):

1 for 0<x<1/2,
f[,x):=314+n/2 —nx for 1/2<x<1/2+1/n,
0 for 1/2+1/n<x<1.

Note that the sequence (f,) converges pointwise to the discontinuous function f(x) :=1
forO0 <x <1/2and f(x) :=0for 1/2 <x < 1. Hence f ¢ C[O0, 1]; in fact, there is no
function g € C[0, 1] such thatd,(f,, g) — 0. O

J
1

1.1
2t

r\J|r—l—

Figure11.4.1 The sequence (f,)

Open Sets and Continuity

With the notion of neighborhood defined, the definitions of open set and closed set read the
same as for sets in R.

11.4.9 Definition Let (S, d) be a metric space. A subset G of S is said to be an open set
in § if for every point x € S there is a neighborhood U of x such that U € G. A subset F
of S is said to be a closed set in S if the complement S\ F is an open set in S.

Theorems 11.1.4 and 11.1.5 conceming the unions and intersections of open sets
and closed sets can be extended to metric spaces without difficulty. In fact, the proofs
of those theorems carry over to metric spaces with very little change: simply replace the
e-neighborhoods (x — &, x 4 ¢) in R by e-neighborhoods V.(x) inS.

We now can examine the concept of continuity for functions that map one metric space
(S, d,) into another metric space (S,,d,). Note that we modify the property in 5.1.2 of
continuity for functions on R by replacing neighborhoods in R by neighborhoods in the
metric spaces.

11.4.10 Definition Let (S;, d,) and (S,, d,) be metric spaces, and let f:8 — S, bea
function from S, to §,. The function f is said to be continuous at the point ¢ in S, if for
every e-neighborhood V(£ (c)) of f(c) there exists a §-neighborhood V;(c) of ¢ such that
if x € Vy(c), then f(x) € V, (f(c)).

The &-8 formulation of continuity can be stated as follows: f : §; — S, is continuous
at c if and only if for each & > O there exists § > 0 such that 4, (x, c¢) < § implies that

d,(fx), f(c)) <.
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The Global Continuity Theorem can be established for metric spaces by appropriately
modifying the argument for functions on R.

11.4.11 Global Continuity Theorem If(S,,d,) and (S,, d,) are metric spaces, then a
function f : S; — S, is continuous on S, if and only if f ~1(G) is open in S whenever G
isopenin S,.

The notion of compactness extends immediately to metric spaces. A metric space (S, d)
is said to be compact if each open cover of S has a finite subcover. Then by modifying the
proof of 11.3.4, we obtain the following result.

11.4.12 Preservation of Compactness If (S, d) is a compact metric space and if the
function f : S — R is continuous, then f(S) is compact in R.

The important properties of continuous functions given in 11.3.5 then follow imme-
diately. The Boundedness Theorem, the Maximum-Minimum Theorem, and the Uniform
Continuity Theorem for real-valued continuous functions on a compact metric space are
all established by appropriately modifying the language of the proofs given in 11.3.5.

Semimetrics

11.4.13 Definition A semimetric on a set S is a function d : § x § — R that satisfies
all of the conditions in Definition 11.4.1, except thatcondition (b) is replaced by the weaker
condition

(v) dix,y)=0 if x=y.

A semimetric space (S, d)is a set S together with a semimetric d on S.

Thus every metric is a semimetric, and every metric space is a semimetric space.
However, the converse is not true. For example, if P, = (x, ) and P, := (x,, y,) are
points in the space R?, the function d, defined by

d, (P, P,) := |x; — x,|,

is easily seen to be a semimetric, but it is not a metric since any two points with the same
first coordinate have *“d,-distance” equal to 0.

Somewhat more interestingly, if f, g are any functions in L[a, b], we have defined (in
Definition 10.2.9) the distance function:

b
dist(f, g) :=[ If — gl

Here it is clear that'any two functions that are equal except at a countable set of points will
have distance equal to O from each other (in fact, this is also true when the functions are
equal almost everywhere).

The reader can retrace the discussion in the present section and see that most of what
we have done remains true for semimetrics and semimetric spaces. The main difference
is that a sequence in a semimetric space does not necessarily converge to a unigue limit.
While this seems to be rather unusual, it is actually not a very serious problem and one
can learn to adjust to this situation. The other alternative is to “identify” points that have
distance O from each other. This identification procedure is often invoked, but it means one
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is dealing with “equivalence classes” rather than individual points. Often this cure is worse
than the malady.

Exercises for Section 11.4

> v =

“

10.
11.
12.

Show that the functions d, and d__ defined in 11.4.2(c) are metrics on R2
Show that the functions d _ and d, defined in 11.4.2(d, €) are metrics on C[0, 1].
Verify that the discrete metric on a set S as defined in 11.4.2(f) is a metric.

IfP :=(x,y,) € R?and d_, isthemetricin 1 1.4.2("(:), showthat (P, ) convergesto P := (x, y)
with respect to this metric if and only if (x,) and (y,) converge to x and y, respectively.
Verify the conclusion of Exercise 4 if d_ is replaced by d,.

Let S be a nonempty set and let d be the discrete metric deﬁnéd in 11.4.2(f). Show that in the
metric space (S, d), a sequence (x,) in S converges to x if and only if there is a K € N such that
x, =xforalln > K.

Show that if d is the discrete metric on a set S, then every subset of S is both open and closed
in (S, d).

Let P := (x, y) and O := (0, 0) in R?. Draw the following sets in the plane:
@ {(PeR’:d(0,P)<1},

(b) {PeR*:d_(0,P)<1}.

Prove that in any metric space, an -neighborhood of a pointis an open set.
Prove Theorem 11.4.11.

Prove Theorem 11.4.12.

If (S, d) is a metric space, a subset A C § is said to be bounded if there exists x, € S and a
number B > 0 such that A C {x € S: d(x, x;) < B}. Show that if A is a compact subset of S,
then A is closed and bounded.



APPENDIX A

LOGIC AND PROOFS

Natural science is concerned with collecting facts and organizing these facts into a coherent
body of knowledge so that one can understand nature. Originally much of science was
concerned with observation, the collection of information, and its classification. This clas-
sification gradually led to the formation of various “theories” that helped the investigators
to remember the individual facts and to be able to explain and sometimes predict natural
phenomena. The ultimate aim of most scientists is to be able to organize their science into
a coherent collection of general principles and theories so that these principles will enable
them both to understand nature and to make predictions of the outcome of future experi-
ments. Thus they want to be able to develop a system of general principles (or axioms) for
their science that will enable them to deduce the individual facts and consequences from
these general laws.

Mathematics is different from the other sciences: by its very nature, it is a deductive
science. That is not to say that mathematicians do not collect facts and make observations
conceming their investigations. In fact, many mathematicians spend a large amount of time
performing calculations of special instances of the phenomena they are studying in the
hopes that they will discover “unifying principles”. (The great Gauss did a vast amount of
calculation and studied much numerical data before he was able to formulate a conjecture
concerning the distribution of prime numbers.) However, even after these principles and
conjectures are formulated, the work is far from over, for mathematicians are not satisfied
until conjectures have been derived (i.e., proved) from the axioms of mathematics, from the
definitions of the terms, and from results (or theorems) that have previously been proved.
Thus, a mathematical statement is not a theorem until it has been carefully derived from
axioms, definitions, and previously proved theorems.

A few words about the axioms (i.e., postulates, assumptions, etc.) of mathematics are
in order. There are a few axioms that apply to all of mathematics—the “axioms of set
theory”—and there are specific axioms within different areas of mathematics. Sometimes
these axioms are stated formally, and sometimes they are built into definitions. For example,
we list properties in Chapter 2 that we assume the real number system possesses; they are
really a set of axioms. As another example, the definition of a “group” in abstract algebra
is basically a set of axioms that we assume a set of elements to possess, and the study of
group theory is an investigation of the consequences of these axioms.

Students studying real analysis for the first time usually do not have much experience
in understanding (not to mention constructing) proofs. In fact, one of the main purposes
of this course (and this book) is to help the reader gain experience in the type of critical
thought that is used in this deductive process. The purpose of this appendix is to help the
reader gain insight about the techniques of proof.

Statements and Their Combinations

All mathematical proofs and arguments are based on statements, which are declarative
sentences or meaningful strings of symbols that can be classified as being true or false. It is

334
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not necessary that we know whether a given statement is actually true or false, but it must
be one or the other, and it cannot be both. (This is the Principle of the Excluded Middle.)
For example, the sentence “Chickens are pretty” is a matter of opinion and not a statement
in the sense of logic. Consider the following sentences:

+ It rained in Kuala Lumpur on June 2, 1988.

» Thomas Jefferson was shorter than John Adams.
« There are infinitely many twin primes.

+ This sentence is false.

The first three are statements: the firstis true, the second is false, and the third is either true
or false, but we are not sure which at this time. The fourth sentence is not a statement; it
can be neither true nor false since it leads to contradictory conclusions.

Some statements (such as “1 4+ 1 = 2”) are always true; they are called tautologies.
Some statements (such as “2 = 3”) are always false; they are called contradictions or
falsities. Some statements (such as “x“ = 1”) are sometimes true and sometimes false
(e.g., true when x = 1 and false when x = 3). Or course, for the statement to be completely
clear, it is necessary that the proper context has been established and the meaning of the
symbols has been properly defined (e.g., we need to know that we are referring to integer
arithmetic in the preceding examples).

Two statements P and Q are said to be logically equivalent if P is true exactly when
Q istrue (and hence P is false exactly when Q is false). In this case we often write P = Q.
For example, we write

(x is Abraham Lincoln) = (x is the 16th president of the United States).

There are several different ways of forming new statements from given ones by using
logical connectives.
If P is a statement, then its negation is the statement denoted by

not P

which is true when P is false, and is false when P is true. (A common notation for the
negation of P is —P.) A little thought shows that

P = not(not P).

This is the Principle of Double Negation.
If P and Q are statements, then their conjunction is the statement denoted by

P and Q0

which is true when both P and Q are true, and is false otherwise. (A standard notation for
the conjunction of P and Q is P A Q.) It is evident that

(P and Q) = (Q and P).
Similarly, the disjunction of P and Q is the statement denoted by
PorQ

which is true when at least one of P and Q is true, and false only when they are both false.
In legal documents “or” is often denoted by “and/or” to make it clear that this disjunction
is also true when both P and Q are true. (A standard notation for the disjunction of P and
Qis P v Q.) Itis also evident that

(Por Q)= (QorP).
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To contrast disjunctive and conjunctive statements, note that the statement “2 < +/2 and
V2 < 3”is false, but the statement “2 < +/2 or +/2 < 3” is true (since +/2 is approximately
equal to 1.4142. . ).

Some thought shows that negation, conjunction, and disjunction are related by DeMor-
gan’s Laws:

not (P and Q) = (not P) or (not Q),
not (P or Q) = (not P) and (not Q).

The first of these equivalencies can be illustrated by considering the statements
P:x=2, Q:yeA.

The statement (P and Q) is true when both (x = 2) and (y € A) are true, and it is false
when at least one of (x = 2) and (y € A) is false; that is, the statement not(P and Q) is
true when at least one of the statements (x 7 2) and (y ¢ A) holds.

Implications

A very important way of forming a new statement from given ones is the implication (or
conditional) statement, denoted by

P = Q) @if P then Q), or (P implies Q).

Here P is called the hypothesis, and Q is called the conclusion of the implication. To help
understand the truth values of the implication, consider the statement

If I win the lottery today, then I’ll buy Sam a car.

Clearly this statement is false if I win the lottery and don’t buy Sam a car. What if I don’t
win the lottery today? Under this circumstance, I haven’t made any promise about buying
anyone a car, and since the condition of winning the lottery did not materialize, my failing
to buy Sam a car should not be considered as breaking a promise. Thus the implication is
regarded as true when the hypothesis is not satisfied.

In mathematical arguments, we are very much interested in implications when the
hypothesis is true, but not much interested in them when the hypothesis is false. The
accepted procedure is to take the statement P.= Q to be false only when P is true and Q
is false; in all other cases the statement P = Q is true. (Consequently, if P is false, then
we agree to take the statement P = Q to be true whether or not Q is true or false. That
may seem strange to the reader, but it turns out to be convenient in practice and consistent
with the other rules of logic.)

We observe that the definition of P = Q is logically equivalent to

not (P and (not Q)),

because this statement is false only when P is true and Q is false, and itis true in all other
cases. It also follows from the first DeMorgan Law and the Principle of Double Negation
that P = Q is logically equivalent to the statement

(not P) or Q,

since this statement is true unless both (not P) and Q are false; that is, unless P is true and
Q is false.
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Contrapositive and Converse

As an exercise, the reader should show that the implication P = Q is logically equivalent
to the implication

(not Q) = (not P),

which is called the contrapesitive of the implication P = Q. For example, if P = Q is
the implication

If I am in Chicago, then I am in Illinois,
then the contrapositive (not Q) = (not P) is the implication
If I am not in Illinois, then I am not in Chicago.

The equivalence of these two statements is apparent after a bit of thought. In attempting
to establish an implication, it is sometimes easier to establish the contrapositive, which is
logically equivalent to it. (This will be discussed in more detail later.)

If an implication P = Q is given, then one can also form the statement

O0=P

which is called the converse of P = Q. The reader must guard against confusing the
converse of an implication with its contrapositive, since they are quite different statements.
While the conwrapositive is logically equivalent to the given implication, the converse is
not. For example, the converse of the statement

If I am in Chicago, then I am in Illinois,
is the statement
If I am in Illinois, then I am in Chicago.

Since it is possible to be in Illinois but not in Chicago, these two statements are evidently
not logically equivalent.

There is one final way of forming statements that we will mention. It is the double
implication (or the biconditional) statement, which is denoted by

P= 0 or P if and only if Q,
and which is defined by
(P = Q)and (Q = P).

It is a straightforward exercise to show that P <= Q is true precisely when P and Q are
both true, or both false.

Context and Quantifiers

In any form of communication, it is important that the individuals have an appropriate
context in mind. Statements such as “I saw Mary today” may not be particularly informative
if the hearer knows several persons named Mary. Similarly, if one goes into the middle of
a’mathematical lecture and sees the equation x% =1 on the blackboard, it is useful for the
viewer to know what the writer means by the letter x and the symbol 1. Is x an integer? A
function? A matrix? A subgroup of a given group? Does 1 denote a natural number? The
identity function? The identity matrix? The trivial subgroup of a group?

Often the context is well understood by the conversants, but it is always a good idea to
establish it at the start of a discussion. For example, many mathematical statements involve
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one or more variables whose values usually affect the truth or the falsity of the statement,
so we should always make clear what the possible values of the variables are.
Very often mathematical statements involve expressions such as “for all”, “for every”,

¢ 99 ¢,

“for some”, “there exists”, “there are”, and so on. For example, we may have the statements
For any integer x, x* = 1
and
There exists an integer x such that x> = 1.

Clearly the first statement is false, as is seen by taking x = 3; however, the second statement
is true since we can take either x = 1 or x = —1.

If the context has been established that we are talking about integers, then the above
statements can safely be abbreviated as

For any x, x2 =1
and
There exists an x such that x2 = 1.

The first statement involves the universal quantifier “for every”, and is making a statement
(here false) about all integers. The second statement involves the existential quantifier
“there exists”, and is making a statement (here true) about at least one integer.

These two quantifiers occur so often that mathematicians often use the symbol V to
stand for the universal quantifier, and the symbol 3 to stand for the existential quantifier.
That is,

V denotes “for every”,
3 denotes “there exists”.

While we do not use these symbols in this book, it is important for the reader to know how
to read formulas in which they appear. For example, the statement

@ (Vx)3y)(x+y=0)
(understood for integers) can be read
For every integer x, there exists
aninteger y such that x + y = 0.
Similarly the statement
(i1) @Ay (¥x)(x +y=0)
can be read
There exists an integer y, such that
for every integer x, thenx + y = 0.

These two statements are very different; for example, the first one is true and the second one
is false. The moral is that the order of the appearance of the two different types of quantifiers
is very important. It must also be stressed that if several variables appear in a mathematical
expression with quantifiers, the values of the later variables should be assumed to depend on
all of the values of the variables that are mentioned earlier. Thus in the (true) statement (i)
above, the value of y depends on that of x; here if x = 2, then y = —2, while if x = 3, then
y=-3.
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It is important that the reader understand how to negate a statement that involves
quantifiers. In principle, the method is simple.

(a) To show that it is false that every element x in some set possesses a certain property
P, it is enough to produce a single counter-example (that is, a particular element in
the set that does not possess this property); and

(b) Toshow thatit is false thatthere exists an element y in some set that satisfies a certain
property P, we need to show that every element y in the set fails to have that property.

Therefore, in the process of forming a negation,
not (Vx)P becomes (3x)notP

and similarly
not (3y)P becomes (Vy)notP.

When several quantifiers are involved, these changes are repeatedly used. Thus the negation
of the (true) statement (i) given previously becomes in succession

not (Vx) 3y) (x +y =0),
@x)not @y) (x +y =0),
(3x) (¥y) not (x +y = 0),
Ax)(Vy) (x +y #0).

The last statement can be rendered in words as:

There exists an integer x, such that
for every integer y, thenx + y # 0.

(This statement is, of course, false.)

Similarly, the negation of the (false) statement (ii) given previously becomes in suc-
cession

not Ay) (Vx) (x +y = 0),
(Vy) not (Vx) (x +y =0),
(Vy)(3x)not (x + y =0),
(Vy)@x) (x +y #0).

The last statement is rendered in words as

For every integer y, there exists
an integer x suchthatx + y # 0.

Note that this statement is true, and that the value (or values) of x that make x +y # 0
depends on y, in general.
Similarly, the statement

For every § > 0, the interval (-4, §)
contains a point belonging to the set A,

can be seen to have the negation

There exists § > 0 such that the interval
(=34, 8) does not contain any point in A.
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The first statement can be symbolized
(V6 >0)3ye A)(ye (=449,
and its negation can be symbolized by
386>0)(Vye A)(y ¢ (=4,8)
or by
36 >0)(AN(-4,98) =0).

It is the strong opinion of the authors that, while the use of this type of symbolism
is often convenient, it is not a substitute for thought. Indeed, the readers should ordinarily
reason for themselves what the negation of a statement is and not rely slavishly on symbol-
ism. While good notation and symbolism can often be a useful aid to thought, it can never
be an adequate replacement for thought and understanding.

Direct Proofs

Let P and Q be statements. The assertion that the hypothesis P of the implication P = Q
implies the conclusion Q (or that P = Q is a theorem) is the assertion that whenever the
hypothesis P is true, then Q is true.

The conswruction of a direct proof of P = Q involves the cons#ruction of a swring of
statements R, R,, -+, R, such that

P=R,, R =R, -, R =0

(The Law of the Syllogism states that if R, = R, and R, = R, are true, then R, = R,
is true.) This construction is usually not an easy task; it may take insight, intuition, and
considerable effort. Often it also requires experience and luck.

In constructing a direct proof, one often works forward from P and backward from Q.
We are interested in logical consequences of P; that is, statements O Qk such that
P = ;. And we might also examine statements P, ..., P, such that P, = Q. If we
can work forward from P and backward from Q so the string “connects” somewhere in
the middle, then we have a proof. Often in the process of trying to establish P = QO one
finds that one must strengthen the hypothesis (i.e., add assumptions to P) or weaken the
conclusion (that is, replace Q by a nonequivalent consequence of Q).

Most students are familiar with “direct” proofs of the type described above, but we
will give one elementary example here. Let us prove the following theorem.

Theorem 1 The square of an odd integer is also an odd integer.

If we let n stand for an integer, then the hypothesis is:
P : nisanodd integer.
The conclusion of the theorem is:
Q : n? is an odd integer.
We need the definition of odd integer, so we introduce the statement

R, : n =2k — 1 for some integer k.
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Then we have P = R,. We want to deduce the statement n* = 2m — 1 for some integer
m, since this would imply Q. We can obtain this statement by using algebra:

Ry:n®= (k-1 =4k> — 4k + 1,
Ry :n* = (4k* — 4k +2) — 1,
R :n* =202k —2k+1)-1.

If weletm = 2k* — 2k + 1, then m is an integer (why?), and we have deduced the statement
Ry:n*=2m-1.

Thus we have P = R, = R, = R; = R, = Ry = Q, and the theorem is proved.

Of course, this is a clumsy way to present a proof. Normally, the formal logic is
suppressed and the argument is given in a more conversational style with complete English
sentences. We can rewrite the preceding proof as follows.

Proof of Theorem 1. 1f n is an odd integer, then n = 2k — 1 for some integer k. Then
the square of n is given by n? = 4k? — 4k +1 = 2(2k* =2k +1) — 1. If we let m =
2k? — 2k + 1, then m is an integer (why?) and n? = 2m — 1. Therefore, n? is an odd
integer. QE.D.

At this stage, we see that we may want to make a preliminary argument to prove that
2k? — 2k + 1 is an integer whenever k is an integer. In this case, we could state and prove
this fact as a Lemma, which is ordinarily a preliminary result that is needed to prove a
theorem, but has little interest by itself.

Incidentally, the letters Q.E.D. stand for quod erat demonstrandum, which is Latin for
“which was to be demonstrated”.

Indirect Proofs

There are basically two types of indirect proofs: (i) contrapositive proofs, and (ii) proofs by
contradiction. Both types start with the assumption that the conclusion Q is false, in other
words, that the statement “not Q” is true.

(i) Contrapositive proofs. Instead of proving P = Q, we may prove its logically equiv-
alent contrapositive: not 0 = not P.

Consider the following theorem.

Theorem 2 Ifn is an integer and n” is even, then n is even.

The negation of “Q : n is even” is the statement “not Q : n is odd”. The hypothesis
“P : n? is even” has a similar negation, so that the contrapositive is the implication: If n is
odd, then n? is odd. But this s exactly Theorem 1, which was proved above. Therefore this
provides a proof of Theorem 2.
. The conwapositive proof is often convenient when the universal quantifier is involved,
for the contrapositive form will then involve the existential quantifier. The following theo-
rem is an example of this situation.

Theorem 3 Let a > 0 be a real number. If, for every ¢ > 0, we have 0 < a < &, then
a=0.
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Proof. If a = 0is false, then since a > 0, we must have a > 0. In this case, if we choose
gy = % a, then we have ¢, > 0 and ¢, < a, so that the hypothesis 0 < a < ¢ forall¢ > 0
is false. QE.D.

Here is one more example of a contrapositive proof.

Theorem 4 If m, n are natural numbers such that m + n > 20, then either m > 10 or
n > 10.

Proof. If the conclusion is false, then we have both m < 10 and n < 10. (Recall De-
Morgan’s Law.) Then addition gives us m +n < 10+ 10 = 20, so that the hypothesis is
false. QE.D.

(ii) Proof by contradiction. This method of proof employs the fact that if C is a contra-
diction (i.e., a statement that is always false, such as “1 = 0”), then the two statements

(P and (not Q0)) = C, P=Q

are logically equivalent. Thus we establish P = Q by showing that the statement
(P and (not Q)) implies a contradiction.

Theorem S Leta > 0 be areal number. Ifa > 0, thenl/a > 0.

Proof. Wesupposethatthe statementa > Qis true and that the statement 1/a > 0is false.
Therefore, 1/a < 0. But since a > 0 is true, it follows from the order properties of R that
a(l/a) < 0. Since 1 = a(1/a), we deduce that 1 < 0. However, this conclusion contradicts
the known result that 1 > 0. QED.

There are several classic proofs by conwradiction (also known as reductio ad absurdum)
in the mathematical literature. One is the proof that there is no rational number r that
satisfies 7> = 2. (This is Theorem 2.1.4 in the text.) Another is the proof of the infinitude
of primes, found in Euclid’s Elements. Recall that a natural number p is prime if its only
integer divisors are 1 and p itself. We will assume the basic results that each prime number
is greater than 1 and each natural number greater than 1 is either prime or divisible by a
prime.

Theorem 6 (Euclid’s Elements, Book IX, Proposition 20.) There are infinitely many
prime numbers.

Proof. If we suppose by way of contradiction that there are finitely many prime numbers,
then we may assume that § = {p,,---, p,} is the set of all prime numbers. We let m =
P, " P, the product of all-the-primes, and we let ¢ = m + 1. Since ¢ > p, forall i, we
see that ¢ is not in S, and therefore g is not prime. Then there exists a prime p that is a
divisor of g. Since p is prime, then p = p for some j, sothat p is a divisor of m. But if p
divides both m and g = m + 1, then p divides the difference ¢ — m = 1. However, this is
impossible, so we have obtained a contradiction. Q.E.D.
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FINITE AND COUNTABLE SETS

We will establish the results that were stated in Section 1.3 without proof. The reader should
refer to that section for the definitions.

The firstresult is sometimes called the “Pigeonhole Principle”. It may be interpreted as
saying that if m pigeons are put into n pigeonholes and if m > n, then at least two pigeons
must share one of the pigeonholes. This is a frequently-used result in combinatorial analysis.
It yields many useful consequences. )

B.1 Theorem Letm,n € N withm > n. Then there does not exist an injection fromN,,
intoN,. -

Proof. We will prove this by induction on 7.

If n =1andif gisany map of N (m > 1) into N, thenitisclear that g(1) = --- =
g(m) = 1, so that g is not injective.

Assume that k > 1 is such that if m > k, there is no injection from Nm into N,. We
will show that if m > k + 1, there is no function h : N, — Nk +1 that is an injection.

Case1: Iftherange h(N,) € N, C N, ,, then the induction hypothesis implies that 4 is

not an injection of Nm intoN «» and therefore into N 1

Case 2: Suppose that h(N, ) is not contained in N,. If more than one element in N,

is mapped into k + 1, then 4 is not an injection. Therefore, we may assume that a single
p €N, is mappedintok + 1 by h. We now define s, : N, | — N, by

_[h@@) ifg=1,---,p—1,
M@ '_{h(q+1) ifg=p,---,m—1

Since the induction hypothesis implies that /4, is not an injection into N, it is easily seen
that 4 is not an injection into N, _ ;. QED.

We now show that a finite set determines a unique number in N.

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a
unique number in N.

Proof. If the set S has m elements, there exists a bijection f, of N, onto S. If § also
has n elements, there exists a bijection f, of N, onto S. If m > n, then (by Exercise 19
of Section 1.1) f2‘1 o f, is a bijection of N, onto N, which conwradicts Theorem B.1.
If n > m, then fl‘l o f, is a bijection of N, onto N, , which contradicts Theorem B.1.
Therefore we have m = n. Q.E.D.

B.2 Theorem Ifn € N, there does not exist an injection from N into N,,.

Proof. Assumethat f : N — N, is an injection, and let m := n + 1. Then the restriction
of fto N, C Nis also in injection into N, . But this contradicts Theorem B.1. QED.

343
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1.3.3 Theorem The set N of natural numbers is an infinite set.

Proof. If N is a finite set, there exists some n € N and a bijection f of N, onto N. In this
case the inverse function 7~ is a bijection (and hence an injection) of N onto N,,. But this
contradicts Theorem B.2. QED.

We will next establish Theorem 1.3.8 by defining a bijection of N x N onto N. We
will obtain an explicit formula for the counting procedure of N x N that is displayed in
Figure 1.3.1; the reader should refer to that figure during the ensuing discussion. The set
N x N is viewed as a collection of diagonals; the first diagonal has 1 point, the second
has 2 points, - - -, and the kth diagonal has k points. In view of Example 1.2.4(a), the total
number of points in diagonals 1 through k is therefore given by

vk)y:=1+2+4+---+k= %k(k+l).
The fact that v is strictly increasing follows from Mathematical Induction and
@) yk+1D)=vk) +K*k+1) for keN.

The point (m, n) in N x N lies in the kth diagonal when k = m + n — 1, and it is the
mth point in that diagonal as we move downward from left to right. (For example, the point
(3,2) lies in the 4th diagonal (since 3 +2 — 1 = 4) and is the 3rd point in that diagonal.)
Therefore, in the counting scheme shown in Figure 1.3.1, we count the point (i, n) by first
counting the points in the first k — 1 = m 4 n — 2 diagonals and then adding m. According
to this analysis, our counting function 2 : N x N — N is given by

?2) h(m,n) =ym+n—-2)+m for (m,n) € NxN.

(For example, the point (3, 2) is counted asnumber 2(3,2) = ¢y (5 —-2)+3=v(3)+3 =
6+ 3 =9, as in Figure 1.3.1. Also, the point (17, 25) is counted as number A (17, 25) =
¥ (40) + 17 = 837.) While this geometric argument has been suggestive and has led to the
counting formula (2), we must now prove that 4 is in fact a bijection of N x N onto N.

1.3.8 Theorem The setN x N is denumerable.

Proof. We will show that the function 4 defined in (2) is a bijection.

(a) We first show that h is injective. If (m, n) # (m’, n’), then either (i) m + n #
m +n,or@)m+n=m+n andm #m’.

In case (i), we may suppose m + n < m’ + n’. Then, using formula (1), the fact that y
is increasing, and m’ > 0, we have

hm,n) =¥ (m+n—-2)+m <y(m+n-2)+(m+n-1)
=y¥(m+n—-1)<¢Y@m +n' —2)
<Y +n" =2)+m =h@m', n).
In case (ii), if m + n =m’ +n’ and m # m’, then
hm,n) —m=v(m+n—-2)=y¥m' +n —2)=h(m',n") —m’,

whence h(m, n) # h(m’, n’).

(b) Next we show that A is surjective.

Clearly h(1,1) = 1. If p € Nwith p > 2, we will find a pair (m , n,) € N x Nwith
h(mp,np) = p. Since p < ¥ (p), then the set Ep = {k € N: p < ¢(k)} is nonempty.
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Using the Well-Ordering Property 1.2.1, we let kp > 1 be the least element in E,. (This
means that p lies in the kpth diagonal.) Since p > 2, it follows from equation (1) that

Yk, =1 < p=yik,) =¥k, —D+k,

Let m :=p~1{/(kp—l) sothat 1 <m gkp,andletnp :=kp-mp+l so that 1 <

n, <k, and m, +np — 1 =k,. Therefore,

h(mp, np) = w(mp +n,— 2) +m,= d/(kp -1 +mp =p.
Thus 4 is a bijection and N x Nis denumerable. .- - QED.

The next result is crucial in proving Theorems 1.3.9 and 1.3.10.

B.3 Theorem If A C N and A is infinite, there exists a function ¢ : N — A such that
¢+ 1) > ¢(n) > nforalln € N. Moreover, g is a bijection of N onto A.

Proof. Since A is infinite, it is not empty. We will use the Well-Ordering Property 1.2.1
of N to give a recursive definition of ¢.

Since A # @, there is a least element of A, which we define to be ¢(1); therefore,
(1) > 1.

Since A is infinite, the set A, := A\{¢(1)}is not empty, and we define ¢(2) to be least
element of A,. Therefore ¢(2) > ¢(1) > 1, so that ¢(2) > 2.

Suppose that ¢ has been defined to satisfy o(n + 1) > ¢(n) > nforn=1,---,k—1,
whence (k) > @(k — 1) > k — 1 so that p(k) > k. Since the set A is infinite, the set

A, = A\fp(D), -, p(k)}

is not empty and we define ¢ (k + 1) to be the least element in A, . Therefore p(k + 1) >
@(k), and since (k) > k, we also have ¢(k + 1) > k + 1. Therefore, ¢ is defined on all
of N.

We claim that ¢ is an injection. If m > n, then m = n +r for some r € N. If
r = 1, then p(m) = ¢(n + 1) > p(n). Suppose that p(n + k) > @(n); we will show that
¢+ (k+ 1)) > ¢(n). Indeed, this follows from the fact that p(n + (k + 1)) = p((n +
kY+ 1) > ¢(n+k) > ¢(n). Since p(m) > ¢(n) whenever m > n, it follows that ¢ is an
injection.

We claim that g is a surjection of N onto A. If not, the set A := A\@(N) is not empty,
and we let p be the least element in A. We claim that p belongs to the set {p (1), - - -, (p)}.
Indeed, if this is not true, then

peA\{p(), -, 0P} =A4A,,

so that ¢(p + 1), being the least element in Ap, must satisfy ¢(p + 1) < p. But this

contradicts the fact that ¢(p + 1) > @(p) > p. Therefore A is empty and ¢ is a surjection
onto A. QED.

B.4 Theorem IfA C N, then A is countable.

Proof. If Ais finite, thenit is countable, so it suffices to consider the case that A is infinite.
In this case, Theorem B.3 implies that there exists a bijection ¢ of N onto A, so that A is
denumerable and, therefore, countable. Q.E.D.
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1.3.9 Theorem Suppose thatS and T are sets and that T C S.

(@) If S is acountable set, then T is a countable set.
(b) IfT is an uncountable set, then S is an uncountable set.

Proof. (a) If S is a finite set, it follows from Theorem 1.3.5(a) that T is finite, and
therefore countable. If S is denumerable, then there exists a bijection ¢ of S onto N. Since
¥ (S) € N, Theorem B.4 implies that ¢ (S) is countable. Since the restriction of ¢ to T is
a bijection onto ¥ (T') and ¥ (T) C N is countable, it follows that T is also countable.

(b) This assertion is the contrapositive of the assertion in (a). QE.D.
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THE RIEMANN AND
LEBESGUE CRITERIA

We will give here proof's of the Riemann and Lebesgue Criteria for a function to be Riemann
integrable. First we will give the Riemann Criterion, which is interesting in itself, and also
leads to the more incisive Lebesgue Criterion.

C.1 Riemann Integrability Criterion Let f : [a, b] — R be bounded. Then the follow-
ing assertions are equivalent:

(@ f e Rla,b) o

(b) Foreverye > 0 thereexists a partition P, such that if P,, P, are any tagged partitions
having the same subintervals as 'Ps, then

(1) IS(fP) — S(f; Pl <.

(¢) For every € > 0 there exists a partition P, = {, Yo = {[x;_, x. 1}/, such that if
m; = inf{f(x) : x € I,} and M; := sup{f(x) : x € I} then

2) Z (M; —m)(x; —x;_,) < 2e.
i=1

Proof. (a) = (b) Given ¢ > 0, let n, > 0 be as in the Cauchy Criterion 7.2.1, and let
. be any partition with ||P,|| < n,. Then if ’Pl, 'P2 are any tagged partitions with the same
subintervals as P, then ||'I'31 Il <n,and||R| < n, and so (1) holds.

(b) = (c) Givene > 0,let P, = {I,};_, be a partition as in (b) and let m, and M, be
as in the statement of (c). Since m; is an infimum and M, is a supremum, there exist points
u; and v, in /; with

£ £
. . d M - ),
fud <mtog—a M Mgy </
so that we have
M, —m, < fo) — flu) + — for i=1,---,n.
1 1 1 i (b—a)

If we multiply these inequalities by (x, — x;_,) and sum, we obtain
n n
DM =m0 = x,_) < Y (fO) = Fu)x —x,_) +e.
i=1 i=1
We let Ql :={(,,u,)}_, and Q2 = {(I;, v,)}{_;, so that these tagged pa_rtitions have the
same subintervals as P, does. Also, the sum on the right side equals S(f; Q,) — S(f; Q,).

Hence it follows from (1) that inequality (2) holds.

347
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(©) = (a) Define the step functions a, and w, on [a, b] by
a,(x) :=m, and o, (x) := M, for x e (x,_;,x)

and a,(x;) := f(x;) = o, (x;) for i =0, 1,---,n; then o, (x) < f(x) < w,(x) for x €
[a, b]. Since c, and w, are step functions, they are Riemann integrable and

b n b n
/ o, = Z m,(x; —x;_,) and / w, = Z M (x; —x;_p).
a i=1 a4 i=1

Therefore it follows that

b n
/ (@, — o) =Y (M; —m)(x, = x,_)).
a i=1

If we apply (2), we have that

b
/ (0, —a,) <2e.

Since ¢ > 0 is arbitrary, the Squeeze Theorem implies that f € R[a, b]. QED.

We have already seen that every continuous function on [a, b] is Riemann integrable.
We also saw in Example 7.1.6 that Thomae’s function is Riemann integrable. Since
Thomae’s function has a countable set of points of discontinuity, it is evident that con-
tinuity is not a necessary condition for Riemann integrability. Indeed, it is reasonable to
ask “how discontinuous” a function may be, yet still be Riemann integrable. The Riemann
Criterion throws some light on that question in showing that sums of the form (2) must be
arbiwrarily small. Since the terms (M; —m )(x; — x;_,) in this sum are all > 0, it follows
that each of these terms must be small. Such a term will be small if (i) the difference
M, —m, is small (which will be the case if the function is continuous on the interval
[x;_y» x;]), or if (ii) an interval where the difference M; — m; is not small has small length.

The Lebesgue Criterion, which we will discuss next, makes these ideas more precise.
But first it is convenient to have the notion of the oscillation of a function.

C.2 Definition Let f: A — R be a bounded function. If S C A C R, we define the
oscillation of f on S to be

3) W(f;8) = sup{lf(x) = fOI:x yeS}
Itis easily seen that we can also write

W(f;S) =sup{f(x) — f(y):x,y €S}
=sup{f(x):x € S} —inf{ f(x) : x € §}.

Itis also trivial thatif S C T C A, then
0<W(f;8) <W(f;T) <2-sup{|f(x)| : x € A}.
If r > 0, we recall that the r-neighborhood of ¢ € A is the set

Ve ={xeA:|x—c|l<r}

C.3 Definition If c € A, we define the oscillation of f at ¢ by
4 w(f;c) =inf{W(f;V.(c)):r>0}= _lirél+ W(f; V.(c)).
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Since r = W(f; V.(c)) is an increasing function forr > 0, this right-hand limit exists and
equals the indicated infimum.

C4 Lemma Iff:A — Risbounded and c € A, then f is continuous at c if and only
if the oscillation w(f; ¢) = 0.

Proof. (=) If fiscontinuous at c, given ¢ > 0 there exists § > O suchthatifx € V (c),
then | f (x) — f(c)| < /2. Therefore, if x, y € V (c),wehave|f(x) — f(y)l'< &, whence
0 < w(f;c) < W(f;V.(c)) < e.Since ¢ > 0 is arbitrary, this implies that w(f; c) = 0.
(<) If w(f;c) =0 and ¢ > 0, there exists s > 0 with W(f; Vs(c)). < ¢. Thus, if
|[x — ¢l <sthen|f(x) — f(c)| < & and f is continuous at c. : QE.D.

We will now give the details of the proof of the Lebesgue Integrability Criterion. First
we recall the statement of the theorem.

Lebesgue’s Integrability Criterion A bounded function f : [a, b] — R is Riemann
integrable if and only if it is continuous almost everywhere on [a, b].

Proof. (=) Lete > 0begivenand, foreachk € N, let H :={x€lab]:w(f;x)>
1/2%}. We will show that H , is contained in the union of a finite number of intervals having
total length < &/2*.

By the Riemann Criterion, there is a partition P, = {xk,, x{‘]}l'.’ikl) such that if m}
(respectively, M, !‘) is the infimum (resp., supremum) of f on the interval [x{‘_l s xf], then

n(k)
Z(Mf —mb)(xk — xk)) < e/4".

i=1

IfxeH N (x¥_,, x¥), there exists 7 > 0 such that V.ix) c (x¥_,, x¥), whence

1728 < w(f;x) < W(f; V.(x)) < Mf —mf.
If we denote a summation over those i with H, N (xf_;, x¥) # @by Y, then

n(k)

(1729 3Gk = xf ) <) (MF - mby(ck - xE ) < e/4%,
i=1

whence it follows that
Yk —xk ) < ek,

Since H, differs from the union of sets H, N (x¥ —x¥ |) by at most a finite number of
the partition points, we conclude that H, is contained in the union of a finite number of
intervals with total length < £/2%,

Finally, since D := {x € [a, b] : w(f; x) > 0} = UIC:O=1 H,, it follows that the set D
of points of discontinuity of f € R[a, b] is a null set.

(&) Let|f(x)] < M for x € [a, b] and suppose that the set D of points of discon-
tinuity of f is a null set. Then, given £ > 0 there exists a countable set {J, };—; of open
intervals with D C U,fil J, and Z,f‘;l I(J,) < &/2M. Following R. A. Gordon, we will
define a gauge on [a, b] that will be useful.
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(i) Ift ¢ D, then f is continuous at ¢ and there exists §(¢) > O such that if x € Va(,)(t)
then | f(x) — f(t)| < &/2, whence

0<M,—m, =sup{f(x):xe€ Va(,)(t)} —inf{f(x) :x € Va(,)(t)} <e.

(ii) Ifr € D, we choose §(¢) > 0 such that V; (:)(t) C J, for some k. For these values of
t,wehave 0 < M, —m, <2M.

Thus we have defined a gauge é on [a, b]. If P = {([x;_y» x;). 1)}_y is a 8-fine
partition of [a, b], we divide the indices i into two disjoint sets

S.:={i:t, ¢ D} and §;=1{i:t, € D}.

If P is 6- fine, we have [x;_;,x,] € 8(,)(t) whence it follows that M, —m, <M, —
m, . Consequently, if i € S_ then M, — rr'z < ¢ whileif i € S, we have M; —m; < 2M

However, the collection of mtervals [x _p»X;]withi e S, are contamed in the union of the
intervals {J, } whose total length is < e/2M Therefore

DM —m)x —x;_)
i=1
= Z (M; —m)(x; —x;_)) + Z (M; —m)(x; —x;_,)

ieSC €S,
=D el =X )+ ) 2Mxy = x; )
ieS, ieS,

<eb—-a)+2M . (e/2M) <e(b—a+1).

Since ¢ > 0is arbitrary, we conclude that f € R[a, b]. QED.
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APPROXIMATE INTEGRATION

We will supply here the proofs of Theorems 7.4.3, 7.4.6 and 7.4.8. We will not repeat the
statement of these results, and we will use the notations introduced in Section 7.4 and refer
to numbered equations there. It will be seen that some important results from Chapters 5
and 6 are used in these proofs.

Proof of Theorem7.4.3. Ifk=1,2,---,n,leta, :=a+ (k—1handlety, : [0, h] -
R be defined by

a, +t
0,(0) == Y1 [F(a) + fla, + 1] - f “ rwdx

k

for ¢ € [0, h]. Note that ¢, (0) = 0 and that (by Theorem 7.3.6)
o) =35[f@)+ fa+0]+Ltf'@ +1)— f@a +1)

=3i[f@) - f@ +n]+L1if@ + 1.

Consequently ¢,(0) = 0 and
o ==3f@+0)+3f@a+D+3tf'(a+1)
= % tf”(ak + I)-
Now let A, B be defined by
A = inf{f"(x) : x € [a, b}, B :=sup{f"(x) : x € [a, b]}

so that we have %At <@/(t) < %Bt fort € [0,h],k = 1,2, -, n. Integrating and apply-
ing Theorem 7.3.1, we obtain (since ¢,(0) = 0) that ‘%At2 <)< ‘%Btz for t € [0, k],
k=1,2,--.,n. Integrating again and taking ¢ = h, we obtain (since ¢, (0) = 0) that

AR < ¢ (h) < {;BK

fork=1,2, -, n If we add these inequalities and note that
n b
> o =1, - [ feax
k=1 a

lvlve conclude that éAh3n <T.(f)- fab fx)dx < ﬁBh3n. Since h = (b — a)/n, we
ave

b

SAb—a)h* < T,(f) — / f(x)dx < 5Bb — a)h?.
Since f” is continuous on [a, b), it follows from the definitions of A and B and Bolzano’s
Intermediate Value Theorem 5.3.7 that there exists a point ¢ in [a, b] such thatequation (4)

in Section 7.4 holds. Q.E.D.
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ProofofTheorem7.46. 1Ifk =1,2,.--,n,letc, :=a+ (k- %)h,and v, - [0, %h] —-R
be defined by

Cc,+t
ww = [ feax - s

it

fort € [0, 1h]. Note that v, (0) = 0 and that since

c,+t c—t
V(0 :=/“ f(x)dx—fk F@ydx — fle2r,

k k
we have
V/li(t) = f(ck +10 - f(ck —1)(-1) - 2f(ck)
= [flg+D + fle, = D] =2 ().
Consequently ¥ (0) = 0 and
W@ = fle+ 0+ flg—n(=1)
= flley +1)— f(c, — ).
By the Mean Value Theorem 6.2.4, there exists a point c, , with |c, —¢, | <t such that

Y (1) = 2tf”(ck,,). If we let A and B be as in the proof of Theorem 7.4.3, we have
2tA < ¢/(t) < 2tBfort € [0, h/2),k = 1,2, -+, n. It follows as before that

1AP <y, 1) < iBP
forall ¢ € [O, %h],k =12,---,n.Ifweputs = %h, we get
1 1
— AR 1 — BH3.
23 AW =¥ (3h) = o BA
If we add these inequalities and note that

n b
> v (3n) = / f(x)dx — M (f),
k=1 a

we conclude that
' 1
24
If we use the fact that &~ = (b — a)/n and apply Bolzano’s Intermediate Value Theorem

5.3.7 to f” en [a, b] we conclude that there exists a point y € [a, b] such that (7) in
Section 7.4 holds. » ] QE.D.

b
Ah*n 5/ fxydx — M (f) < 21—43h3n.

Proof of Theorem 7.48. 1fk=0,1,2,---, %n -1, let ¢, :=a+ 2k + 1)h, and let
¢, : [0, h] — R be defined by

| ck+t
9 (1) = 5t [flc, = 1) +4f(c) + flc, + 1] - f(x)dx.

Ck —t

Evidently 78 (0) =0and

@ =3t[-Fle, =D+ e, +D]=-3[flc, =1 =2 flc)+ fle, +1)],
so that ¢, (0) = 0 and

ol ) =3t[f e, =D+ ', +0D] =3[~ fc, =D+ fle, +1)],
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so that ¢, (0) = 0 and
///(t) — -t [f///(ck + t) _ f/u(ck ] .

Hence it follows from the Mean Value Theorem 6.2.4 that there is a y, , with|c, — ¥, | <
such that @, (r) = %tzf(“)(yk,,). If we let A and B be defined by

A=inf{fPx):xela,b]) and B :=sup{fPx):x€la,b],
then we have .
%Atz < ‘p]:”(t) < ZBt2

fort € [0,h),k=0,1,---, %n — 1. After three integrations, this inequality becomes

1 1
— AP t) < —BP
0" =4 = 55

forallz € [0,h],k=0,1,---, %n— 1. If we putz = h, we get

1
— AW h) < —Bh5
) <gh) =< 90

fork=0,1,- — 1. If we add these ! 2 inequalities and note that

Zn—l

b
Y ot =s,0- [ sedx,
k=0 a
we conclude that
1 sh sn
%Ah <S§,(f)— / f(x)dx < —Bh >

Since h = (b — a)/n, it follows from Bolzano’s Intermediate Value Theorem 5.3.7 (applied
to f@) that there exists a point ¢ € [a, b] such that the relation (10) in Section 7.4 holds.
QED.
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TWO EXAMPLES

In this appendix we will give an example of a continuous function that has a derivative at
no point and of a continuous curve in R* whose range contains the entire unit square of R,
Both proof's use the Weierstrass M-Test 9.4.6.

A Continuous Nowhere Differentiable Function

The example we will give is a modification of one due to B. L. van der Waerden in 1930.
Let f, : R — R be defined by f,(x) := dist(x, Z) = inf{|x — k| : k € Z}, so that f is a
continuous “sawtooth” function whose graph consists of lines with slope £1 on the intervals
[k/2, (k 4+ 1)/2], k € Z. For each m € N, let f, (x) := (1/4™) f,(4™x), so that f, is also
a continuous sawtooth function whose graph consists of lines with slope £1 and with
0<f,(x) <1/(2-4™).(See Figure E.1.)

fo

h

0 L

1 1 3
6 7] 2 g

—

Figure E.1 Graphé of £, f,,and f,.

We now.define g:R—-> Rbygk) = Z:’:O f,n(x). The Weierstrass M-Test implies
that the series is uniformly convergent on R; hence g is continuous on R. We will now
show that g is not differentiable at any point of R.

Fix x € R. Foreachn € N, let h,l = :1:1/4”“, with the sign chosen so that both 4" x
and 4" (x + h,) lie in the same interval [k/2, (k + 1)/2]. Since f; has slope 1 on this
interval, then

g o S HR) L&) f@x+4h) — [0
n h B 4°h, B

n

xI1.

In fact if m < n, then the graph of f, also has slope £1 on the interval between x and
x + h, and so

AL E AN
= : —

n

+1 for m <n.

354
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On the other hand, if m > n, then 4™ (x + h,) —4"x = +4™"=1 ig an integer, and since
f, has period equal to 1, it follows that ‘

fnx+h) = f,(x)=0.

Consequently, we have

gx+h,)—gkx) (x+h) S ) "
b i)y Lo -3
n n
whence the difference quotient (g(x + h,) — g(x))/h,, is an odd integer if n is even, and
an even integer if n is odd. Therefore, the limit :
. glx+h) —gkx)
lim ~¥————~
h->0 h

does not exist, so g is not differentiable at the arbitrary point x eR.

A Space-Filling Curve

We will now give an example of a space-filling curve that was constructed by L J. Schoenberg
in 1936. Let ¢ : R — R be the continuous, even function with period 2 given by

0 for 0<t<1/3,
() ={3r—1 for 1/3 <t <2/3,
1 for 2/3<t<1.
(See Figure E.2.) For ¢ € [0, 1], we define the functions
00 2k 00 2k+1

(3%1) e
f@):= Z (p2k+1 and  g(t):= Z TR

k=0 k=0

Since 0 < ¢(x) <1 and is continuous, the Weierstrass M-Test implies that f and g are
continuous on [0, 1]; moreover,0 < f(t) < 1and0 < g(¢) < 1. We will now show that an
arbitrary point (x,, ¥o) in [0, 1] x [0, 1] is the image under ( f, g) of some point £, € [0, 1].
Indeed, let x, and y, have the binary (= base 2) expansions:

a
1
X, 2+22+23+ and  y, 2+22+23+

where each a, equals 0 or 1. It will be shown that x, = f (t,) and y, = g(ty), where 1, has
the ternary (= base 3) expansion

N 2a,  2a, 2a, 2a2 2a3
_Z;'Sk_ﬂ-_ 3 T T e

I = =

w

w

W]~
w|n =

Figure E.2 Graph of ¢.
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First, we note that the above formnula does yield a number in [0, 1]. We also note that
if ay = 0, then 0 < ¢, < 1/3 so that ¢(¢;) =0, and if ay = 1, then 2/3 < ¢, <1 so that
@(ty) = 1; therefore, in both cases ¢ (a,) = a,,. Similarly, it is seen that foreachn € Nthere
exists m, € N such that

2a, 2a,.,
3"y =2m, + 3"+ 3"2

whence it follows from the fact that ¢ has period 2 that (p(3"t0) = a,. Finally, we conclude
that

=X
] K+ 0’
paard 2 + — 2 +
and
00 ~2k+1 00
N 9GO Dk
8tg) =) e Z et = Yo
k=0 k=0

Therefore x; = f(¢y) and y, = g(z,) as claimed.
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HINTS FOR SELECTED EXERCISES

Reader: Do not look at these hints unless you are stymied. However, after putting a consid-
erable amount of thought into a problem, sometimes just a little hint is all that is needed.
Many of the exercises call for proofs, and there is usually no single approach that is correct,
so even if you have a totally different argument, yours may be correct. Very few of the
following hints give much detail, and some may seem downright cryptic at first. Somewhat
more detail is presented for the earlier material.

Section 1.1

1.
2.

Show thatif A C B, then A = A N B. Next show thatif A = AN B, then A C B.

Show thatif x e A\ (BNC), then x € (A\ B) U (A \ C). Next show thatif y e (A\ B) U
(A\C),theny € A\ (BN C). Since thesets A\ (BN C) and A \ (B N C) contain the same
elements, they are equal.

@ A,NA,=1{612,18,24,...} = {6k : k € N} = A,.
® UA,=N\{l}andNA, =0.

7. No. For example, both (0, 1) and (0, —1) belongto C.

13.

15.
19.

20.

(@ f(E)=123],s0h(E) =g(f(E)) =g((2,3]) =[4,9].

® £7'(G)=[-2,2],s0 A"(G) = [-4,0].

If xe f~Y(G)N f~'(H), then x € f71(G) and x € f~!(H), so that f(x) € G and

f(x) e H. Then f(x) € GN H, and hence x € f_l(GﬂH). This shows that f_l(G)ﬂ

fUH) S UGN H).

One possibility is f(x) := (x — a)/(b — a).

If g(f(x))) = g(f(x,)), then f(x,) = f(x,), so that x; = x,, which implies that go f is

injective. If w € C, there exists y € B such that g(y) = w, and there exists x € A such that

f(x) = y. Then g(f(x)) = w, sothat g o f is surjective. Thus g o f is a bijection.

@) If f(x)) = f(x,),then g(f(x,)) = g(f(x,)), whichimplies x; = x,, since g o f isinjec-
tive. Thus f is injective.

Section 1.2

®© O k=

16.
18.

Note that 1/(1 -2) = 1/(1 + 1). Alsok/(k + 1) + 1/[(k + 1)(k +2)] = (k + 1)/ (k +2).
[3k(k + DF + (k+ 1) = [k + Dk + 21

1@ — k) + 2k + 1)? = L4k +1)° — (k+ D)].

(k + 1)3 +5(k 4+ 1) = (&% + 5k) + 3k(k + 1) + 6 and k(k + 1) is always even.

S _4k+1) —1=5-5*—4k —5=(5*—4k — 1) +4(5* - 1).

Ifk <2 thenk+1 < 2% +1 < 28 4 2% = 2(2%) = 2k+!,

Itis true for n = 1 and n > 5, but false forn = 2, 3, 4.

VE+1/VE+T=WkvE+1+1)/VE+1> (k+1)/VE+1=Vk+ 1.

359



360

HINTS FOR SELECTED EXERCISES

Section 1.3

1. Use Exercise 1.1.19 (= Exercise 19 of Section 1.1).

2. Part (b) Let f be a bijection of N, onto A and let C = { f(k)} for some k € N,,. Define g on
N,_, byg@):= f(i))fori=1,---,k—1, and g(i) := f(i + 1) fori =k,---,m — 1. Then
g is a bijection of N,, , onto A\ C.

3. (a) Thereare6 =3 .2 -1 different injections of S into T'.
(b) There are 3 surjections that map a into 1, and there are 3 other surjections that map a

into 2.

7. IfT, is denumerable, take T, = N. If f is a bijection of T, onto T,, and if g is a bijection of 7,
onto N, then (by Exercise 1.1.19) g o f is a bijection of T, onto N, so that T} is denumerable.

9. fSNT=0@and f: N— S,g:N— T arebijections onto S and T, respectively, let h(n) :=
f((n+1)/2)if nis odd and h(n) := g(n/2) ifn is even.

10. (@) P(1,2)) = (9, {1}, {2}, (1, 2}) has 22 = 4 elements.

(©) P({1,2,3, 4)) has 2* = 16 elements.

11. LetS,,, = {x,---,x,,%,,,} =S, U{x,, } haven + 1 elements. Then a subsetof S, , , either
(i) contains x,  , or (ii) does not contain x, , , . There is a total of2" + 2" =2.2" = 2" subsets
ofS§, .-

12. Foreachm € N, the collection of all subsets of N, is finite. Note that F(N) = Ule P(N,).

Section 2.1

1. (a) Justifythestepsinnb=0+b=(—a+a)+b=—-—a+ (@+b)=—a+0=—a.
(c) Apply (a) to the equationa + (—1)a =a(l1 + (-1)) =a-0=0.
2. (@ —(a+b)=(-1)a+b)=(—Da+ (—1b=(—a)+ (—b).
(c) Note that (—a)(—(1/a)) =a(l/a) = 1.
3. (@ 3/2 (b) 0,2
© 2,-2 @ 1,-2
6. Note thatifq € Z and if 3g? is even, then ¢? is even, so that g is even.
7. If p € N, then there are three possibilities: for some m € NU {0}, (i) p = 3m,
(ii)) p =3m + 1,0r(iii) p = 3m + 2.

10. (a) Ifc=d, then2.1.7(b) impliesa +c < b+d.Ifc <d,thena+c <b+c <b+d.

13. Ifa # 0O, then 2.1.8(a) implies that a? > 0; since b* > 0, it follows that a® + b* > 0.

15. (a) If0.<a < b, then 2.1.7(c) implies that 0 < a®> < ab < b*. Then by Example 2.1.13(a),

we infer thata = Va? < vab < Vbt =b.
16. (a) {x:x>4orx‘<—1}. . b) {x:1l<x<2o0r —2<x<-1}.
© {x‘—1l<x<Oorx>1)}. d) {x:x<O0orx>1}.
19. The inequality is-equivalent to 0 < a®> — 2ab + b* = (a — b)*.
20. (a) Use2.1.7(c).
21. (@) LetS:={n eN:0 <n < 1}.If § is not empty, the Well-Ordering Property of N implies
there is a least element m in S. However, 0 < m < 1 implies that 0 < m? < m, and since
m? is also in S, this is a contradiction of the fact that m is the least element of S.

22. (a) Letx :=c—1 > 0andapply Bemoulli’s Inequality 2.1.13(c).

24. (@) Ifm > n,thenk :=m —n €N, and ¢* > ¢ > 1 which implies that ¢™ > ¢". Conversely,

the hypotheses that ¢™ > ¢" and m < n lead to a contradiction.
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25. Letb := c!/™ and showthatb > 1. Exercise 24(a) implies that ¢!/" = b™ > b" = ¢!/™ if and
only if m > n.

26. Fixm € N and use Mathematical Induction to prove that a™*" = a™a" and (a™)" = a™" for all
n € N. Then, for a given n € N, prove that the equalities are valid for all m € N.

Section 2.2

1. (a) IfazO,thenlal:a:x/a_z;ifa<0,then|a|=—a=\/(?.

(b) It suffices to show that |1/b] = 1/|b| for b # 0 (why?). Consider the cases b > 0 and
b<0.

3. Ifx<y<zthen|x—y|l+|y—z|=(y —x)+ (z— y) =z— x = |z— x|. To establish the
converse, show that y < x and y > zare impossible. For example, if y < x < z, it follows from
what we have shown and the given relationship that [x — y| = 0, so that y = x, a contradiction.
(@ —2<x<9/2 b) —2<x<2.
x=4orx =-3.

8. @ x<0O (b)) -3/2<x<1/2.

10. {x: -3 <x<-5/20r3/2 <x<?2).

11. {x:1<x <4).

12. (@) {(x,y):y= *£x}. (c) Thehyperbolasy =2/xand y = —2/x.

13. (@) If y>0,then —y < x < y and we get the region in the upper half-plane on or between

the lines y = x and y = —x.

16. (a) Supposethata < b.

17. If a <b <c, then mid{a, b, ¢} = b = min{b, ¢, c} = min{max{a, b}, max{b, c}, max{c, a}}.
The other cases are similar.

Section 2.3

1. Since 0 < x forall x € §,, then ¥ = 0 is a lower bound of S,. If v > 0, then v is not a lower
bound of S, because v/2 € S, and v/2 < v. Therefore inf §; = 0.

3. Since 1/n < 1forall n € N, then 1 is an upper bound for S.

4. supS, =2andinfS§, =1/2.

6. Letu € Sbeanupperboundof S.If v is another upper bound of §, then# < v. Henceu = sup S.

9. Letu:=supA, v:=supB and w := sup{w, v}. Then w is an upper bound of A U B, because
if x € A then x <u < w, and if x € B, then x < v < w. If zis any upper bound of A U B,
then z is an upper bound of A and of B, so that # < z and v < z. Hence w < z. Therefore,
w = sup(A U B).

11. Consider two cases: ¥ > s* and u < s*.
Section 2.4

1. Sincel —1/n < 1foralln € N, 1is an upper bound. Toshow that 1 is the supremum, it must
be shownthat foreach ¢ > O there existsn € Nsuchthat1 — 1/n > 1 — ¢, which s equivalent
to 1/n < &. Apply the Archimedean Property 2.4.3 or 2.4.5.

2. inffS=-1andsupS =1.

4. (@ Letu:=supSanda >0.Thenx < uforallx € S,whenceax < auforallx € S,whence

it follows that au is an upper bound of aS. If v is another upper bound of aS, thenax < v
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for all x € S, whence x < v/a for all x € S, showing that v/a is an upper bound for S so
that ¥ < v/a, from which we conclude that au < v. Therefore au = sup(aS).

5. Let u :=sup f(X). Then f(x) <u for all x € X, so that a + f(x) <a+u for all x € X,
whence sup{a + f(x) :x € X} <a+u If w <a+u then w — a < u, so that there exists
x, € X with w —a < f(x,), whence w < a + f(x,), and thus w is not an upper bound for
{a+ f(x):x € X}.

7. Ifu:=sup f(X)andv := sup g(X), then f(x) <uandg(x) < vforallx € X, whence f(x) +
g(x) <u-+vforallx € X.

9. @ f@x)=1forxeX. () g(y)=0forye?Y.

11. Let S:={h(x,y):x€ X,y eY}. We have h(x,y) < F(x) for all x € X,y € Y so that
sup S < sup{F(x) : x € X}. If w < sup{F(x) : x € X}, then there exists X, € X with w <
F(xy) = sup{h(x,, y) : y € Y}, whence there exists y, € ¥ with w < h(x,, y,). Thus w is not
an upper bound of S, and so w < sup S. Since this is true for any w such that w < sup{F(x) :
x € X}, we conclude that sup{F(x) : x € X} <sup§.

13. Notethatn < 2" (whence 1/2" < 1/n) foranyn € N.

14. LetS;:={seR:0=<sy, s% < 3). Show that S, is nonempty and bounded by 3 and let y :=
sup . Ify> <3and1/n < (3—y?)/Qy+ 1) showthaty +1/n € Sy Ify?> > 3and1/m <
(y* —3)/2y showthaty — 1/m € S,. Therefore y* = 3.

17. Ifx <0 < y,thenwecantaker = 0.Ifx < y < 0, we apply 2.4.8 to obtain a rational number
between —y and —x.

Section 2.5

2. S has an upper bound b and a lower bound a if and only if S is contained in the interval [a, b].

4. Because zis neither a lower bound nor an upper bound of S.

5. If z € R, then z is not a lower bound of S so there exists x, € S such that x, < z. Similarly,
there exists y, € S such thatz < y,.

8. Ifx > 0, then there exists n € Nwith 1/n < x,sothatx ¢ J .If y <0, theny ¢ J,.

10. Letn :=inf{b, : n € N}; we claim thata, < » for all n. Fix n € N; we will show that a, is a
lowerbound for the set {b, : k € N}. We consider two cases. (j) If n < k, thensince I, 2 I,, we
havea, <a, <b,.(j) If k < n, thensince I, 2 I,, we havea, < b, < b,. Therefore a, < b,
forallk € N, sothata, isalowerboundfor {b, : k € N}andsoa, < . In particular, this shows
that n € [a,, b, ] foralln,so thatn € (N 1,.

7

12. % = (.011000- - ), = (.010111--+),. ¢ = (.0111000---), = (.0110111---),.

13. (a) % ~ (.0101),. (b) % = (.010101 - - -),, theblock 01 repeats.

16. 1/7 = .142857- -, the block repeats. 2/19 = .105 263 157894 736 842 - - -, the block repeats.

17. 1.25137-.-137-.- = 31253/24975, 35.14653---653 - - - =3511139/99900.

Section 3.1

1. @ 0,202,0 (c) 1/2,1/6,1/12,1/20,1/30
3. (@ 1,4,13,40,121 (c) 1,2,3,5,4.
5. (@) WehaveO < n/(n2 +1) < n/n2 =1/n.Givene > 0,let K(¢) > 1/e.
(c) We have |Brn+1)/2n+5) —3/2|=13/(@n+ 10) < 13/4n. Given ¢ >0, let
K (e) > 13/4e.
6. (@ 1/Vn+T7<1/\yn ) 2n/(n+2)—2=4/(n+2) <4/n

© Vn/(n+1)<1/yn @ 1(=1)"n/(r*+1)| < 1/n.
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9. 0< X, <& & 0<xn<ez.
11. [I/n=1/n+1)|=1/n(n+1) <1/n® <1/n.

13. Letd :=1/(1 + a) where a > 0. Since (1 + a)" > %n(n — 1)a?, we have that
0 < nb" < n/[3n(n — 1)a*] < 2/[(n — 1)a*]. Thus lim(nb") = 0.

15. Ifn>3,then0 < n®/n! < n/(n—2)(n—1) < 1/(n =3).

Section 3.2
1. (a) lim(x) =1 (¢) x, = n/2, so the sequence diverges.
3. Y=X+Y)-X. ' ‘
6. (a) 4 (b) 0 © 1 (d 0.
8. In (3) the exponent k is fixed, butin (1 + 1/n)" the exponent varies.
9. lim(y,) = Oandlim(v/ny,) = 1.
11. b.
13. (@ 1 ®) 1.
15. (@) L=a () L=b/2 (c) L=1/b (d) L=38/9.
18. (a) Convergesto 0 (c) Convergesto 0.
200 @ (D (b ().

21. Yes. (Why?)
22. From Exercise 2.2.16, u,, = %(xn +y,+x, —y,D-
23. Use Exercises 2.2.16(b), 2.2.17, and the preceding exercise.

Section 3.3
1. (x,) is a bounded decreasing sequence. Thelimit is 4.
2. Thelimitis 1. 3. The limitis 2. 4. Thelimitis 2.
5. (y,) is increasing. The limitis y = 3(1+ /T + 4p).
7. (x,) is increasing.
10. (s,) is decreasing and (¢,) is increasing. Alsot, < x, <s, forn € N.

11. Note y,=1/(n+D+1/(n+D+--+1/2n<l/n+D+1/(n+ D) +---+1/(n+1)
=n/n+1) <1

13. (@ e (b) € © e (d) 1/
14. Notethatifn > 2,then0 <s, — v/2 <s? —2.

15. Notethat0 <s, — /5 < (s2 = 5)/+/5 < (s2 - 5)/2.

16. e, =225 e, =2.441406, e, =2565785 e, =2637928.

17. e, =2.691588, e, =2704814, e 00 =2.716924.

Section 3.4
1. Forexamplex,, | :=2n — 1 and Xy, =1/2n.
3. L=11+5).
7. (@) e () e'? © ¢ @ €.
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8 @ 1 (b &2
12. Choosen; > 1sothat |x, | > 1, then choosen, > n, sothat |xnzl > 2,and, in general, choose

n, > n,_, sothat Ixnkl > k.

k

1B, (x,, ) =(-1,-1/3,-1/5,--").

14. Choosen, > 1sothatx, > s — 1, thenchoosen, > n, so thatx > s — 1/2, and, in general,
choosenk >n, sothatx >s— 1/k.

Section 3.5

1. For example, ((—1)").

3. (a) Note that |[(—=1)" — (=1)"*!| =2foralln € N.
(c) Takem =2n,s0x, —x, =x, —x, =1n2n —Inn =1n2 foralln.

5. lim(v/n +1— /n) =0.But,if m =4n,then v/4n — \/n = /n for all n.

8. Letu:=sup{x, :neN}.If¢>0,let Hbesuchthatu —e < x
u—e<x,<x, <usothat|x, —x/|<e.

10. lim(x,) = (1/3)x; + (2/3)x,. 12. The limit is +/2 — 1.
13. The limitis 1+ v2.
14. Four iterations give r = 0.201 64 to 5 places.

HSu.IfmznzH,then

Section 3.6

If {x, : n € N} is not bounded above, choosen,  ; > n, such that Xy > kfork e N.
Notethat |x, — 0| < ¢ ifandonlyif 1/x, > 1/e.

1
3,
4. (@) [Vn>al < [n>d? () /n—12>./n/2whenn > 2.
8

@ n< @n? +2)1/2.
(c) Sincen < (n? +1)2, thenn'’? < (n? + 1)1/2/n'/2,

9. (a) Sincex,/y, — oo,thereexists K, suchthatifn > K ,thenx, > y, . Now apply Theorem
3.6.4(a).

Section 3.7

1. The partial sums of )_ b, are a subsequence of the partial sums of }_a_.
(@) Sincel/(n+1)(n+2)=1/(n+ 1) —1/(n + 2), the series is telescoping.

6. (a) Thesequence (cosn) does not converge to 0.
(b) Since'|(cosn)/ <1 / n? the convergenceof)_(cosn)/n 2 follows fromExample 3.7.6(c)
and Theorem 3.7.7.

7. The “even” sequence (s,,) is decreasmg, the “odd” sequence (s,, ) is increasing, and —1 <
5,<0.Als0o0<'s, — Sy =1/4/2n+1
9. " 1/n?isconvergent, but 3 1/n is not.
11. Show thatb, >a,/k fork € N, whence b, +---+b, > a,(1+---+1/n).

12. Evidently2a(4) < a(3) + a(4) and2%a(8) < a(5) + - - - + a(8), etc. Alsoa(2) + a(3) < 2a(2)
anda@) + - - - + a(7) < 2%a(2?), etc. The stated inequality follows by addition. Now apply the
Comparison Test 3.7.7.

14. (a) The terms are decreasing and 2" /2" In(2") = 1/(n1n2). Since )_1/n diverges, so does

> 1/(nlnn).
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15. (a) The terms are decreasing and 2"/2"(In2")° = (1/n°) - (1/1n2)°. Now use the fact that
3"(1/n°) converges when ¢ > 1.

Section 4.1

1. (ac) If|x — 1] <1,then|x + 1| < 3sothat|x* — 1| < 3|x — 1|. Thus, |x — 1| < 1/6 assures
that |x2 — 1] < 1/2, etc.
(d) Iflx—1] <1, then[x® —1] < 7|x —1].

2. (a) Since |vx—2/ = |x —4|/(v/x +2) < }lx — 4], then |x — 4] < 1 implies that we have
Wx -2 <31
() If|jx—4| <2 x 1072 = .02, then |\/x — 2| < .01.

5. If0<x <a,then 0 <x+c <a+<c <2a,sothat |x2—c? = |x +c|lx —c| <2alx —c|.
Given € > 0, take § := ¢/2a.

8. If ¢ # 0, show that |/x — /c| < (1/4/c)|lx — c|, so we can take § :=e./c. If c = 0, we can
take & = &°.

9. (@ If|x—2| <1/2showthat|l/(l1 —x)+1]=|(x —2)/(x — 1)] < 2|x — 2|. Thus we can
take § := inf{1/2, £/2}.
(c) Ifx #0,then |x?/|x| — 0| = |x|. Take § := ¢.

10. (a) If |x—2| <1, then [x2+4x— 12| = |x +6|lx —2| < 9|x — 2|. We may take & :=
inf{1, £/9}.
(b) If|x+ 1] <1/4, then |(x +5)/(3x +2) —4| =T7|x + 1|/]2x + 3| < 14|x + 1|, and we
may take § := inf{1/4, ¢/14}.

11. (a) Letx,:=1/n. () Letx, :=1/nandy, :=—1/n.
13. (b) If f(x):= sgn(x), then ]irr(l)(f(x))2 =1, but lirr(l) f (x) does not exist.
14. (a) Since |f(x) — 0| < |x|, we have ]in[l) f(x)=0.

(b) If ¢ # 0 is rational, let (x,) be a sequence of irrational numbers that converges to ¢, then
f(c) = ¢ # 0 =1im(f(x,)). What if c is irrational?

16. The restriction of sgn to [0, 1] has a limit at 0.

Section 4.2
1. (@ 10 (b)) -3 (© 1/12 @ 172
2. (@ 1 (b) 4 (© 2 d) 1/2.
3. Multiply the numerator and denominator by /T + 2x + +/1 + 3x.
4. Consider x,, := 1/2nn and cos(1/x,) = 1. Use the Squeeze Theorem 4.2.7.
8. If x| <1,k €N, then |x*| = |x|* < 1, whence —x* < x**2 < x2.

11. (a) No limit () 0 (c) Nolimit @ o.

Section 4.3
2. Let f(x) :=sin(l/x) forx < Oand f(x) :=0forx > 0.
3. Givena > 0,if0 < x < 1/a?, then /% < 1/a, and so f(x) > a.

5. (@ Ifa>1landl <x <a/(¢ —1),thena < x/(x — 1), hence we have
]inll+x/(x —1) =o00.
(c) Since (x + 2)//x > 2/+/x, the limit is 00.
(e) Ifx > 0,then 1/\/x < (+/x + 1)/x, so the right-hand limit is o0.
(® 1 (h) —L
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Notethat |f(x) — L| < e forx > K ifandonlyif | f(1/2z) — L| < e for0 < z < 1/K.

9. There exists a > 0 such that |[xf(x) — L| < 1 whenever x > a. Hence |f(x)| < (IL| + 1)/x
for x > a.

12. No.If h(x) := f(x) — g(x), then xl-ig}o h(x) = 0 and we have
F(x)/g(x) =1+ h(x)/g(x) — 1.

13. Suppose that | f(x) — L| < € for x > K, and that g(y) > K for y > H. Then
|fog(y)—L| <efory> H.

Section 5.1
4. (a) Continuousifx #0, £1, £2,--- (b) Continuousifx # £1, +£2,---
(c) Continuous if sinx # 0, 1 (d) Continuousifx #0, £1, £1/2,---.

7. Let ¢ .= f(c)/2, and let § > 0 be such that if |x — ¢| < 4, then |f(x) — f(c)| < &, which
implies that f(x) > f(c) —e = f(c)/2 > 0.

8. Since f is continuous at x, we have f(x) = lim(f(x,)) = 0. Thusx € S.
10. Notethat ‘le - Icl} <l|x—c|

13. Since |g(x) — 6] < sup{|2x — 6], |x — 3|} = 2|x — 3|, g is continuous at x = 3. If ¢ # 3, let
(x,) be a sequence of rational numbers converging to ¢ and let (y,) be a sequence of irrational
numbers converging to c. Then lim(g(x,)) # lim(g(y,))

Section 5.2

1. (a) Continuous on R (c¢) Continuous for x # 0.
2. Use 5.2.1(a) and Induction; or, use 5.2.8 with g(x) := x".

4. Continuous at every noninteger.

7. Let f(x) :=1if x is rational, and f(x) := —1 if x is irrational.

12. First show that f(0) =0 and f(—x) = —f(x) for all x € R; then note that f(x —x,) =
f(x) — f(x,). Consequently f is continuous at the point x,, if and only if it is continuous at 0.
Thus, if f is continuous at x,, then it is continuous at 0, and hence everywhere.

13. Firstshowthat f(0) = 0and (by Induction) that f(x) = cx for x € N,and hence also for x € Z.
Next show that f (x) = cx for x € Q. Finally, if x ¢ Q,letx = lim(r,) for some sequencein Q.

15. If f(x) > g(x), then both expressions give h(x) = f(x); andif f(x) < g(x), then h(x) = g(x)
in both cases.

Section 5.3

1. Apply either the Boundedness Theorem 5.3.2 to 1/f, or the Maximum-Minimum Theorem
5.3.4 to conclude that inf f(I) > 0.

3. Choose a sequence (x,) such that | f(x,, )| < 31£(x,)| < (3)"1f(x,)|. Apply the Bolzano-
Weierstrass Theorem to obtain a convergent subsequence.

4. Suppose that p has odd degree n and that the coefficient a, of x" is positive. By 4.3.16,
lim p(x) =o0and lim p(x) = —o0.
X=—>00 X—»—0Q

5. Inthe intervals [1.035, 1.040] and [—7.026, —7.025].

7. Intheinterval [0.7390, 0.7391].

8. Inthe interval [1.4687, 1.4765].
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9. (@ 1 (b) 6.

10. 1/2" <1073 implies that n > (51n10)/In2 =~ 16.61. Take n = 17.

11. If f(w) < O, then it follows from Theorem 4.2.9 that there exists a §-neighborhood V;(w) such
that f(x) < Oforall x € Vy(w).

14. Apply Theorem4.2.9to 8 — f(x).

15. If0 < a < b < oo, then f((a, b)) = (a?, b%);if —00 < a < b <0, then f((a, b)) = (b, d?).
Ifa < 0 < b, then f((a, b)) is not an open interval, but equals [0, c) where ¢ := sup{az, b2].
Images of closed intervals are treated similarly.

16. For example, if a < 0 < b and ¢ = inf{1/(a® + 1), 1/(b2 + 1)}, then g((a, b)) = (¢, 1]. If
0 <a < b, then g((a, b)) = 1/®* + 1),1/(@% + 1)). Also g([—1,1]) = [1/2,1]. If a < b,
then h((a, b)) = (a°, b*) and h((a, b]) = (>, b*).

17. Yes. Use the Density Theorem 2.4.8.

19. Consider g(x) :=1/x forx € J := (0, 1).

Section 5.4

1. Sincel/x —1/u = (u — x)/xu,itfollowsthat [1/x — 1/u| < (1/a2)|x — ulfor x, u € [a, ).

3. (@ Letx,:=n+1/n, u, =n.

(b) Letx, :=1/2nm, u, :=1/Qnm + 7/2).

6. If M is a bound for both f and g on A, show that |f(x)g(x) — f(w)g(u) < M|f(x) —
F@)| + M|g(x) — g()| forall x, u € A.

8. Given ¢ > Othere exists §, > Osuch that|y — v| < af implies | f (y) — f(v)| < €. Now choose
Sg > Osothat |x —u| < 68 implies [g(x) — g(u)| < Sf.

11. If|g(x) —g(0)| < K|x — 0| forall x € [0, 1], then /x < Kx for x € [0, 1]. Butifx, = 1/n2,
then K must satisfy n < K for alln € N, which is impossible.

14. Since f is bounded on [0, p], it follows that it is bounded on R. Since f is continuous on
J =[—1, p+1], it is uniformly continuous on J. Now show that this implies that f is
uniformly continuous on R.

Section 5.5

1. (a) Theé-intervalsare[—31,11,[3, 2],and 3, 1.

(b) The third é-interval does not contain [%, 1].

2. (@) Yes. () Yes.

3. No. The first §,-interval is [—Tl(—), %] and does not contain [0, i].

4. (b) Ifte (3 Dthen[t—8(),t+8®)]=[-3+2t,1+3t1Cc G D).

6. We could have two subintervals having c as a tag with one of them not contained in the §-interval
around c.

7. XP = {(a, x ). 1), (X ch 1), (€, X ] 1) -0 (%, B, 8,) ) is 8*fine, then P’ :=
{(a, x,1,8), -+, ([x_;> el t) ) is a &'-fine partition of [a, c] and P’ = {(les X 1) tep)s oo
([x,, b], t,)} is a 8”-fine partition of [c, b].

9. The hypothesis that f is locally bounded presents us with a gauge 8. If {([x,_,, x;],¢,)}}_, isa

8-fine partition of[a, b]and M, is abound for | flon [x,_, x;],letM == sup{M, : i =1,---,n}.
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Section 5.6

1. Ifx € [a, b], then f(a) < f(x).

4. If0 < f(x) < f(x;) and 0 < g(x)) < g(x,), then f(x))g(x)) < f(x,)8(x)) =< f(x,)8(x)).
If f is continuous at c, then lim(f(x,)) = f(c), since ¢ =lim(x,). Conversely, since
0< jf (©) = f(xy,) — f(x,,,,), it follows that jf (c) =0, so f is continuous at c.

7. Apply Exercises 2.4.4, 2.4.5 and the Principle of the Iterated Infima (analogous to the result in
Exercise 2.4.11).

8. Let x, € I be such that y = f(x,) and x, € I be such that y = g(x,). If x, < x,, then y =
g(,) < f(x,) < f(x;) =y, a contradiction.

11. Notethat £~! is continuous at every point of its domain [0, 1] U (2, 3].

14. Lety := x'/"andz:= x'/9 sothat y" = x = z?, whence (by Exercise 2.1.26) y"? = xP = z%.
Since np = mgq, show that (x'/")™ = (x'/9)?, or x™/™ = xP/9. Now consider the case where
m,p € Z.

15. Use the preceding exercise and Exercise 2.1.26.

Section 6.1

L @ f&)= Jim[(x + n)? - x3/h = }lliné(sz + 3xh + h?) = 3x2,

vV - 1 1
© W =lim ZEHAYE =
h—0 h h—>0 /x+h+ﬁ 2/x

4. Note that | f(x)/x| < |x| forx € R.

5 @ fl(x)=010-x)/1+x2)? b)) g =&—-1/V/5-2x+x>
(©) h'(x) = mkx*"'(cosx¥)(sin x*)™~! (d) K(x) = 2x sec’(x?).

6. The function f’is continuous for n > 2 and is differentiable for n > 3.
@ f'(x)=2forx >0, f(x)=0for—1<x <0,and f'(x) = —2forx < —1,
(c) H(x)=2lx|forallx € R,

10. If x # 0, then g’'(x) = 2xsin(1/x?) — (2/x) cos(1/x?). Moreover,
g ) = ;in})h sin(l/hz) = 0. Consider x, := 1/+/2nx.

1. @@ f{x)=2/Q2x+3) (b) g'(x) = 6(L(x*)*/x
() H(x)=1/x d K'(x)=1/(xL(x)).

14. 1/h'(0)=1/2, 1/h' (1) =1/5,and 1/’ (1) = 1/5.

16. D[Arctany] = 1/D[tanx] = 1/sec’ x = 1/(1 + y?).

Section 6.2

1. (a) Increasingon [3/2, 00), decreasing on (—oo, 3/2],
(¢) Increasing on (—oo, —1] and [1, o0)

2. (a) Relative minimum at x = 1; relative maximum at x = —1,
(c) Relative maximum at x = 2/3.

3. (a) Relative minimaatx = =+ 1;relative maximaatx =0, +4,

(c) Relative minima at x = —2, 3; relative maximum at x = 2.
If x < y there exists c in (x, y) such that | sinx — sin y| = |cosc||y — x|.

f(x) =x*@+sin(1/x)) > 0 for x #0, so f has an absolute minimum at x = 0. Show that
f'(1/2nw) < O0forn > 2and f'(2/(4n+ 1)x) > O forn > 1.
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10. g'(0) = Br}rb(l +2xsin(l/x)) =1+ 0=1, and if x #0, then g'(x) =1+ 4xsin(l/x) —
2 cos(1/x). Now show that g’(1/2nm) < 0 and that we have g'(2/(4n + 1)) > Oforn € N.
14. Apply Darboux’s Theorem 6.2.12.
17. Apply the Mean Value Theorem to the function g — f on[0, x].
20. (a,b) Apply the Mean Value Theorem.
(c) Apply Darboux’s Theorem to the results of (a) and (b).
Section 6.3
. A= B(}Hg f(x)/g(x)) = 0.
4. Note that f'(0) = 0, but that f’'(x) does not exist if x # 0.
6. (@) 1 ) 1 @© O @ 1/3.
7. (@ 1 ®b) oo @ O d) oO.
8 (@ O ® O © O @ o.
9. (@ 1 ®) 1 ) € @ o.
10. (@ 1 ®) 1 © 1 d) o.
Section 6.4
1. f®U(x) = (-1)"a® ! sinax and @ (x) = (=1)"a*" cosax forn € N.
4. Apply Taylor’s Theoremto f (x) := JTFzxat X, := 0 and note that R, (x) < Oand R,(x) > 0
forx > 0.
5. 1.095 < /12 < 1.1and 1.375 < /2 < 1.5.
6. R,(0.2) <0.0005 and R,(1) < 0.0625.
11. Withrn =4,In1.5 = 0.40; withn = 7,1In1.5 = 0.405.
17.  Apply Taylor’s Theorem to f at x, = c to show that f(x) > f(c) + f'(e)(x — o).
19. Since f(2) < Oand f(2.2) > 0,thereisazeroof f in[2.0, 2.2]. The value of x, is approximately
2.0945515.
20. r ~1.45262688and r, ~# —1.16403514. 21. r ~ 1.32471796.
22, r, ~0.158594 34 and r, ~ 3.146 193 22. 23. r,~0.5andr, ~ 0.80901699.
24. r ~0.73908513.
Section 7.1
L @ [IP)=2 ®) Pl =2 © IPl=14 @ IPJ=2
2. (@ 0 1+12.1+2.2=0+1+8=9
by 37 () 13 @ 33.
5. (@ fuelx,_,x)thenx,  <usothate <t <x, <x,_, + (1P|l whence ¢, - IIPII <
x;_; < u. Alsou < x; so that x, — Pl < x;_, <t <c, whenceu <x; <c,+ Pl
10. gisnot bounded. Take rational tags.
12. Let P, be the partition of [0, 1] into n equal parts. If 'P" is this partition with rational tags, then
S(f;P,) = 1, while if Q_is this partition with irrational tags, then S(f; Q,) =0.
13. Argue as in Example 7.1.3(d).
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15. If ||'P|| <8, = &/4a, then the union of the subintervals in P with tags in [c, d] contains
the interval [c +4,,d —4,] and is contained in [c — §,, d +4,]. Therefore a(d —c —24,) <
S(g; P) < a(d —c+ 26 ),whence 1S(g; P) — a(d — c)I < 2a5 <e€.

16. (b) Infact, (x7 +x,x,_ 1+x, DG —x,_ ) =x}—x},.

(c) Thetermsin S(Q; Q) telescope.
18. Let P= {([x, AN )} be atagged partition of [a, b] and let
= {(lx,_, + . x; + c], t +c)] _, SO that Q is a tagged partition of [a + ¢, b+ c] and

IQII 1P|l Moreover, S(g; Q) = S(f; P) so that [S(g; Q) — [, fI=IS(f; P)— [} fl<e
when || Q|| < s,

Section 7.2

2. Ifthetagsare all rational, then S(h; ’P) > 1, while if the tags are all irrational, then S(4; ’P) =

3. Let ’Pn be the partition of [0, 1] into n equal subintervals with t, = 1/n and Qn be the same
subintervals tagged by irrational points.

5. Ifcy, -, c, arethe distinct values taken by ¢, then ! (cj) is the union of a finite collection

/Ry

erj} of disjoint subintervals of [a, b]. We can write ¢ = 37, Z,:’zl %y,

6. Not necessarily.
If f(c) > O for some c € (a b), there exists § > 0 such that f(x) > éf(c) for |x — ¢| <6é.
Then fab =07 ¥ f > (28)1 f(c) > 0.1f ¢ is an endpoint, a similar argument applies.

10. Use Bolzano’s Theorem 5.3.7.

12. Indeed, |g(x)| <1 and is continuous on every interval [c, 1] where 0 < ¢ < 1. The preceding
exercise applies.

13. Let f(x) :==1/x forx € (0, 1] and f(0) := 0.
16. Letm :=inf f(x) and M := sup f. By Theorem 7.1.4(c), we have
m(b —a) < f” f < M( — a). By Bolzano’s Theorem 5.3.7, there exists ¢ € [a, b] such that
fl)= (f /(b —a).
19. (a) Let 'P be a sequence of tagged partitions of [0, a] with ||’P || = 0 and let ’P* be the
correspondmg “symmetric” partition of [—a, a]. Show that S(f; P W) =28(f; P ) —>

2 f
21. Notethatx > f *?) is an even continuous function.
22. Letx, = z(n/2) fori =0,1,---,n. Then we have that
(7r/2n) Z f(cosx ) = (7/2n) Y_y_; f(sinx,).

Section 7.3

1. Suppose that E :={a =¢, < ¢, <--- <c, = b} contains the points in [a, b] where the
derivative F’(x) either does not exist, or does not equal f(x). Then f € Rlc;_,,c;] and

fcf‘_ . f =F(c;) — F(c,_,). Exercise 7.2.14 and Corollary 7.2.10 imply that f € R[a, b] and

that [* f = Y (F(c,) — F(c,_,)) = F(b) — F(a).

E=40. 3. LetE:={—1,1}.1fx ¢ E,G'(x) = g(x).
4. Indeed, B'(x) = |x| for all x. 6. F,.=F,- [/ f.

7. Let h be Thomae’s function. There is no function H : [0, 1] — R such that H'(x) = h(x)
for x in some nondegenerate open interval; otherwise Darboux’s Theorem 6.2.12 would be
contradicted on this interval.



9. @ G)=Fx)—F(), () Hx)=F@®)—-F(x), (© S(x)=F(sinx)—F(x).
10. Use Theorem 7.3.6 and the Chain Rule 6.1.6.
1. @ F'(x)=2x1+x%" () F'(x)=(1+x)Y2 —2x(1 +x%2
13. g(x)=f(x+¢c)— f(x— o).
16. (a) Take p(t) =1+ > to get 1(2*2 - 1).
(b) Take p(t) = 1+ 1> toget 5. .
(c) Take p(r) = 1+ +/7 to get 2(3%% — 2%/2),
(d) Takeg(r) =12 1to get 2(sin2 — sin1).
18. (a) Takex = (1) =120t = ¥(x) = x2 to get 4(1 ~ In(5/3)).
(b) Takex =g¢(t) = (t + 1)V/2, 501 = ¥ (x) = x> — 1 toget In(3 + 2+/2) — In 3.
(c) Takex = @(t) =1"?to get 2(3/2 +1n3/2).
(d) Takex =¢(t) = t"2to0 get Arctan 1 — Arctan(1/2).
19. In (a)-(c) ¢'(0) does not exist. For (a), integrate over [c, 4] and let ¢ — 0+. For (c), the
integrand is even so the integral equals 2 fol A +0"dr.
20. (b) U, Z, iscontained in U, /¢ and the sum of the lengths of these intervals is
<Y, e"=e
21. (a) TheProduct Theorem 7.3.16 applies.
(b) WehaveF2t [° fg <1* [° f2+ [ g2
(¢) Lett - ooin(b).
b 2 b 2, rb ;2 /2,
@ " f2#0,letr = (fa g/ [ f ) in (b).
22. Note that sgno h is Dirichlet’s function, which is not Riemann integrable.
Section 7.4
1. Use @) withn=4,a=1,b=2,h = 1/4. Here 1/4 < f"(c) <2, so T, ~ 0.69702.
3. T,~0.78279.
4. The index n must satisfy 2/12n2 < 107%; hence n > 1000/+/6 ~ 408.25.
5. §,~0.78539.
6. The index n must satisfy 96/180n* < 1075; hence n > 28.
12. The integral is equal to the area of one quarter of the unit circle. The derivatives of A are
unbounded on [0, 1]. Since #”(x) < 0, the inequality is T, (h) < /4 < M, (h). See Exercise 8.
13. Interpret K as an area. Show that A”(x) = —(1 — x?)*/? and that
h®(x) = =31 + 4x?)(1 — x*)77/2, To eight decimal places, & = 3.141 59265.
14. Approximately 3.65348449. 15. Approximately 4.821 159 32.
16. Approximately 0.835 648 85. 17. Approximately 1.851937 05.
18. 1. 19. Approximately 1.198 14023.
20. Approximately 0.904 524 24.
Section 8.1
1. Notethat0 < f,(x) <x/n— Oasn — oo.
3. Ifx > 0,then |f,(x) — 1| < 1/(nx).
5. Ifx >0,then |f,(x)] <1/(nx) — 0.
7. Ifx >0,then0 <e™ < 1.
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20.
23.
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If x > 0, then 0 < x2¢™™ = x2(¢™*)" — 0,since0 < e™* < 1.

If x € Z, the limit equals 1. If x ¢ Z, the limit equals 0.

If x € [0, a], then | f, (x)| < a/n. However, f,(n) = 1/2.

If x € [0, b], then | £, (x)| < b". However, f,(27"/") = 1/3.

If x € [a, 00), then | f, (x)| < 1/(na). However, f,(1/n) = %sinl > 0.
The maximum of f, on [0, 00) isatx = 1/n,s0 || f, "[o o) = 1/(ne).

If n is sufficiently large, || £, Il ;. o) = 7 2a%/e". However, || £, ll;5.oc) = 4/€

Let M be a bound for (f (x)) and (g,(x)) on A, whence also |f(x)| < M. The Triangle
Inequality gives | £, (x)g, (x) — f(x)g(x)| < M(|f,(x) — f(x)| +1g,(x) — g(x)] forx € A.

Section 8.2

10.

11.
13.
15.
20.

The limit function is f(x) :=0for0 <x <1, f(1) :=1/2,and f(x):=1forl <x <2.

Ife > Ois given, let K be such thatif n > K, then|l.f, — fll, < e/é)Then [f,(x,) — fx)] <
[f,(x) = Fxe )+ 1f(x,) — Flxp)l <e/2+ If(x ) = fx )l Smceflscontmuous(byThe-
orem822)andx — xo,thenlf(x ) = f(xy)l < g/2forn > K',sothat|f (x,) = flx))l <¢
forn > max{K,K’}.

Here f(0) =1 and f(x) = 0 for x € (0, 1]. The convergence is not uniform on [0, 1].

Given ¢ := 1, there exists K > 0 such that if » > K and x € A, then |f, (x) — fx)| <1, so
that | £, (x)| < | f¢ (x)| + 1forallx € A.Let M := max{||f;ll,.- -, gy lla Ifell, + 13
£,(1//n) = /2. ’

Here (g,) converges uniformly to the zero function. The sequence (g,) does not converge
uniformly.

Use the Fundamental Theorem 7.3.1 and Theorem 8.2.4.

Ifa > 0, then || f, ||[a = 1/(na) and Theorem 8.2.4 applies.

Here ||g, |l < 1 for all n. Now apply Theorem 8.2.5.

[0.1 —
Let f,(x) :=x" on[0, 1).

Section 8.3

1L

10.

11.
12.
15.

Let A := x > Oandlet m — oo in (5). For the upper estimate on e, take x =1andn =3 to
obtain le = 22| < 1/12,s0 e <23.

Note thatif n > 9, then 2/(n + 1)! < 6 x 10~ < 5 x 107°. Hence e ~ 2.71828.

Evidently E, (x) < e* for x 2 0. To obtain the other inequality, apply Taylor’s Theorem 6.4.1
to[0,al. o

Notethat0 <" /(1 +1¢t) <t" fort € [0, x].
In1l.1 & 0.0953 andIn 1.4 =~ 0.3365. Take n > 19, 999.
In2 ~ 0.6931.

L'(Q) = im[L( + 1/n) — L(1)1/(1/n) = lim L((1 + 1/n)") = LEmA + 1/n)") =
L(e)=1.

© () = E@L(x)) = E@L(x) +aL(y)) = E@L(x)) - E@L(Y)) = x* - y*.
(b) (x*)f = E(BL(x®) = E(BaL(x)) = x*#, and similarly for (x#)*.
Use 8.3.14 and 8.3.9(vii).
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17. Indeed, we have log, x = (Inx)/(Ina) = {(Inx)/(Inb)] - [(Inb)/(Ina)] if a # 1, b # 1. Now
takea =10,b =e.
Section 8.4

L If n>2|x|, then |cosx — C, (x)| < (16/15)|x[>*/(2n)!, so cos(0.2) ~ 0.980067, cos 1 =
0.549 302. Similarly, sin(0.2) = 0.198 669 and sin 1 = 0.841471.

4. We integrate 8.4.8(x) twice on [0, x]. Note that the polynomial on the left has a zero in the
interval [1.56, 1.57], so0 1.56 < x/2.

5. Exercise8.4.4 shows that C,(x) < cosx < C,(x)forallx € R. Integrating several times, we get
§,(x) <sinx < S;(x)forallx > 0. Show that §,(3.05) > Oand S;(3.15) < 0. (This procedure
can be sharpened.)

6. If x| < Aandm >n > 2A, then |c,, (x) — c,(x)| < (16/15)A2"/(2n)!, whence the conver-
gence of (c,) to c is uniform on each interval [- A, A].

7. D[(c(x))2 — (s(x))?]1 = 0for all x € R. For uniqueness, argue asin 8.4.4.

8. Let g(x) := f(0)c(x) + f'(0)s(x) for x € R, so that g”(x) = g(x), g(0) = f(0) and g’'(0) =
£'(0). Therefore h(x) := f(x) — g(x) has the property that A" (x) = h(x) for all x € R and
h(@©0) = 0, ¥ (0) = 0. Thus g(x) = f(x) forall x € R, so that f(x) = f(0)c(x) + f'(0)s(x).

9. If p(x) := c(—x), show that ¢”(x) = ¢(x) and ¢(0) = 1, ¢’(0) = 0, so that ¢(x) = c(x) for
all x € R. Therefore c is even.

Section 9.1

1. Lets, be the nth partial sum of > a,, lett, be the nth partial sum of > |a,|, and suppose
thata, >0 forn > P. If m > n > P, show thatt —t =5, —s,. Now apply the Cauchy
Criterion.

3. Take positive terms until the parti.al sum exceeds 1, then take negative terms until the partial
sum is less than 1, then take positive terms until the partial sum exceeds 2, etc.

Yes.
Ifn >2,thens, = —In2 —Inn +In(n + 1). Yes.

9. Wehaves,, —s, = na,, = %(Znah), ands, . —s, > %(Zn + Da,, . Consequently
lim(na,) = 0.

11. Indeed, if [n?a,| < M forall n, then |a,| < M/n’.
13. (a) Rationalize to obtain ) x, where x, = [\/n(v/n +1 + ~/m)17! and note that x, Xy, =
1/(2n). Now apply the Limit Comparison Test 3.7.8.
(b) Rationalize and compare with Y 1/n%2.
4. IfY a, is absolutely convergent, the partial sums of ) _ |a, | are bounded, say by M. Evidently
the absolute value of the partial sums of any subseries of a, are also bounded by M.
Conversely, if every subseries of ) a, is convergent, then the subseries consisting of the
strictly positive (and strictly negative) terms are absolutely convergent, whence it follows that
Y_a, is absolutely convergent.
Section 9.2
1. (a) Convergent,compare with }_ 1/n2. (c) Divergent; note that 2l 5 1.
2. (a) Divergent; apply 9.2.1withb, = 1/n.
(c) Convergent; use 9.2.4 and note that (n/(n 4+ 1))" — 1/e < 1.
3. (@ (nn)? < nfor large n, by L'Hospital’s Rule.
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(c) Convergent; note that (Inn)™"" > n? for large n.
(e) Divergent; apply 9.2.6 or Exercise 3.7.12.

(a) Convergent (b) Divergent (c) Divergent

(d) Convergent; notethat (In n) exp(—n'/?) < nexp(—n'/?) < 1/n?forlarge n,by L’Hospital’s
Rule.

(e) Divergent (f) Divergent.

Apply the Integral Test 9.2.6.
(a,b) Convergent (c) Divergent (d) Convergent.
Ifm>n=>K,thenls, —s,| <lx, |+ +Ix,| <r"*'/(1 —r). Now let m — oo.

(@) A crude estimate of the remainder is given by s —s, < _/'5°°x_2 dx = 1/5. Similarly
s —59<1/11ands —s, < 1/(n+ 1), sothat 999 terms suffice to get s — syq5 < 1/1000.

(d) If n>4, then x, ,/x, <5/8 so (by Exercise 10) |s —s,| <5/12. If n > 10, then
x,,,/%, < 11/20 so that Is — 550l < (10/2'0)(11/9) < 0.012.If n = 14, then Is — s5,,| <
0.00099.

(b) Here Y oi) < [ x7%dx =2/\/n, so |s — ;9| <0.633 and |s —s,| < 0.001 when
n >4 x10°.

(c) Ifn =>4, then|s —s,| < (0.694)x, sothat|s —s,| < 0.065.1f n > 10, then
Is —s,] < (0.628)x, so that |s — s5,,| < 0.000023.

Note that (s,,) is not bounded.

Note that, for an integer with n digits, there are 9 ways of picking the first digit and 10 ways of
picking each of the other n — 1 digits. There is one value of m, from 1 to 9, there is one value
from 10 to 19, one from 20 to 29, etc.

Here lim(n(1 - x,,/x,)) =(c—a— b) + 1, so the series is convergent if ¢ > a + b and is
divergentif c < a + b.

Section 9.3

1 (@ Absolutely convergent (b) Conditionally convergent
(c) Divergent (d) Conditionally convergent.
2. Show by induction thats, <5, < 5¢ < -++ < 55 < 55 < 5,. Hence the limit lies between s, and
s, sothatls —s | <|s, ., —s,|=2,,.
5. Use Dirichlet’s Test with (y,) := (+1, -1, —1,+1,+1, =1, —1, - - ). Or, group the terms in
pairs (after the first) and use the Alternating Series Test.
7. If f(x) := (Inx)?/x, then f'(x) <0 for x sufficiently large. L’Hospital’s Rule shows that the
terms in the alternating series approach 0.
8. (a) Conveérgent (b) Divergen; (c) Divergent (d) Divergent.
11. Dirichlet’s Test does not apply (directly, at least), since the partial sums of the series generated
by (1,-1,-1,1, 1,1, - -.) are not bounded.
15. (a) Use Abel’s Test with x, := 1/n.
(b) Use the Cauchy Inequality with x, :=/a,,y, := 1/n, to get
Y Va,/n < (X a,)"*(X 1/n?)!/2, establishing convergence.
() Leta, := [n(Inn)?]™", which converges by the Integral Test. However, b, := [/nlnn] ™',
which diverges.
Section 9.4
1. (@) TakeM, :=1/ n? in the Weierstrass M-Test.
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(c) Since |siny| < |yl, the series converges for all x. But it is not uniformly convergent on R.
If a > 0, the series is uniformly convergent for |x| < a.

(d) If0 < x <1,theseriesisdivergent. If 1 < x < 0o, the seriesis convergent. Itisuniformly
convergent on [a, 00) fora > 1. However, it is not uniformnly convergent on (1, 00).

If p = 00, then the sequence (|a,|'/") is not bounded. Hence if |x,| > 0, then there are infinitely

many k € N with |g,| > 1/|x,| so that Ia,‘xé‘l > 1. Thus the series is not convergent when
x, # 0.
0

Suppose that L = lim(}a,|/la, |} exists and that 0 < L < oco. It follows from the Ratio Test

5.
that )" a_x" converges for |x| < L and diverges for |x| > L. The Cauchy-Hadamard Theorem
implies that L = R.

6. @ R=00 ) R=o0 © R=1/e
d 1 &) R=4 ® R=1

8. Uselim(n'/") = 1.

10. By the Uniqueness Theorem 9.4.13,a, = (—1)"a, for all n.

12. Ifn € N, there exists a polynomial P, such that f ™ (x) = o117 P (1/x) forx #0.
13. Let g(x) := Oforx > Oand g(x) := e~'/*" for x < 0. Show that g™ (0) = 0 for all n.
16. Substitute —y for x in Exercise 15 and integrate from y = 0 to y = x for |x| < 1, which is

justified by Theorem 9.4.11.

19. [Fedt =¥, (=1)"x*!/n!2n + 1) for x € R.

. w2 g _ % 1-3:-5---2n—1)
20. Apply Exercise 14 and fo (sinx)“"dx = R R VT
Section 10.1

1. (a) Sincet; —4é(t) <x,_,andx; <t +4(t,),then0 <x, —x,_;, <24(s).

(b) Apply (a) to each subinterval.

2. (b) Consider the tagged partition {([0, 11, 1), ([1, 2], 1), (2, 3], 3), ([3,4], 3)}.

@ KP= {([x;_,» x;1, t)}i—, and if £, is a tag for both subintervals [x,_,, x,] and [x,, Xl
we must have t, = x,. We replace these two subintervals by the subinterval [x,_,, x, w1l
with the tag #,, keeping the é-fineness property.

(b) No.

(c) Ift, € (x_,,x,),thenwereplace [x,_;, x,] by the twointervals [x,_,, t,]and [¢,, x,] both
tagged by ¢,, keeping the é-fineness property.

4. Ifx,_, <1=<x, andify, isthe tag for [x,_,, x,], then we cannot have #, > 1, since then ¢, —
8) = %(t,‘ + 1) > 1. Similarly, we cannot have r, < 1, sincethen?, +48(t,) = %(t,‘ +1) <.
Therefore ¢, = 1.

5. (@ Letd():= %min{|t — 1,1t =2|, 1t =3|}ift #1,2,3and 8(¢) :=1fort = 1,2, 3.

(b) Letd,(¢) := min{d(¢), 8, (#)}, where & is asin part (a).

7. @) F(x):=@2/3)x**+2x'2,
®) Fx) = (2/3)1 -0 -2 -x)',

(©) Fy(x) = (2/3)x**(Inx — 2/3) for x € (0, 1] and F,(0) := 0,

(d) F,(x) :=2x"2(Inx —2) for x € (0, 1] and F,(0) := 0,

(&) Fy(x):=-v1- x? + Arcsin x.

(H) Fg(x) := Arcsin(x — 1).

8. The tagged partition 1'32 need not be §,-fine, since the value §,(z) may be much smaller than

85(xj).
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9. If f wereintegrable,then [y f > [y s, =1/2+1/3+---+1/(n +1).

10. Weenumerate the nonzero rational numbers asr, = m, /n, and defined, (m,/n,) := g/(n, 2K+l
and §,(x) := 1 otherwise.

12. The function M is not continuous on [—2, 2].
13. L, iscontinuous and Li(x) = I, (x) for x # 0,so0 Theorem 10.1.9 applies.

15. Wehave Cj(x) = 3/2)x? cos(1/x) + x12 sin(1/x) for x > 0. Since the firstterm in C| has
a continuous extension to [0, 1], it is integrable.
16. We have C5(x) = cos(l/x) + (1/x) sin(1/x) for x > 0. By the analogue of Exercise 7.2.12,
the first term belongs to R [0, 1].
17. (@) Takeop(t) :==1*+t—2s0 E, =0 1toget6.
(b) Take ¢(t) := /1 so E,={0}toget2(2 +In3).
(c) Takep(t) :=+/t —1so0 Ew = (1} to get 2 Arctan2.
(d) Take ¢(t) := Arcsint so E«7 = {1} to get %n.
19. (a) Infact f(x) := F'(x) = cos(sr/x) + (;/x) sin(r/x) for x > 0. We set f(0) :=0,
F'(0) := 0. Note that f is continuous on (0, 1].
(b) F(a)) =0and F(b,) = (=D /k. Apply Theorem 10.1.9.
() IfIfl € R0, 1], then Yi_, 1/k < Xy [ 1£1 < [y |f| foralln € N.

20. Indeed, sgn(f(x)) = (- DF = m(x) on [a,, b,] so m(x) - f(x) = |m(x)f(x)| for x € [0, 1].
Since the restrictions of m and |m| to every interval [c, 1] for 0 < ¢ < 1 are step func-
tions, they belong to R[c, 1]. By Exercise 7.2.11, m and |m| belong to R[O, 1] and fo m=
Zk_l( D*/k@k + 1) andfo lm| =332, 1/k(2k + 1).

21. Indeed, ¢(x) = ®'(x) = |cos(r/x)| + (;r/x) sin(r/x) - sgn(cos(x/x)) for x ¢ E by Exam-
ple 6.1.7(c). Evidently ¢ is not bounded near 0. If x € [a,, b,], then ¢(x) = |cos(w/x)| +
(;t/x)| sin(rr/x)| so that faik lp| = ®(b,) — ®(a,) = 1/k, whence |p| ¢ R0, 1].

22. Here y(x) = ¥'(x) = 2x|cos(rr/x)| + 7 sin(r/x) - sgn(cos(w/x)) for x ¢ {0} U E, by Ex-
ample 6.1.7(b). Since v is bounded, Exercise 7.2.11 applies. We cannot apply Theorem 7.3.1
to evaluate fob ¥ since E is not finite, but Theorem 10.1.9 applies and ¥ € R[0, 1]. Corollary
7.3.15 implies that || € R[O, 1].

23. If p>0,thenmp < fp < bp where m and M denote the infimum and the supremum of f
on {a, b], so that m f p<[fpP<M f p. If f p =0, the result is trivial; otherwise, the
conclusion follows from Bolzano’s Intermediate Value Theorem 5.3.7.

24. Bythe Multlphcatlon Theorem 10.1.14, fg € R*[a, b]. If g is increasing, then g(a)f <fg<

g(b)f sothatg(@) [ f < [’ fg <g®) [} f-Let K(x) := g(a) [} f + g(b) [° f, so that K
is continuous and takes all values between K (b) and K (a).

Section 10.2

2. @ IfG(x):=3x"forx [0, 1] then [ g = G(1) — G(c) » G(1) =3.
(b) Wehave fcl(l/x)dx = Inc, which does not have a limitin Rasc — 0.

3. Here [y 1—x)""?dx=2-2(1-¢)"* > 2asc— 1-.

5. Because of continuity, g, € R*[c, 1] for all ¢ € (0, 1). If w(x) := x~Y2, then 18, (*)| < w(x)
for all x € [0, 1]. The “left version” of the preceding exercise implies that g, € R*[0,1] and
the above inequality and the Comparison Test 10.2.4 imply that g, € L[0, 1].

6. (a) The function is bounded on [0, 1] (use I’Hospital) and continuous in (0, 1).
(© If xe(O, %] the integrand is dominated by |(In %) Inx|. If x € [%, 1) the integrand is
dominated by |(In %) In(1 — x)|.
7. (a) Convergent (b,c) Divergent (d,e) Convergent (f) Divergent.
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10. By the Multiplication Theorem 10.1.4, fg € R*[a, b]. Since | f(x)g(x)| < B|f(x)|,then fg €
Lla, bland || fg|l < B|| fI.

11. (@ Let f(x) = (=1)f2*/kforx e [c,_1» ¢) and f(1) := O, where the ¢, are as in Example

10.2.2(a). Then f* = max{f, 0} ¢ R*[0, 1.
(b) Usethe first formula in the proof of Theorem 10.2.7.
13. (i) If f(x) = g(x) forall x € [a, b], then dist(f, g) = [ If — gl = 0.
(iii) dist(f, &) =[] 1f — &l = [, g — f] =dist(g, f).
(k) dist(f,h) = [71f —hl < [} 1f — gl + [} 1g — hl = dist(f, g) + dist(g, h).

16. If (f,) convergesto f inL[a,b], given ¢ > O there exists K (¢/2) such thatifm,n > K (¢/2)
then |l f,, — fl <e/2and || f, — fIl < &/2.Therefore || f,, — f,1 < I f,, — Fll +1If = £l <
€/2 + ¢/2 = &. Thus we may take H (¢) := K (¢/2).

18. If m > n,then |lg, — g, <1/n+1/m — 0. One can take g := sgn.

19. No.

20. We can take k to be the O-function.

Section 10.3

1. Letb > max{a, 1/8(c0)}. If P is a 6-fine partition of [a, b], show that Pis aé-fine subpartition
of [a, 00).
3. If f € L[a, 00), apply the preceding exercise to | f|. Conversely, if f,f |fl<eforg>p=>
K(e), then | [P f— [P fl < f;’ IfI < & so both lim,, f7 f and lim,, [ | f| exist; therefore
£ 1f1 € R*[a, 00) and so f € L[a, o0).
5. If f, g € L[a, o0), then f, |f|, g and |g| belong to R*[a, 00), so Example 10.3.3(a) implies that
f +g and | ] + |g| belong to R*[a, 00) and that [ (| f| + |g|) = L2f+ [ 1gl. Since
If +gl <Ifl+ IgI,itfollowsthatj;y |f+gl < fay | £l +fay lgl < f:o I£] +fa°° |g |, whence
I+l <A1+ lgll.
6. Indeed, |, 17 (1/x) dx = Iny, which does not have a limit as y — 00. Or, use Exercise 2 and the
fact that [*”(1/x)dx = 1n2 > Oforall p > 1.
8. Ify > 0, then foy cos x dx = sin y, which does not have a limit as y — oo.
9. (a) Wehave jg’ e Fdx=(1/s)(1—e™*") > 1/s.
(b) Let G(x):= —(1/s)e ** for x € [0,0), so G is continuous on [0, 00) and G(x) — 0 as
x — oo. By the Fundamental Theorem 10.3.5, we have f0°° g =-G(0)=1/s.
12. (@) Ifx >e,then (Inx)/x > 1/x.
(b) Integrate by parts on [1, y] and then let y — oc.
13. (@) |sinx| > 1/«/5 >1/2and 1/x > 1/(n + 1)x for x € (nw + /4, nw + 3n/4).
() Ify > (n+ 1)m, then jg’ ID| > 1/HA/1+1/2+---+1/(n+ 1)).

15. Letu = ¢(x) = x2. Now apply Exercise 14.

16. (a) Convergent (b, c) Divergent (d) Convergent (e) Divergent
(f) Convergent.

17. (@ If f,(x) :=sinx, then f, ¢ R*[0,00). In Exercise 14, take f,(x) = xY2sinx and

(pz(x) = 1/\/;
(¢) Take f(x) :=x"?sinx and p(x) := (x + 1)/x.
18. (a) f(x):=sinx isin R*[0, y], and F(x) == j: sint dt = 1 — cos x is bounded on [0, 00),

and ¢(x) := 1/x decreases monotonely to 0.
) F(x):= f; cost dt = sinx is bounded on [0, 00) and ¢(x) = x
tonely to 0.

~1/2 decreases mono-
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19. Letu = ¢(x) := x2.

20. (@ If y>0, then f[fe*dx=1—¢? —>1 so ¢* e R*[0,00). Similarly e ¥ =
e e 'R.*z(—oo, 0]. ,
(©) 0<e™ <e*for|x|>1s0e™™ € R0, 00). Similarly on (—oo, 0].

Section 10.4

1. (a) ConvergestoOatx = 0,to1on (0, 1]. Not uniform. Bounded by 1. Increasing. Limit= 1.
(c) Convergesto 1on [0, 1),to % atx = 1. Not uniform. Bounded by 1. Increasing. Limit= 1.

2. (a) Converges to 4/ on [0, 1]. Uniform. Bounded by 1. Increasing. Limit = 2/3.
(c) Converges to % atx = 1, to 0 on (1, 2]. Not uniform. Bounded by 1. Decreasing.
Limit = 0.

3. (a) Convergesto1latx =0, to0on (0, 1]. Not uniform. Bounded by 1. Decreasing.
Limit = 0.
(c) Converges to 0. Not uniform. Bounded by 1/e. Not monotone. Limit = 0.
(e) Converges to 0. Not uniform. Bounded by 1/+/2e. Not monotone. Limit = 0.

4. (a) The Dominated Convergence Theorem applies.
(b) f,(x) = 0 for x € [0, 1), but (£, (1)) is not bounded. No obvious dominating function.
Integrate by parts and use (a). The result shows that the Dominated Convergence Theorem
does not apply.

6. Suppose that (f,(c)) converges for some c € [a, b]. By the Fundamental Theorem, f,(x) —
f.(©) = [ fi- By the Dominated Convergence Theorem, [.* f; — [ g, whence (f,(x)) con-
verges for all x € [a, b]. Note that if f, (x) = (—1)", then (f, (x)) does not converge for any
x € [a, b].

7. Indeed, g(x) := sup{ f,(x) : k € N} equals 1/kon(k— 1,k],sothat [J g=1+3+---+ 1.
Hence g ¢ R*[0, 00).

10. (a) Ifa > 0, then |(e**sinx)/x| <e % fort e J, == (a,00).Ift, € J andt, > t,€J,

then the argument in 10.4.6(d) shows that E is continuous at #,. Also, if 7, > 1, then
[(e~'«* sinx) /x| < e™* and the Dominated Convergence Theorem implies that E () —> 0.
Thus E(f) = Oast — oo.

(b) Itfollows as in 10.4.6(e) that E'(to) = - f(;” e'*sinxdx = -1/ (tg +1).

(©) By 1019, E(s)—E(t) =[] E'(‘)dt = — [ (t* +1)'dt = Arctant — Arctans for
s,t > 0. But E(s) — 0 and Arctans — /2 as s — o0.

(d) We do not know that E is continuous as t — 0+.

12. Fix x € I. Asin 10.4.6(é), ift,r e [a.b], there exists ¢ between ¢,7 such that f(z,x) —
fltyx) = (t =19 ¥ (2, x). Therefore a(x) < [f(t,x) = f(ty, )/(t —t) < & (x) when
t # t;, Now argue as before and use the Dominated Convergence Theorem 10.4.5.

13. (a) If (s;) is a sequence of step functions converging to f a.e., and (¢,) is a sequence of
step functions converging to g a.e., Theorem 10.4.9(a) and Exercise 2.2.16 imply that
(max({s,, t,})-is a sequence of step functions that converges to max{f, g} a.e. Similarly,
for min{f, g}.

14. (a) Since f, € Ma, b] is bounded, it belongs to R*[a, b]. The Dominated Convergence

Theorem implies that f € R*[a, b]. The Measurability Theorem 10.4.11 now implies that
f € Mla, bl.

(b) Since ¢ > Arctant is continuous, Theorem 10.4.9(b) implies that f, := Arctano g €
Mla, b). Further, | f,(x)| < 37 for x € [a, b].

(c) Ifg, — ga.e, it follows from the continuity of Arctan that f, — f a.e. Parts (a,b) imply
that f € Mla, b] and Theorem 10.4.9(b) applied to ¢ = tan implies that g =tanof €
Mla, b].
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15. (a) Since 1 is bounded, it is in R*[a, b] if and only if it is in M(a, b].
(C) lE' =1- lE'
(d) 1;,.(x) =max{lg(x),1.(x)} and 1., .(x) =min{l;(x),1.(x)}. Further, E\ F =
ENF.
(e) If (E,) is an increasing sequence in M[a,b], then (1 Ek) is an increasing sequence in
Mla, b] with 1,(x) =lim1, (x), and we can apply Theorem 10.4.9(c). Similarly, (1 Fk)
is a decreasing sequence in M[a, b]and 1. (x) =lim1 F, (x).
() LetA, = U2=1 E,, sothat (A,) is an increasing sequence in M([a, b] with U:°=| A, =E,
so (e) applies. Similarly, if B, := ﬂ;"=1 F,, then (B,) is a decreasing sequence in M([a, b]
with ﬂf;l B, =F. .
16. (a) m@) =/ 0=0and0 <1, < 1impliesO<m(E)= [ 1, <b—a.
(b) Since I[C' a1 is a step function, then m([c,d]) =d —c.
(c) Sincely =1-—1,, wehave m(E') = fab(l -1,)=(b—a) —m(E).
(d) Notethatl,, +1,,=1;+1..
(f) If (E)) is increasing in M[a, b] to E, then (lEk) is increasing in Mla, b] to 1. The
Monotone Convergence Theorem 10.4.4 applies.
(g) If (C)) is pairwise disjoint and E, :=|J;_, C, for n € N, then m(E)=m(C)+--+
m(C,). Since U:C;l C, = U:°=1 E, and (E,) is increasing, (f) implies that m(|J,_, C,) =
lim, m(E,) = lim, ¢_ m(Cp) = 35,2, m(C)p.
Section 11.1
1. If|x —u| <inf{x,1—x},thenu <x+ (1 —x)=1andu >x —x =0,sothat0 < u < 1.
3. Since the union of two open setsisopen, thenG, U--- UG, UG,,, = (G, U---UG) UG, ,

is open.

5. The complement of N is the union (—oo, 1) U (1,2) U - - - of open intervals.

7. Corollary 2.4.9 implies that every neighborhood of x in QQ contains a point notin Q.

10. x is aboundary pointof A <= every neighborhood V of x contains points in A and points in
C(a) < x is a boundary point of C(a).

12. The sets F and C(F) have the same boundary points. Therefore F contains all of its boundary
points < C(F) does not contain any of its boundary points <= C(F) is open.

13. x € A° < x belongstoanopensetV C A < x is an interior point of A.

15. Since A~ is the intersection of all closed sets containing A, then by 11.1.5(a) it is a closed
set containing A. Since C(A™) is open, then z € C(A™) &= z has a neighborhood V, (2) in
C(A™) <= zis neither an interior point nor a boundary point of A.

19. If G # @ is open and x € G, then there exists £ > 0 such that V_(x) € G, whence it follows
thata = x —¢isin A,.

21. Ifa, <y <x thensince a, = inf A  there exists a e A such thata, < a’ < y. Therefore
(,x]1C(@,x] CGandy € G.

23. Ifx e Fandn € N, the interval I in F, containing x has length 1/3". Let y, be an endpoint of
I withy, # x.Theny, € F(why?)andy, = x.

24. Asin the preceding exercise, take z, to be the midpoint of . Then z, ¢ F (why?) and z, — x.

Section 11.2

1. LetG,:=(1+1/n,3)forneN.
3. LetG, = (1/2n,2)forn € N.
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5. If G, is an open cover of K| and G, is an open cover of K, then G, UG, is an open cover of
K, UK,
7. LetK, :=[0,n]forn eN.
10. Since K # @is bounded, it follows that inf K existsinR.IfK, = {k e K : k < (inf K) + 1/n},
then K, is closed and bounded, hence compact. By the preceding exercise (] K, # @, but if

X, € NK w then X, € K and it is readily seen that X, = inf K. [Alternatively, use Theorem
11.2.6.]

12. Letd # K C R be compact and letc € R. If n € N, there exists x, € K such that
sup{lc — x| : x € K} — 1/n < |c — x,,|. Now apply the Bolzano-Weierstrass Theorem.

15. LetF:={n:neN}andF, ={n+1/n:neN,n>2}.

Section 11.3

1. (@ Ifa<b<0,then f'(J)=0.Ifa <0 < b, then f~'(I) = (—vb,vb).If0 <a <b,
then (1) = (—vb, —/a) U (Va, Vb).

3. G =F110,e)=11,1+6)=0,1+)N1.

4. LetG:=(1/2,3/2).Let F :=[—1/2,1/2].

8. Let f be the Dirichlet Discontinuous Function.

9. Firstnote thatif AC Randx € R, then wehave x € fTI(R\ A) < f(x) eR\A &
f) A & x¢ f1(A) & xeR\ fl(A); therefore, f~/(R\ A) =R\ f~'(A).
Now use the fact that a set F C R is closed if and only if R\ F is open, together with
Corollary 11.3.3.

Section 11.4

L P = (x;,y)fori =1,23thend,(P, P) < (Ix; —x3| + lx; —x,[) + (Iy; = 3] +1y3 -
¥,1) =d, (P, P;) +d,(P;, P,). Thus d, satisfies the Triangle Inequality.

2. Sincel|f(x) —g@)| = |f(x) — h(x)| + |h(x) — g(x)| < d (f, h) +d_,(h, g)forallx € [0, 1],
itfollows that d_ (f, g) <d_(f, h) +d_ (h, g) and d_, satisfies the Triangle Inequality.

3. Wehaves # ¢t if and only if d(s, t) = 1. If s # ¢, the value of d(s, u) 4+ d(u, t) is either 1 or 2
depending on whether u equals s or ¢, or neither.

4. Since d(P,, P) =sup{lx, — x|, |y, — yl}, if d_(P,, P) = O then it follows that both
lx, — x| — 0 and |y, — ¥l = 0, whence x, — x and y, — y. Conversely, if x, = x and
¥, = ¥, then |x, — x| - Oand |y, — yl = 0, whence d_(P,, P) — 0.

6. Ifasequence (x,) in S converges to x relative to the discrete metric d, thend(x,, x) — 0 which
implies that x, = x for all sufficiently large n. The converse is trivial.

7. Show that a set consisting of a single point is open. Then it follows that every set is an open set,
so that every set is also a closed set. (Why?)

10. Let G € S, be open in (S,,d,) and let x € £7Y(G) so that f(x) € G. Then there exists an
e-neighborhood V (f(x)) € G. Since f is continuous at x, there exists a §-neighborhood V(x)
such that f(V;(x)) € V.(f(x)). Since x € f~'(G) is arbitrary, we conclude that f~'(G) is
openin (S, , d,). The proof of the converse is similar.

11. Let G ={G_} be a cover of f(S) C R by open sets in R. It follows from 11.4.11 that each
set f “(Ga) is open in (S, d). Therefore, the collection { f 'I(Ga)} is an open cover of S.
Since (S, d) is compact, a finite subcollection { f -1 (G"‘l)’ - f'l (G"‘N)} covers S, whence it
follows that the sets {G, , ---, G, } must form a finite subcover of G for f(S). Since G was an
arbitrary open cover of f(S), we conclude that f (S) is compact.
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of a series, 89 Discrete metric, 329

of a series of functions, 266 ff. Disjoint sets, 3

of integrals, 301 ff. Disjunction, 335

pointwise, 227 Distance, 33, 292

uniform, 229 ff. Divergence:
Converse, 337 of a function, 98, 102
Convex function, 187 ff. of a sequence, 54, 77, 86 ff.
Cosine function, 249 Division, in R, 24
Countability: Domain of a function, 5

of N x N, 18, 344 ‘ Dominated Convergence Theorem, 303 ff.

of Q, 19 . Double implication, 337

of Z,18 ) negation, 335
Countable: o

additivity, 311 ' E

set, 18 ff. . Element, of a set, 1
Counter-example, 339 Elliptic integral, 273
Curve, space-filling, 355 Empty set @, 3
Cover, 319 Endpoints of intervals, 44

Equi-integrability, 302

D Theorem, 303
D’ Alembert’s Ratio Test, 258 Equivalence, logical, 335
Darboux Intermediate Value Theorem, Euler, Leonhard, 74, 96

174 Euler’s constant C, 262

Decimal representation, 49 number e, 73, 241



Even function, 167, 209
number, 2, 25

Excluded middle, 335

Existential quantifier 3, 338

Exponential function, 239 ff.

Exponents, 24

Extension of a function, 139 ff.

Extcemum, absolute, 130
relative, 168,171, 187

F
IF (= Cantor set), 317
Falsity, 335
Fermat, Pierre de, 157, 193
Fibonacci sequence, 54
Field, 23
8-Fine partition, 145, 275
Finite set, 16 ff.
First Derivative Test, 171
Fluxions, 157
Fresnel Integral, 300
Function(s), 5 ff.
additive, 111, 129, 152
Bessel, 172
bijective, 8
bounded, 39, 105, 129 ff.
composition of, 9, 127
continuous, 120 ff., 331 ff.
convex, 187 ff.
decreasing, 149, 170
derivative of, 158
difference of, 105
differentiable, 158
direct image of, 7
Dirichlet, 122, 202, 204, 215, 277
discontinuous, 120
domain of, 5
even, 167, 209
exponential, 239 ff.
gauge, 145
graph of, 5
greatest integer, 124, 217
hyperbolic, 252
image of, 6
increasing, 149, 170
injective, 8
integrable, 196, 276, 295 ff., 308 ff.
inverse, 8, 152, 164 ff.
inverse cosine, 10,
inverse image of, 7
inverse sine, 10

INDEX

jump of, 150
limit of , 98 ff.
Lipschitz, 138
logarithm, 243 ff.
measurable, 306 ff.
mewic, 328
monotone, 149, 170
multiple of, 105
nondifferentiable, 159, 354
nth root, 42, 152 ff.
odd, 167, 209
one-one, 8
onto, 8
oscillation, 348
periodic, 144
piecewise linear, 142
polynomial, 108, 126, 143
power, 154, 244
product of, 105
quotient of, 105
range of, 5
rational, 108, 126
rational power, 154
restriction of, 10
sequence of, 227 ff.
series of, 266 ff.
signum, 102, 122
square root, 10, 42
step, 141, 205
sum of, 105
surjective, 8
Thomae’s, 122, 200, 215
Translate, 202
trigonometric, 126, 246 ff.
values of, 6

Fundamental Theorems of Calculus,
210 ff., 281 ff., 297 ff.

G
Gallus gallus, 335
Gauge, 145 ff., 238, 2751f., 350
Generalized Riemann integral, 274 ff.
Geometric Mean, 28, 246
series, 90
Global Continuity Theorem, 324, 332
Graph, 5
Greatest integer function, 124, 217
lower bound (= infimum), 36

H
Hadamard-Cauchy Theorem, 269
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Hake’s Theorem, 288, 295 ff.
Half-closed interval, 44
Half-open interval, 44
Harmonic series, 70, 91, 253
Heine-Borel Theorem, 321
Henstock, Ralph, 275
Higher order derivatives, 184
Horizontal Line Tests, 8
Hyperbolic functions, 252
Hypergeometric series, 263
Hypothesis, 336

induction, 13

I

Image, 6, 7

Implication, 336

Improper integrals, 259, 274, 287 ff.
Increasing function, 149, 170

sequence, 69
Indefinite integral, 212, 217, 283
Indeterminate forms, 176 ff.
Indirect proofs, 341
Induction, Mathematical, 12 ff.
Inequality:

Arithmetic-Geometric, 28, 246

Bemoulli, 29, 173

Schwarz, 219

Triangle, 31, 328
Infimum, 36
Infinite limits, 114 ff.

series, 89 ff., 253 ff.

set, 16 ff.

Injection, 8
Injective function, 8
Integers, 2

Integral:

Dirichlet, 297, 306

elliptic, 273

Fresnel, 300

generalized Riemann, 274 ff.

improper, 259, 287 ff.

indefinite, 212,217, 283

Lebesgue, 193, 274, 290 ff.

Riemann, 196 ff.

Test, for series, 259
Integration by parts, 216, 285
Interchange Theorems:

relating to continuity, 234

relating to differentiation, 235

relating to integration, 237, 301 ff.

relating to sequences, 233 ff.
relating to series, 267 ff.
Interior Extremum Theorem, 168
of aset, 318
point, 318
Intermediate Value Theorems:
Bolzano’s, 133
Darboux’s, 174
Intersection of sets, 3, 4
Interval(s), 44 ff.
characterization of, 45
of convergence, 269
length of, 44
nested, 45 ff.
partition of, 145, 194
Preservation of, 135
Inverse function, 8, 152 ff., 164 ff.
image, 7
Irrational number, 24
Iterated sums, 256
suprema, 44

J
Jump, of a function, 150

K

K (¢)-game, 56

Kuala Lumpur, 335
Kurzweil, Jaroslav, 275, 302

L
Lagrange, J.-L., 183
form of remainder, 185
Least upper bound (= supremum), 35
Lebesgue, Henri, 193, 214, 274, 349
Dominated Convergence Theorem, 304
Integrability Theorem, 215, 349
integral, 193, 274, 290 ff.
measure, 311
Leibniz, Gottfried, 97, 157, 193
Alternating Series Test, 263
Rule, 191
Lemma, 341
Length, of an interval, 44
L’Hospital, G. F,, 176
Rules, 176 ff.
Limit:
Comparison Test, 93, 257
of a function, 98 ff.
inferior, 74



infinite, 114 ff.
one-sided, 111
of a sequence, 54
of a series, 89
superior, 74, 269
Line tests, 8
Lipschitz condition, 138
Location of Roots Theorem, 132, 147
Logarithm, 243 ff.
Logical equivalence, 335
Lower bound, 35

M
M (= collection of measurable sets), 311
M -Test, of Weierstrass, 268, 354 ff.
Mapping, see Function
Mathematical Induction, 12 ff.
Maximum, absolute, 130

relative, 168
Maximum-minimum Theorem, 131, 147,

325
Mean Value Theorem:

Cauchy form, 178

for derivatives, 169 ff.

for integrals, 209, 287
Measurability Theorem, 308
Measurable function, 306 ff.

set, 311
Measure, Lebesgue, 311

zero, see Null set
Meat grinder, 6
Member of a set, 1
Mesh (= norm) of a partition, 195
Metric function, 328

space, 327 ff.
Middle, excluded, 335
Midpoint Rule, 222 ff., 352
Minimum, absolute, 130

relative, 168
Monotone Convergence Theorem, 69, 304

function, 149 ff.

sequence, 69

Subsequence Theorem, 78
Multiple of a sequence, 61
Muiltiplication Theorem, 285

N

N (= collection of natural numbers), 2
Natural numbers, 2

Negation, 335

INDEX

Negative numbers, 25
Neighborhood, 33, 312, 329
Nested Intervals Property, 46, 80
Newton, Isaac, 96, 157, 193
Newton-Leibniz Formula, 274
Newton’s Method, 189 ff.
Nondifferentiable functions, 159, 354
Norm of a function, 230, 292

of a partition, 195
Null set, 214
Number(s):

even, 2, 15

irrational, 24

natural, 2

rational, 2, 24

odd, 2, 15

real, 2,22 ff.

(0]
Odd function, 167, 209

number, 2, 25
One-one function, 8
One-sided limit, 111
Onto, 8
Open cover, 319

interval, 44

set, 313, 331

Set Properties, 313, 315
Order Properties of R, 25 ff.
Ordered pair, 4
Oscillation, 348 ff.

P
P (= positive class), 25
Partial sum, 89, 267
summation formula, 264
Partition, 145, 194
8-fine, 145, 275
mesh of, 195
norm of, 195
tagged, 145, 195
Peak, 78
Periodic decimal, 49
function, 144
Piecewise linear function, 142
Pigeonhole Principle, 343
Point:
boundary, 318
cluster, 97, 315
interior, 318

385
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Pointwise convergence, 227
Polynomial, Bernstein, 143
functions, 126
Taylor, 184
Positive class P, 25
Power, of a real number, 154, 244
functions, 244
series, 268 ff.
Preservation:
of Compactness, 325, 332
of Intervals, 135
Primitive of a function, 210

Real numbers R, 2, 22 ff.
power of, 154, 244
Rearrangement Theorem, 255
Reciprocal, 23
Reductio ad absurdum, 342
Remainder in Taylor’s Theorem:
integral form, 217, 285
Lagrange form, 185
Repeating decimals, 49
Restriction, of a function, 10
Riemann, Bembhard, 193, 274
Integrability Criterion, 347

Principle of Mathematical Induction,
12 ff.
Product:
Cartesian, 4
of functions, 105
of sequences, 61
of sets, 4
Rule, 160
Theorem, 216
Proof:
by contradiction, 342
by contrapositive, 341
direct, 340
indirect, 341
Proper subset, 1
Properly divergent sequence, 86 ff.
Property, 2
p-series, 92

Q

Q (= collection of rational numbers), 2
QED,, 341
Quantifiers, 337 ff.
Quod erat demonstratum, 341
Quotient:

of functions, 105

of sequences, 61

Rule, 160

R
R (= collection of real numbers), 2, 22 ff.
Raabe’s Test, 260
Radius of convergence, 269
Range, of a function, 5
Rational numbers Q, 2, 24
function, 126
power, 154
Ratio Test, 66, 258

integral, 193 ff., esp. 196
sum, 195
Riesz-Fischer Theorem, 293
Rolle’s Theorem, 168
Root(s):
existence of, 42, 152 ff.
functions, 10, 42
Location of, 132, 147
Newton’s Method, 189 ff.
Test, 257

S
Schoenberg, I. J., 355
Schwarz inequality, 219
Second Derivative Test, 187
Semimenric, 332
Seminorm, 292
Sequence(s), 53
bounded, 60
Cauchy 81, 330
constant, 53
contractive, 84
convergent, 54
difference of, 61
divergent, 54, 86
Fibonacci, 54
of functions, 227 ff.
inductive, 53
limit of, 54
monotone, 69
multiple of, 61
product of, 61
properly divergent, 86
quotient of, 61
recursive, 53
shuffled, 80
subsequence of, 75
sum of, 61



tail of, 57

tertn of, 53

unbounded, 60

uniform convergence of, 229
Series, 89 ff., 253 ff.
absolutely convergent, 253
alternating, 263
alternating haronic, 92, 253
conditionally convergent, 253
convergent, 89

of functions, 266 ff.
geometric, 90

grouping of, 254
harmonic, 91, 253
hypergeometric, 263
power, 268 ff.

p-series, 92
rearrangements of, 255
sixless, 263

Taylor, 271 ff.

2-series, 91

uniformly convergent, 267 ff.
Set(s):

boundary point of, 318
bounded, 35, 333

Cantor F, 317

Cartesian product of, 4
closed, 313, 331

closure of, 319

cluster point of, 97, 315
compact, 319 ff.
complement of, 3
contains/contained in, 1
countable, 18, 343 ff.
denumerable, 18

disjoint, 3

empty, 3

equality of, 2

finite, 16, 343 ff.
inclusion of, 1

infimum of, 36

infinite, 16

interior of, 318

interior point of, 318
intersection of, 3, 4
intervals, 44 ff.
measurable, 311

null, 214

open, 313, 331

relative complement of, 3

INDEX 387

supremum of, 35
symmetric difference, 11
unbounded, 35
uncountable, 18
union of, 2, 3
void, see Empty set
Shuffled sequence, 80
Signum function, 102, 122
Simpson’s Rule, 223 ff., 352
Sine function, 249
Sixless series, 263
Space-filling curve, 355
Square root of 2:
calculation of, 72
existence of, 41
irrationality of, 25
Square root function, 10, 42
Squaring function, 10
Squeeze Theorem, 64, 108, 204, 280
Statement, 334
Step function, 141 ff., 205
Swaddle Lemma, 167
Swong Induction, 15
Subcover, 319
Subsequence, 75
Subset, 1
Substitution Theorems, 214, 218, 283
Subtraction in R, 24
Sum:
iterated, 256
of functions, 105
partial, 89
Riemann, 195
of sequences, 61
of a series, 89
Supremum, 35
iterated, 44
Property, 37
Surjection, 8
Surjective function, 8
Syllogism, Law of, 340
Symmetric difference, 11

T
Tagged partition, 145, 195
Tail, of a sequence, 57
Tautology, 335
Taylor, Brook, 183
polynomial, 184
series, 271 ff.
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Taylor’s Theorem, 184,217, 285 Union of sets, 2, 3
Terminating decimal, 49 Uniqueness Theorem:
Test: for finite sets, 17, 343

first derivative, 171 for integrals, 196, 276

for absolute convergence, 257 ff. for power series, 271

for convergence of series, 91ff., 257 ff. Universal quantifier V, 338

nth derivative, 187 Upper bound, 35

nth Term, 91
Thomae’s function, 122, 200, 215, 307 \%
Translate, 202 Value, of a function, 6
Trapezoidal Rule, 221 ff., 351 van der Waerden, B. L., 354
Triangle Inequality, 31, 328 Vertical Line Test, 5, 8
Trichotomy Property, 25 Void set, see Empty set
Trigonometric functions, 246 ff.

W

U Well-ordering Property of N, 12
Ultimately, 57 Weierstrass, Karl, 96, 119, 159
Uncountable, 18 Approximation Theorem, 143
Uncountability of R, 47, 50 M -Test, 268, 354 ff.
Uniform continuity, 136 ff., 148 nondifferentiable function, 159, 354
Uniform convergence:

of a sequence, 229 ff., 302 VA

of a series, 267 ff. Z (= collection of integers), 2
Uniform differentiability, 176 Zeroelement, 23

Uniform norm, 230 Zero measure, see Null set
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