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PREFACE 

The study of real analysis is indispensible for a prospective graduate student of pure or 
applied mathematics. It also has great value for any undergraduate student who wishes 
to go beyond the routine manipulations of formulas to solve standard problems, because 
it develops the ability to think deductively, analyze mathematical situations, and extend 
ideas to a new context. In recent years, mathematics has become valuable in many areas, 
including economics and management science as well as the physical sciences, engineering, 
and computer science. Our goal is to provide an accessible, reasonably paced textbook in 
the fundamental concepts and techniques of real analysis for students in these areas. This 
book is designed for students who have studied calculus as it is traditionally presented in 
the United States. While students find this book challenging, our experience is that serious 
students at this level are fully capable of mastering the material presented here. 

The first two editions of this book were very well received, and we have taken pains 
to maintain the same spirit and user-friendly approach. In preparing this edition, we have 
examined every section and set of exercises, streamlined some arguments, provided a few 
new examples, moved certain topics to new locations, and made revisions. Except for the 
new Chapter 10, which deals with the generalized Riemann integral, we have not added 
much new material. While there is more material than can be covered in one semester, 
instructors may wish to use certain topics as honors projects or extra credit assignments. 

It is desirable that the student have had some exposure to proofs, but we do not assume 
that to be the case. To provide some help for students in analyzing proofs of theorems, 
we include an appendix on "Logic and Proofs" that discusses topics such as implications, 
quantifiers, negations, contrapositives, and different types of proofs. We have kept the 
discussion informal to avoid becoming mired in the technical details of formal logic. We 
feel that it is a more useful experience to learn how to construct proofs by first watching 
and then doing than by reading about techniques of proof. 

We have adopted a medium level of generality consistently throughout the book: we 
present results that are general enough to cover cases that actually arise, but we do not strive 
for maximum generality. In the main, we proceed from the particular to the general. Thus 
we consider continuous functions on open and closed intervals in detail, but we are careful 
to present proofs that can readily be adapted to a more general situation. (In Chapter 1 1  
we take particular advantage of the approach.) We believe that it is important to provide 
students with many examples to aid them in their understanding, and we have compiled 
rather extensive lists of exercises to challenge them. While we do leave routine proofs as 
exercises, we do not try to attain brevity by relegating difficult proofs to the exercises. 
However, in some of the later sections, we do break down a moderately difficult exercise 
into a sequence of steps. 

In Chapter 1 we present a brief summary of the notions and notations for sets and 
functions that we use. A discussion of Mathematical Induction is also given, since inductive 
proofs arise frequently. We also include a short section on finite, countable and infinite sets. 
We recommend that this chapter be covered quickly, or used as background material, 
returning later as necessary. 

v 



vi PREFACE 

Chapter 2 presents the properties of the real number system lR. The first two sections 
deal with the Algebraic and Order Properties and provide some practice in writing proofs 
of elementary results. The crucial Completeness Property is given in Section 2.3 as the 
Supremum Property, and its ramifications are discussed throughout the remainder of this 
chapter. 

In Chapter 3 we give a thorough treatment of sequences in IR and the associated limit 
concepts. The material is of the greatest importance; fortunately, students find it rather 
natural although it takes some time for them to become fully accustomed to the use of €. 
In the new Section 3.7, we give a brief introduction to infinite series, so that this important 
topic will not be omitted due to a shortage of time. 

Chapter 4 on limits of functions and Chapter 5 on continuous functions constitute 
the heart of the book. Our discussion of limits and continuity relies heavily on the use of 
sequences, and the closely parallel approach of these chapters reinforces the understanding 
of these essential topics. The fundamental properties of continuous functions (on intervals) 
are discussed in Section 5.3 and 5 .4. The notion of a "gauge" is introduced in Section 5.5 
and used to give alternative proofs of these properties. Monotone functions are discussed 
in Section 5.6. 

The basic theory of the derivative is given in the first part of Chapter 6. This important 
material is standard, except that we have used a result of Caratheodory to give simpler 
proofs of the Chain Rule and the Inversion Theorem. The remainder of this chapter consists 
of applications of the Mean Value Theorem and may be explored as time permits. 

Chapter 7, dealing with the Riemann integral, has been completely revised in this 
edition. Rather than introducing upper and lower integrals (as we did in the previous 
editions), we here define the integral as a limit of Riemann sums. This has the advantage that 
it is consistent with the students ' first exposure to the integral in calculus and in applications; 
since it is not dependent on order properties, it permits immediate generalization to complex­
and vector-valued functions that students may encounter in later courses. Contrary to 
popular opinion, this limit approach is no more difficult than the order approach. It also is 
consistent with the generalized Riemann integral that is discussed in detail in Chapter 10. 
Section 7.4 gives a brief discussion of the familiar numerical methods of calculating the 
integral of continuous functions. 

Sequences of functions and uniform convergence are discussed in the first two sec­
tions of Chapter 8, and the basic transcendental functions are put on a firm foundation in 
Section 8.3 and 8.4 by using uniform convergence. Chapter 9 completes our discussion of 
infinite series. Chapters 8 and 9 are intrinsically important, and they also show how the 
material in the earlier chapters can be applied. 

Chapter 10 is completely new; it is a presentation of the generalized Riemann integral 
(sometimes called the "Henstock-Kurzweil" or the "gauge" integral). It will be new to many 
readers, and we think they will be amazed that such an apparently minor modification of 
the definition of the Riemann integral can lead to an integral that is more general than the 
Lebesgue integral. We believe that this relatively new approach to integration theory is both 
accessible and exciting to anyone who has studied the basic Riemann integral. 

The final Chapter 1 1  deals with topological concepts. Earlier proofs given for intervals 
are extended to a more abstract setting. For example, the concept of compactness is given 
proper emphasis and metric spaces are introduced. This chapter will be very useful for 
students continuing to graduate courses in mathematics. 

Throughout the book we have paid more attention to topics from numerical analysis 
and approximation theory than is usual. We have done so because of the importance of 
these areas, and to show that real analysis is not merely an exercise in abstract thought. 
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We have provided rather lengthy lists of exercises, some easy and some challenging. 
We have provided "hints" for many of these exercises, to help students get started toward a 
solution or to check their "answer". More complete solutions of almost every exercise are 
given in a separate Instructor's Manual, which is available to teachers upon request to the 
publisher. 

It is a satisfying experience to see how the mathematical maturity of the students 
increases and how the students gradually learn to work comfortably with concepts that 
initially seemed so mysterious. But there is no doubt that a lot of hard work is required on 
the part of both the students and the teachers. 

In order to enrich the historical perspective of the book, we include brief biographical 
sketches of some famous mathematicians who contributed to this area. We are particularly 
indebted to Dr. Patrick Muldowney for providing us with his photograph of Professors 
Henstock and Kurzweil. We also thank John Wiley & Sons for obtaining photographs of 
the other mathematicians. 

We have received many helpful comments from colleagues at a wide variety of in­
stitutions who have taught from earlier editions and liked the book enough to express 
their opinions about how to improve it. We appreciate their remarks and suggestions, even 
though we did not always follow their advice. We thank them for communicating with us 
and wish them well in their endeavors to impart the challenge and excitement of learning 
real analysis and "real" mathematics. It is our hope that they will find this new edition even 
more helpful than the earlier ones. 

February 24, 1999 

Ypsilanti and Urbana 
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CHAPTER 1 

PRELIMINARIES 

In this initial chapter we will present the background needed for the study of real analysis. 
Section 1.1 consists of a brief survey of set operations and functions, two vital tools for all 
of mathematics. In it we establish the notation and state the basic definitions and properties 
that will be used throughout the book. We will regard the word "set" as synonymous with 
the words "class", "collection", and "family", and we will not define these terms or give a 
list of axioms for set theory. This approach, often referred to as "naive" set theory, is quite 
adequate for working with sets in the context of real analysis. 

Section 1 .2 is concerned with a special method of proof called Mathematical Induction. 
It is related to the fundamental properties of the natural number system and, though it is 
restricted to proving particular types of statements, it is important and used frequently. An 
informal discussion of the different types of proofs that are used in mathematics, such as 
contrapositives and proofs by contradiction, can be found in Appendix A. 

In Section 1 .3 we apply some of the tools presented in the first two sections of this 
chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions 
are given and some basic consequences of these definitions are derived. The important 
result that the set of rational numbers is countably infinite is established. 

In addition to introducing basic concepts and establishing terminology and notation, 
this chapter also provides the reader with some initial experience in working with precise 
definitions and writing proofs. The careful study of real analysis unavoidably entails the 
reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is 
a starting point. 

Section 1.1 Sets and Functions 

To the reader: In this section we give a brief review of the terminology and notation that 
will be used in this text. We suggest that you look through quickly and come back later 
when you need to recall the meaning of a term or a symbol. 

If an element x is in a set A, we write 

X EA 
and say that x i s  a member of A, or that x belongs to A. If x is not in A, we write 

x ¢ A. 
If�very element of a set A also belongs to a set B, we say that A is a subset of B and write 

or 
We say that a set A is a proper subset of a set B if A � B, but there is at least one element 
of B that is not in A. In this case we sometimes write 

A C B. 

1 
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1.1.1 Definition Two sets A and B are said to be equal. and we write A = B. if they 
contain the same elements. 

Thus. to prove that the sets A and B are equal. we must show that 

A � B and B � A. 
A set is normally defined by either listing its elements explicitly. or by specifying a 

property that determines the elements of the set. If P denotes a property that is meaningful 
and unambiguous for elements of a set S. then we write 

{x E S : P(x)} 
for the set of all elements x in S for which the property P is true. If the set S is understood 
from the context. then it is often omitted in this notation. 

Several special sets are used throughout this book. and they are denoted by standard 
symbols. (ytle will use the symbol := to mean that the symbol on the left is being defined 
by the symbol on the right.) 
• The set of natural numbers N := { I .  2. 3 • . . .  }. 
• The set of integers Z := to. 1. -1.2, -2, · · . } , 
• The set ofrational numbers Q := {min : m , n E Z and n =I- OJ. 
• The set of real numbers R 

The set lR of real numbers is of fundamental importance for us and will be discussed 
at length in Chapter 2. 

1.1.2 Examples (a) The set 

{x E N : x2 - 3x + 2 = O} 
consists of those natural numbers satisfying the stated equation. Since the only solutions of 
this quadratic equation are x = 1 and x = 2, we can denote this set more simply by { I , 2}. 
(b) A natural number n is even if it has the form n = 2k for some k E N. The set of even 
natural numbers can be written 

{2k : k E N} , 
which is less cumbersome than {n E N : n = 2k, k E N} . Similarly, the set of odd natural 
numbers can be written 

{2k - 1 : k E N} . o 

Set Operations 

We now define the methods of obtaining new sets from given ones. Note that these set 
operations are based on the meaning of the words "or", "and", and "not". For the union, 
it is important to be aware of the fact that the word "or" is used in the inclusive sense, 
allowing the possibility that x may belong to both sets. In legal terminology, this inclusive 
sense is sometimes indicated by "andlor". 

1.1.3 Definition (a) The union of sets A and B is the set 
AU B := {x : x E A or x E B} . 
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(b) The intersection of the sets A and B is the set 

A n B := {x : x E A and x E B} . 
(c) The complement of B relative to A is the set 

A \B := {x : x E A and x rt B} . 

A U B !IIID 
Figure 1.1.1 (a) A U B (b) A n B (c) A\B 

A\B � 

The set that has no elements is called the empty set and is denoted by the symbol 0. 
Two sets A and B are said to be disjoint if they have no elements in common; this can be 
expressed by writing A n B = 0. 

To illustrate the method of proving set equalities, we will next establish one of the 
DeMorgan laws for three sets. The proof of the other one is left as an exercise. 

1.1.4 Theorem If A, B, C are sets, then 

(a) A\(B U C) = (A\B) n (A\C), 
(b) A\(B n C) = (A\B) U (A\C) . 
Proof. To prove (a), we will show that every element in A \ (B U C) is contained in both (A \B) and (A \C), and conversely. 

If x is in A\(B U C), then x is in A, but x is not in B U C. Hence x is in A, but x 
is neither in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus, 
x E A \B and x E A \C, which shows that x E (A \B) n (A \C). 

Conversely, if x E (A\B) n (A\C), then x E (A\B) and x E (A\C). Hence x E A 
and both x rt B and x rt C. Therefore, x E A and x rt (B U C), so that x E A \ (B U C). 

Since the sets (A \B) n (A \ C) and A \ (B U C) contain the same elements, they are 
equal by Definition 1 . 1 . 1 .  Q.E.D. 

There are times when it is desirable to form unions and intersections of more than two 
sets. For a finite collection of sets {AI ' A2, .. .  , An}, their union is the set A consisting of 
all elements that belong to at least one of the sets Ak, and their intersection consists of all 
el�ments that belong to all of the sets Ak• 

This is extended to an infinite collection of sets {A I' A2 , ••• , An ' . . .  } as follows. Their 
union is the set of elements that belong to at least one of the sets An ' In this case we 
write 

00 

U An := {x : x E An for some n E N} .  n=1 
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Similarly, their intersection is the set of elements that belong to all of these sets An' In this 
case we write 

00 n An := {x : x E An for all n E N} . 
n=l 

Cartesian Products 

In order to discuss functions, we define the Cartesian product of two sets. 

1.1.5 Definition If A and B are nonempty sets, then the Cartesian product A x B of A 
and B is the set of all ordered pairs (a , b) with a E A and b E B.  That is, 

A x B : =  { (a , b) : a E A, bE  B} . 

Thus if A = { l ,  2, 3} and B = { I ,  5} , then the set A x B is the set whose elements are 
the ordered pairs 

( 1 , 1 ) ,  ( 1 , 5) , (2, 1 ) ,  (2, 5), (3, 1 ) , (3, 5). 
We may visualize the set A x B as the set of six points in the plane with the coordinates 
that we have just listed. 

We often draw a diagram (such as Figure 1 . 1 .2) to indicate the Cartesian product of 
two sets A and B .  However, it should be realized that this diagram may be a simplification. 
For example, if A := {x E IR : 1 .:::: x .:::: 2} and B := {y E IR : 0 .:::: y .:::: 1 or 2 .:::: y .:::: 3}, 
then instead of a rectangle, we should have a drawing such as Figure 1 . 1 .3 . 

We will now discuss the fundamental notion of afunction or a mapping. 
To the mathematician of the early nineteenth century, the word "function" meant a 

definite formula, such as f (x) := x2 + 3x - 5, which associates to each real number x 
another number f(x) . (Here, f(O) = -5, f(1) = -1 ,  f(5) = 35.) This understanding 
excluded the case of different formulas on different intervals, so that functions could not 
be defined "in pieces". 

B 
b ------1 (a , b) 

I 
I 
I 
I 
I 

a 

AxB 

A 

Figure 1.1.2 

3 

2 

AxB 

2 

Figure 1.1.3 
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As mathematics developed, it became clear that a more general definition of "function" 

would be useful. It also became evident that it is important to make a clear distinction 

between the function itself and the values of the function. A revised definition might be: 

A function f from a set A into a set B is a rule of correspondence that assigns to 

each element x in A a uniquely determined element f (x) in B.  

But however suggestive this revised definition might be, there is the difficulty o f  interpreting 

the phrase "rule of correspondence". In order to clarify this, we will express the definition 

entirely in terms of sets; in effect, we will define a function to be its graph. W hile this has 

the disadvantage of being somewhat artificial, it has the advantage of being unambiguous 

and clearer. 

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered 

pairs in A x B such that for each a E A there exists a unique b E B with (a , b) E f. (In 

other words, if (a, b) E f and (a, b') E f, then b = b' .) 

The set A of first elements of a function f is called the domain of f and is often 

denoted by D(f). The set of all second elements in f is called the range of f and is 

often denoted by R(f). Note that, although D(f) = A, we only have R(f) � B. (See 

Figure 1.1.4.) 

The essential condition that: 

(a, b) E f and (a, b') E f implies that b= b' 
is sometimes called the vertical line test. In geometrical terms it says every vertical line 

x = a with a E A intersects the graph of f exactly once. 

The notation 

f : A--o;B 

is often used to indicate that f is  a function from A into B. We will also say that f is  a 

mapping of A into B, or that f maps A into B.  If (a , b) is an element in f, it is customary 

to write 

b = f(a) or sometimes a 1-+ b. 

r; 
r �----------------�--------� �IE _________ A=DV) ___ a ________ �.1 

Figure 1.1.4 A function as a graph 
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If b = f(a), we often refer to b as the value of f at a, or as the image of a under f. 

Transformations and Machines 

Aside from using graphs, we can visualize a function as a transformation of the set DU) = 

A into the set RU) � B. In this phraseology, when (a , b) E f, we think of f as taking 
the element a from A and "transforming" or "mapping" it into an element b = f(a) in 
RU) � B.  We often draw a diagram, such as Figure 1 . 1 .5 , even when the sets A and B are 
not subsets of the plane. 

b =!(a) 

Figure 1.1.5 A function as a transfonnation 

R(f) 

There is another way of visualizing a function: namely, as a machine that accepts 
elements of DU) = A as inputs and produces corresponding elements of RU) � B as 
outputs. If we take an element x E D  U) and put it into f, then out comes the corresponding 
value f(x) . If we put a different element y E DU) into f, then out comes f ey) which may 
or may not differ from f(x) . If we try to insert something that does not belong to DU) 
into f, we find that it is not accepted, for f can operate only on elements from DU). (See 
Figure 1 . 1 .6.) 

This last visualization makes clear the distinction between f and f (x) :  the first is the 
machine itself, and the second is the output of the machine f when x is the input. Whereas 
no one is likely to confuse a meat grinder with ground meat, enough people have confused 
functions with their values that it is worth distinguishing between them notationally. 

x 

t 

! 

!(x) 

Figure 1.1.6 A function as a machine 



1 . 1  SETS AND FUNCTIONS 7 

Direct and Inverse Images 

Let f : A � B be a function with domain DC!) = A and range RC!) � B. 

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset 
f(E) of B given by 

f(E) := {f(x) : x E E} . 

If H is a subset of B, then the inverse image of H under f is the subset f -, (H) of A 
given by 

f-' (H) := {x E A : f(x) E H} .  

Remark The notation f-' (H) used in this connection has its disadvantages. However, 
we will use it since it is the standard notation. 

Thus, if we are given a set E � A, then a point y, E B is in the direct image f(E) 
if and only if there exists at least one point x, E E such that Y, = f(x,) . Similarly, given 
a set H � B, then a point x2 is in the inverse image f-' (H) if and only if Y2 : =  f(x2) 
belongs to H. (See Figure 1 . 1 .7.) 

1.1.8 Examples (a) Let f : IR � IR be defined by f(x) := x2 • Then the direct image 
of the set E := {x : 0 � x � 2} is the set f(E) = {y : 0 � Y � 4}. 

If G := {y : 0 � Y � 4}, then the inverse image of G is the set f-' (G) = {x : -2 � 
x � 2}. Thus, in this case, we see that f-' C!(E» =1= E. 

On the other hand, we have f (J-' (G») = G. But if H := {y : -1 � Y � I} ,  then 
we have f (J-' (H») = {y : 0 � y � I }  =1= H. 

A sketch of the graph of f may help to visualize these sets. 
(b) Let f : A � B, and let G, H be subsets of B .  We will show that 

f-' (G n H) � f-' (G) n f-' (H). 
For, if x E f-' (G n H), then f(x) E G n H, so that f(x) E G and f(x) E H. But this 
implies that x E f-' (G) and x E f-' (H), whence x E f-' (G) n f-' (H). Thus the stated 
implication is proved. [The opposite inclusion is also true, so that we actually have set 
equality between these sets; see Exercise 13.] 0 

Further facts about direct and inverse images are given in the exercises. 

E 
f 

� 

H 

Figure 1.1.7 Direct and inverse images 
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Special Types of Functions 

The following definitions identify some very important types of functions. 

1.1.9 Definition Let I : A -+ B be a function from A to B .  

(a) The function I i s  said to be injective (or to be  one-one) if whenever x ,  i= x2, then 
I(x,) i= l(x2) · If I is an injective function, we also say that I is an injection. 

(b) The function I is said to be surjective (or to map A onto B) if I(A) = B;  that is, if 
the range R(f) = B. If I is a surjective function, we also say that I is a surjection. 

(c) If I is both injective and surjective, then I is said to be bijective. If I is bijective, we 
also say that I is a bijection. 

• In order to prove that a function I is injective, we must establish that: 

for all x" x2 in A ,  if I (x,) = l(x2) ,  then x, = x2• 

To do this we assume that I(x,) = l(x2) and show that x, = x2. 
[In other words, the graph of I satisfies the first horizontal line test: Every horizontal 
line y = b with b E B intersects the graph I in at most one point.] 

• To prove that a function I is surjective, we must show that for any b E B there exists at 
least one x E A such that I (x) = b. 
[In other words, the graph of I satisfies the second horizontal line test: Every horizontal 
line y = b with b E B intersects the graph I in at least one point.] 

1.1.10 Example Let A := {x E lR :  x i= l } and define /(x) := 2x/(x -l) for allx E A. 
To show that I is  injective, we take x, and x2 in A and assume that I(x,) = l(x2) .  Thus 
we have 

2x, 2x2 
-- = --, 
x, - 1 x2 - 1 

which implies that x, (x2 - 1) = x2(x, - 1) ,  and hence x, = x2 . Therefore I is injective. 
To determine the range of I, we solve the equation y = 2x/(x - 1) for x in tenus of 

y. We obtain x = y / (y - 2), which is meaningful for y i= 2. Thus the range of I is the set 
B := {y E lR : y i= 2}. Thus, I is a bijection of A onto B.  0 

Inverse Functions 

If I is a function from A into B, then I is a special subset of A x B (namely, one passing 
the vertical line test. ) The set of ordered pairs in B x A obtained by interchanging the 
members of ordered pairs in I is not generally a function. (That is, the set I may not pass 
both of the horizontal line tests.) However, if I is a bijection, then this interchange does 
lead to a function, called the "inverse function" of I. 

1.1.11 Definition If I : A -+ B is a bijection of A onto B, then 

g := feb, a) E B x A : (a, b) E f} 
is a function on B into A.  This function is called the inverse function of I, and is denoted 
by 1-'. The function 1-' is also called the inverse of I .  
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We can also express the connection between I and its inverse I-I by noting that 
D(f) = R(f-I ) and R(f) = D(f-I ) and that 

b = I(a) if and only if a = I-I (b) . 
For example, we saw in Example 1 . 1 . 10 that the function 

2x I(x) : =  x - I 
is a bijection of A := {x E JR : x 1= I }  onto the set B := {y E JR : y 1= 2}. The function 
inverse to I is given by 

I-I (y) := -y­y - 2  for y E B. 

Remark We introduced the notation I-I (H) in Definition 1 . 1 .7. It makes sense even if 
I does not have an inverse function. However, if the inverse function I-I does exist, then 
I-I (H) is the direct image of the set H � B under I-I . 

Composition of Functions 

It often happens that we want to "compose" two functions I, g by first finding I (x) and 
then applying g to get g (f (x)) ; however, this is possible only when I (x) belongs to the 
domain of g. In order to be able to do this for all I(x), we must assume that the range of 
I is contained in the domain of g. (See Figure 1 . 1 .8 .) 

1.1.12 Definition If I : A � B and g : B � C, and if R(f) � D(g) = B, then the 
composite function g o  I (note the orderl) is the function from A into C defined by 

(g 0 f)(x) := g(f(x)) for all x E A.  

1.1.13 Examples (a) The order of the composition must be carefully noted. For, let I 
and g be the functions whose values at x E JR are given by 

I(x) := 2x and g(x) := 3x2 - 1 .  
Since D(g) = JR and R(f) � JR = D(g), then the domain D(g 0 f) is also equal to JR ,  and 
the composite function g 0 I is given by 

A 

(g 0 f)(x ) = 3(2x)2 - 1 = 12x2 - 1 . 

I 
� 

B 

gol 

Figure 1.1.8 The composition of f and g 

c 
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On the other hand, the domain of the composite function l o g  is also JR, but 

(f 0 g)(x) = 2(3x2 - 1) = 6x2 - 2. 

Thus, in this case, we have g 0 I =1= l o g. 
(b) In considering g 0 I, some care must be exercised to be sure that the range of 1 is 
contained in the domain of g. For example, if 

I(x) := l - x2 and g(x) := ./X, 

then, since D(g) = {x : x � O}, the composite function g o  I is given by the formula 

(g 0 f)(x) = J1=7 
only for x E D(f) that satisfy I(x) � 0; that is, for x satisfying -1 � x � 1 .  

We note that if we reverse the order, then the composition l o g  is given by the formula 

(f o g)(x) = l - x , 
but only for those x in the domain D(g) = {x : x � O}. o 

We now give the relationship between composite functions and inverse images. The 
proof is left as an instructive exercise. 

1.1.14 Theorem Let I : A --+ B and g : B --+ C be functions and let H be a subset of 
C. Then we have 

Note the reversal in the order of the functions. 

Restrictions of Functions ____________________ _ 

If I : A --+ B is a function and if Al C A, we can define a function II : Al --+ B by 

II (x) := I(x) for x E AI • 
The function II is called the restriction of I to A I . Sometimes it is denoted by II = I I A I '  

It may seem strange to the reader that one would ever choose to throw away a part of a 
function, but there are some good reasons for doing so. For example, if I : JR --+ JR is the 
squaring function: 

for x E JR, 

then I is not injective, so it cannot have an inverse function. However, if we restrict I to 
the set Al := {x : x � O}, then the restriction I IAI is a bijection of Al onto AI '  Therefore, 
this restriction has an inverse function, which is the positive square root function. (Sketch 
a graph.) 

Similarly, the trigonometric functions S(x) := sin x and C(x) := cos x are not injective 
on all of R However, by making suitable restrictions of these functions, one can obtain 
the inverse sine and the inverse cosine functions that the reader has undoubtedly already 
encountered. 
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Exercises for Section 1.1 

1. If A and B are sets, show that A � B if and only if An B = A. 

2. Prove the second De Morgan Law [Theorem 1.1.4(b)]. 

3. Prove the Distributive Laws: 
(a) A n (B U C) = (A n B) U (A n C), 
(b) AU (B n C) = (A U B) n (A U C). 

4. The symmetric difference of two sets A and B is the set D of all elements that belong to either 
A or B but not both. Represent D with a diagram. 
(a) Show that D = (A \B) U (B\A). 
(b) Show that D is also given by D = (A U B)\(A n B). 

5. For each n E N, let An = {en + I)k : k E N}. 
(a) What is A

l 
n Az? 

(b) Determine the sets UlAn : n E N} and n{An : n E N}. 
6. Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B. 

(a) A = {x E R : 1 :::: x :::: 2 or 3 :::: x :::: 4}, B = {x E R : x = 1 or x = 2}. 
(b) A = { I ,  2, 3}, B = {x E R : 1 :::: x :::: 3}. 

7. Let A := B := {x E R :  -1 :::: x:::: I} and consider the subset C := { (x, y) : xZ + l = I } of 
A x B. Is this set a function? Explain. 

8. Let f(x) := I /xz, x =j:. 0, X E R. 

(a) Determine the direct image fee) where E := {x E R : 1 :::: x :::: 2}. 
(b) Determine the inverse image f-I(G) where G := {x E R :  1 :::: x:::: 4}. 

9. Let g(x) := XZ and f(x) := x + 2 for x E R, and let h be the composite function h := g 0 f. 
(a) Find the direct image h(E) of E := {x E R : 0 :::: x :::: I }. 
(b) Find the inverse image h-I (G) of G := {x E R : 0 :::: x :::: 4}. 

10. Let f(x) := XZ for x E R, and let E := {x E R :  -1 :::: x:::: O} and F := {x E R :  0:::: x:::: l}. 
Show that En F = {O} and feE n F) = {O}, while fee) = f(F) = {y E R : 0 :::: y :::: I }. 
Hence feE n F) is a proper subset of fee) n f(F). What happens if 0 is deleted from the sets 
E and F? 

11. Let f and E. F be as in Exercise 10. Find the sets E\F and f(E)\f(F) and show that it is not 
true that f(E\F) � f(E)\f(F). 

12. Show that if f : A � B and E, F are subsets of A, then feE U F) = fee) U f(F) and 
feE n F) � fee) n f(F). 

13. Show that if f : A � B and G, H are subsets of B, then rl (G U H) = f-I(G) U f-I(H) 
and rl(G n H) = rl (G) n rl (H). 

14. Show that the function f defined by f(x) := x/V xZ + 1, x E R, is a bijection of R onto 
{y : -1 < y < I}. 

15. For a, b E  R with a < b, find an explicit bijection of A := {x : a < x < b} onto B := {y : 0 < 
y < I}. 

16. Give an example of two functions f, g on R to R such that f =j:. g, but such that fog = g 0 f. 

17. (a) Show that if f : A � B is injective and E � A, then f-I(f(E» = E. Give an example 
to show that equality need not hold if f is not injective. 

(b) Show that if f : A � B is surjective and H � B, then f(rl (H» = H.Give an example 
to show that equality need not hold if f is not surjective. 

18. (a) Suppose that f is an injection. Show that f-I 0 f(x) = x for all x E D(f) and that 
fori (y) = y for all y E R(f). 

(b) If f is a bijection of A onto B, show that f-I is a bijection of B onto A. 
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19. Prove that if I : A � B is bijective and g : B � C is bijective, then the composite g 0 I is a 
bijective map of A onto C. 

20. Let I : A � B and g : B � C be functions. 
(a) Show that if g 0 I is injective, then I is injective. 
(b) Show that if g o  I is surjective, then g is surjective. 

21. Prove Theorem 1.1.14. 

22. Let I, g be functions such that (g 0 f)(x) = x for all x E D(f) and (f 0 g)(y) = y for all 
y E D(g). Prove that g = 1-'. 

Section 1.2 Mathematical Induction 

Mathematical Induction is a powerful method of proof that is frequently used to establish 
the validity of statements that are given in terms of the natural numbers. Although its utility 
is restricted to this rather special context, Mathematical Induction is an indispensable tool 
in all branches of mathematics. Since many induction proofs follow the same formal lines 
of argument, we will often state only that a result follows from Mathematical Induction 
and leave it to the reader to provide the necessary details. In this section, we will state the 
principle and give several examples to illustrate how inductive proofs proceed. 

We shall assume familiarity with the set of natural numbers: 

N := {l , 2, 3, . . . } , 

with the usual arithmetic operations of addition and multiplication, and with the meaning 
of a natural number being less than another one. We will also assume the following 
fundamental property of N. 

1.2.1 Well-Ordering Property of N Every nonempty subset of N has a least element. 
A more detailed statement of this property is as follows: If S is a subset of N and if 

S =f. 0, then there exists m E S such that m .:::: k for all k E S. 
On the basis of the Well-Ordering Property, we shall derive a version of the Principle 

of Mathematical Induction that is expressed in terms of subsets of N. 

1.2.2 Principle of Mathematical Induction Let S be a subset of N that possesses the 
two properties: 

(1) The number 1 E S. 
(2) For every k E N, if k E S, then k + 1 E S. 

Then we have S = N. 

Proof. Suppose to the contrary that S =f. N. Then the set N\S is not empty, so by the 
Well-Ordering Principle it has a least element m. Since 1 E S by hypothesis ( 1 ), we know 
that m > 1 .  But this implies that m - 1 is also a natural number. Since m - 1 < m and 
since m is the least element in N such that m rt S, we conclude that m - 1 E S. 

We now apply hypothesis (2) to the element k := m - 1 in S, to infer that k + 1 = 

(m - 1 )  + 1 = m belongs to S. But this statement contradicts the fact that m rt s. Since m 
was obtained from the assumption that N\S is not empty, we have obtained a contradiction. 
Therefore we must have S = N. Q.E.D. 
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The Principle of Mathematical Induction is often set forth in the framework of proper­
ties or statements about natural numbers. If P(n) is a meaningful statement about n E N, 
then P(n) may be true for some values of n and false for others. For example, if PI (n) is 
the statement: "n2 = n", then PI ( 1 )  is true while PI (n) is false for all n > 1 ,  n E N. On 
the other hand, if P2(n) is the statement: "n2 > I", then P2 (1 )  is false, while P2(n) is true 
for all n > 1 ,  n E N. 

In this context, the Principle of Mathematical Induction can be formulated as follows. 

For each n E N, let P (n) be a statement about n. Suppose that: 

(I') P(1)  is true. 
(2') For every k E N, if P (k) is true, then P (k + 1) is true. 

Then P(n) is true for all n E N. 

The connection with the preceding version of Mathematical Induction, given in 1 .2.2, 
is made by letting S := {n E N : P(n) is true}. Then the conditions ( 1 )  and (2) of 1 .2.2 
correspond exactly to the conditions ( 1 ') and (2'), respectively. The conclusion that S = N 
in 1 .2.2 corresponds to the conclusion that P(n) is true for all n E N. 

In (2') the assumption "if P(k) is true" is called the induction hypothesis. In estab­
lishing (2'), we are not concerned with the actual truth or falsity of P(k), but only with 
the validity of the implication "if P(k), then P(k + I)". For example, if we consider the 
statements P(n): "n = n + 5", then (2') is logically correct, for we can simply add 1 to 
both sides of P(k) to obtain P(k + 1) .  However, since the statement P(1 ) :  " 1  = 6" is false, 
we cannot use Mathematical Induction to conclude that n = n + 5 for all n E N. 

It may happen that statements P (n) are false for certain natural numbers but then are 
true for all n ::: no for some particular no. The Principle of Mathematical Induction can be 
modified to deal with this situation. We will formulate the modified principle, but leave its 
verification as an exercise. (See Exercise 12.) 

1.2.3 Principle of Mathematical Induction (second version) Let no E N and let P (n) 
be a statement for each natural number n ::: no. Suppose that: 

(1) The statement P(no) is true. 
(2) For all k ::: no' the truth of P(k) implies the truth of P(k + 1) .  

Then P (n) is true for all n ::: nO" 
Sometimes the number no in ( 1 )  is called the base, since it serves as the starting point, 

and the implication in (2), which can be written P(k) =} P(k + 1) ,  is called the bridge, 
since it connects the case k to the case k + 1 .  

The following examples illustrate how Mathematical Induction is used to prove asser­
tions about natural numbers. 

1.2.4 Examples (a) For each n E N, the sum of the first n natural numbers is given by 

1 + 2 + . . .  + n = !n(n + 1 ) .  

To prove this formula, we let S be the set of all n E N for which the formula i s  true. 
We must verify that conditions ( 1) and (2) of 1 .2.2 are satisfied. If n = 1 ,  then we have 
1 = ! . 1 . ( 1  + 1 )  so that 1 E S, and ( 1 )  is satisfied. Next, we assume that k E S and wish 
to infer from this assumption that k + 1 E S. Indeed, if k E S, then 

1 + 2 + . . .  + k = !k(k + 1) .  



14 CHAPTER 1 PRELIMINARIES 

If we add k + 1 to both sides of the assumed equality, we obtain 

1 + 2 + . . .  + k + (k + 1 )  = �k(k + 1 )  + (k + 1) 
= �(k + 1 ) (k + 2) . 

Since this is the stated formula for n = k + 1 ,  we conclude that k + 1 E S. Therefore, 
condition (2) of 1 .2.2 is satisfied. Consequently, by the Principle of Mathematical Induction, 
we infer that S = N, so the formula holds for all n E N. 
(b) For each n E N, the sum of the squares of the first n natural numbers is given by 

1 2 + 22 + . . .  + n2 
= �n(n + 1 ) (2n + 1 ) .  

To establish this formula, we note that i t  is  true for n = 1 ,  since 12 = � . 1 · 2 · 3 . If 
we assume it is true for k, then adding (k + 1)2 to both sides of the assumed formula gives 

12 + 22 + . . .  + k2 + (k + 1 )2 = �k(k +1) (2k + 1 )  + (k + 1 )2 
= �(k + 1 ) (2k2 + k + 6k + 6) 
= �(k + 1 ) (k + 2) (2k + 3). 

Consequently, the formula is valid for all n E N. 
(c) Given two real numbers a and b, we will prove that a - b is a factor of an - bn for 
all n E N. 

First we see that the statement is clearly true for n = 1 .  If we now assume that a - b 
is a factor of ak - bk , then 

aHI _ bk+1 = ak+1 _ abk + abk _ bk+1 
= a(ak - bk) + bk (a - b). 

By the induction hypothesis, a - b is a factor of a(ak - bk) and it is plainly a factor of 
bk (a - b). Therefore, a - b is a factor of aHI - bk+1 , and it follows from Mathematical 
Induction that a - b is a factor of an - bn for all n E N. 

A variety of divisibility results can be derived from this fact. For example, since 
1 1  - 7 = 4, we see that 1 1  n - 7n is divisible by-4 for all n E N. 
(d) The inequality 2n > 2n + 1 is false for n = 1 , 2, but it is true for n = 3. If we assume 
that 2k > 2k + 1 ,  then multiplication by 2 gives, when 2k + 2 > 3, the inequality 

2k+1 > 2(2k + 1 )  = 4k + 2 = 2k + (2k + 2) > 2k + 3 = 2(k + 1) + 1 .  
Since 2k + 2 > 3 for all k 2: 1 ,  the bridge is valid for all k 2: 1 (even though the statement 
is false for k = 1 , 2). Hence, with the base no = 3, we can apply Mathematical Induction 
to conclude that the inequality holds for all n 2: 3. 
(e) The inequality 2n ::::: (n + 1 ) !  can be established by Mathematical Induction. 

We first observe that it is true for n = 1 ,  since 21 = 2 = 1 + 1 .  If we assume that 
2k ::::: (k + 1 ) ! , it follows from the fact that 2 ::::: k + 2 that 

2k+l = 2 . 2k ::::: 2(k + I ) !  ::::: (k + 2) (k + I ) !  = (k + 2) ! .  

Thus, if the inequality holds for k ,  then it also holds for k + 1 .  Therefore, Mathematical 
Induction implies that the inequality is true for all n E N. 
(I) If r E �, r i- 1 ,  and n E N, then 

1...:.. rn+1 1 + r + r2 + . . .  + rn = --­l - r 
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This is the fonnu1a for the sum of the tenns in a "geometric progression". It can 
be established using Mathematical Induction as follows. First, if n = 1 ,  then 1 + r = 
(1 - r2)/(1 - r). If we assume the truth of the fonnu1a for n = k and add the tenn rk+1 to 
both sides, we get (after a little algebra) 

1 - rk+1 1 - rk+2 
1 + r + rk + . . .  + rk+1 = + rk+1 = , 

l - r l - r 
which is the fonnu1a for n = k + 1 .  Therefore, Mathematical Induction implies the validity 
of the fonnula for all n E N. 

[This result can also be proved without using Mathematical Induction. If we let 
sn := 1 + r + r2 + . . .  + rn

, then rSn = r + r2 + . . .  + rn+l , so that 

( 1  - r)sn = sn - rSn = 1 - r
n+l . 

If we divide by 1 - r, we obtain the stated fonnula.] 
(g) Careless use of the Principle of Mathematical Induction can lead to obviously absurd 
conclusions. The reader is invited to find the error in the "proof" of the following assertion. 

Claim: If n E N and if the maximum of the natural numbers p and q is n, then p = q .  

"Proof." Let S be the subset of N for which the claim i s  true. Evidently, 1 E S since if 
p, q E N and their maximum is 1 ,  then both equal 1 and so p = q .  Now assume that k E S 
and that the maximum of p and q is k + 1 .  Then the maximum of p - 1 and q - 1 is k. But 
since k E S, then p - 1 = q - 1 and therefore p = q. Thus, k + 1 E S, and we conclude 
that the assertion is true for all n E N. 
(h) There are statements that are true for many natural numbers but that are not true for 
all of them. 

For example, the fonnula p (n) : = n 2 - n + 41  gives a prime numberfor n = 1 ,  2, . . .  , 

40. However, p(41) is obviously divisible by 41 ,  so it is not a prime number. 0 

Another version of the Principle of Mathematical Induction is sometimes quite useful. 
It is called the " Principle of Strong Induction", even though it is in fact equivalent to 1 .2.2. 

1.2.5 Principle of Strong Induction Let S be a subset ofN such that 
(1") 1 E S. 
(2") For every k E N, if { I ,  2, . . .  , k} S; S, then k + 1 E S. 

Then S = N. 
We will leave it to the reader to establish the equivalence of 1 .2.2 and 1 .2.5. 

Exercises for Section 1.2 

1 .  Prove that 1/1  · 2 + 1/2 · 3  + . . .  + l/n(n + 1) = n/(n + 1) for all n E N. 
2. Prove that 13 + 23 + . . .  + n3 = [�n(n + 1 )]2 for all n E No 
3. Prove that 3 + 1 1  + . . . + (8n - 5) = 4n2 - n for all n E No 
4. Prove that 12 + 32 + . . .  + (2n - 1)2 = (4n3 - n)/3 for all n E N. 
5. Prove that 12 - 22 + 32 + . . . + (- It+1n2 = (_ 1)n+ln (n + 1 )/2 for all n E N. 
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6. Prove that n3 + 5n is divisible by 6 for all n E N. 

7. Prove that 52n - 1 is divisible by 8 for all n E N. 

8. Prove that 5" - 4n - 1 is divisible by 16 for all n E N. 

9. Prove that n3 + (n + 1)3 + (n + 2)3 is divisible by 9 for all n E N. 

10. Conjecture a formula for the sum 1/1 . 3 + 1/3 · 5  + . . . + 1/(2n - 1) (2n + 1), and prove your 
conjecture by using Mathematical Induction. 

1 1 . Conjecture a formula for the sum of the first n odd natural numbers 1 + 3 + . . .  + (2n - 1), 
and prove your formula by using Mathematical Induction. 

12. Prove the Principle of Mathematical Induction 1 .2.3 (second version). 

13. Prove that n < 2" for all n E N. 

14. Prove that 2" < n !  for all n � 4, n E N. 

15. Prove that 2n - 3 :::: 2n-2 for all n � 5, n E N. 

16. Find all natural numbers n such that n2 < 2" . Prove your assertion. 

17. Find the largest natural number m such that n 3 - n is divisible by m for all n E No Prove your 
assertion. 

1 8. Prove that 1/0 + 1/v'2 + . . . + I/Jn > In for all n E N. 

19. Let S be a subset of N such that (a) 2k E S for all k E N, and (b) if k E S and k � 2, then 
k - 1 E S. Prove that S = N. 

20. Let the numbers xn be defined as follows: Xl := 1, x2 := 2, and x"+2 := � (xn+l + xn) for all 
n E N. Use the Principle of Strong Induction ( 1 .2.5) to show that 1 :::: xn :::: 2 for all n E N. 

Section 1.3 Finite and Infinite Sets 

When we count the elements in a set, we say "one, two, three, . . .  ", stopping when we 
have exhausted the set. From a mathematical perspective, what we are doing is defining a 
bijective mapping between the set and a portion of the set of natural numbers. If the set is 
such that the counting does not terminate, such as the set of natural numbers itself, then we 
describe the set as being infinite. 

The notions of "finite" and "infinite" are extremely primitive, and it is very likely 
that the reader has never examined these notions very carefully. In this section we will 
define these terms precisely and establish a few basic results and state some other important 
results that seem obvious but whose proofs are a bit tricky. These proofs can be found in 
Appendix B and can be read later. 

1.3.1 Definition (a) The empty set 0 is said to have 0 elements. 
(b) If n E N, a set S is said to have n elements if there exists a bijection from the set 

Nn := { l ,  2, . . . , n} onto S. 
(c) A set S is said to be finite if it is either empty or it has n elements for some n E N. 
(d) A set S is said to be infinite if it is not finite. 

Since the inverse of a bijection is a bijection, it is easy to see that a set S has n 
elements if and only if there is a bijection from S onto the set { I ,  2, . . .  , n}. Also, since the 
composition of two bijections is a bijection, we see that a set Sj has n elements if and only 
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if there is a bijection from Sl onto another set S2 that has n elements. Further, a set Tl is 
finite if and only if there is a bijection from Tl onto another set T2 that is finite. 

It is now necessary to establish some basic properties of finite sets to be sure that the 
definitions do not lead to conclusions that conflict with our experience of counting. From 
the definitions, it is not entirely clear that a finite set might not have n elements for more 
than one value of n. Also it is conceivably possible that the set N := { I ,  2, 3 ,  . . .  } might be 
a finite set according to this definition. The reader will be relieved that these possibilities 
do not occur, as the next two theorems state. The proofs of these assertions, which use the 
fundamental properties of N described in Section 1 .2, are given in Appendix B. 

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a 
unique number in N. 

1.3.3 Theorem The set N of natural numbers is an infinite set. 

The next result gives some elementary properties of finite and infinite sets. 

1.3.4 Theorem (a) If A is a set with m elements and B is a set with n elements and if 
A n B = 0, then A U B has m + n elements. 

(b) If A is a set with m E N  elements and C � A is a set with 1 element, then A \C is a 
set with m - 1 elements. 

(c) If C is an infinite set and B is a finite set, then C\B is an infinite set. 

Proof. (a) Let I be a bijection of Nm onto A, and let g be a bijection of Nn onto 
B. We define h on Nm+n by h(i) := I(i) for i = 1 " " ,  m and h(i) := g(i - m) for 
i = m + 1 ,  " ' , m + n. We leave it as an exercise to show that h is a bijection from Nm+n 
onto A U B. 

The proofs of parts (b) and (c) are left to the reader, see Exercise 2. Q.E.D. 

It may seem "obvious" that a subset of a finite set is also finite, but the assertion must 
be deduced from the definitions. This and the corresponding statement for infinite sets are 
established next. 

1.3.5 Theorem Suppose that S and T are sets and that T � S. 
(a) If S is a finite set, then T is a finite set. 

(b) If T is an infinite set, then S is an infinite set. 

Proof. (a) If T = 0, we already know that T is a finite set. Thus we may suppose that 
T #- 0. The proof is by induction on the number of elements in S. 

If S has 1 element, then the only nonempty subset T of S must coincide with S, so T 
is a finite set. 

Suppose that every nonempty subset of a set with k elements is finite. Now let S be 
a set having k + 1 elements (so there exists a bijection I of Nk+l onto S), and let T � S. 
IfJ (k + 1) rt T, we can consider T to be a subset of Sl := S\{f(k + I) } , which has k 
elements by Theorem 1 .3.4(b). Hence, by the induction hypothesis, T is a finite set. 

On the other hand, if I (k + 1 )  E T, then Tl := T\{f(k + I ) } is a subset of Sl '  Since 
Sl has k elements, the induction hypothesis implies that Tl is a finite set. But this implies 
that T = Tl U {f(k + I)} is also a finite set. 
(b) This assertion is the contrapositive of the assertion in (a). (See Appendix A for a 
discussion of the contrapositive.) Q.E.D. 
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Countable Sets 

We now introduce an important type of infinite set. 

1.3.6 Definition (a) A set S is said to be denumerable (or countably infinite) if there 
exists a bijection of N onto S. 

(b) A set S is said to be countable if it is either finite or denumerable. 
(c) A set S is said to be uncountable if it is not countable. 

From the properties of bijections, it is clear that S is denumerable if and only if there 
exists a bijection of S onto N. Also a set S1 is denumerable if and only if there exists a 
bijection from S1 onto a set S2 that is denumerable. Further, a set T1 is countable if and 
only if there exists a bijection from T1 onto a set T2 that is countable. Finally, an infinite 
countable set is denumerable. 

1.3.7 Examples (a) The set E := {2n : n E N} of even natural numbers is denumerable, 
since the mapping f : N � E defined by f (n) := 2n for n E N, is a bijection of N onto E. 

Similarly, the set 0 := {2n - 1 : n E N} of odd natural numbers is denumerable. 
(b) The set Z of all integers is denumerable. 

To construct a bijection of N onto Z, we map 1 onto 0, we map the set of even natural 
numbers onto the set N of positive integers, and we map the set of odd natural numbers 
onto the negative integers. This mapping can be displayed by the enumeration: 

Z = {O, 1 ,  -1 , 2, -2, 3 ,  -3 , · ·  .} . 
(c) The union of two disjoint denumerable sets is denumerable. 

Indeed, if A = {a1 , a2 , a3 , · · · } and B = {b1 , b2 , b3 , · · .} , we can enumerate the ele­
ments of A U  B as: 

1.3.8 Theorem The set N x N is denumerable. 

o 

Informal Proof. Recall that N x N consists of all ordered pairs (m, n), where m, n E N. 
We can enumerate these pairs as: 

( 1 , 1 ) ,  ( 1 , 2) ,  (2, 1) ,  ( 1 , 3) , (2, 2), (3, 1) ,  ( 1 , 4) , · · · , 
according to increasing sum m + n, and increasing m. (See Figure 1 .3 . 1 .) Q.E.D. 

The enumeration just described is an instance of a "diagonal procedure", since we 
move along diagonals that each contain finitely many terms as illustrated in Figure 1 .3. 1 .  
While this argument is satisfying in that it shows exactly what the bijection of N x N � N 
should do, it is not a "formal proof', since it doesn't define this bijection precisely. (See 
Appendix B for a more formal proof.) 

As we have remarked, the construction of an explicit bijection between sets is often 
complicated. The next two results are useful in establishing the countability of sets, since 
they do not involve showing that certain mappings are bijections. The first result may seem 
intuitively clear, but its proof is rather technical; it will be given in Appendix B. 
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• 

Figure 1.3.1 The set N x N 

1.3.9 Theorem Suppose that S and T are sets and that T � S. 

(a) If S is a countable set, then T is a countable set. 

(b) If T is an uncountable set, then S is an uncountable set. 

1.3.10 Theorem The following statements are equivalent: 

(a) S is a countable set. 

(b) There exists a surjection of N onto S. 

(c) There exists an injection of S into N. 

Proof. (a) ::::} (b) If S is finite, there exists a bijection h of some set Nn onto S and we 
define H on N by 

H(k) := {���� 
Then H is a surjection of N onto S. 

for k = 1 ,  . . .  , n , 
for k > n. 

If S is denumerable, there exists a bijection H of N onto S, which is also a surjection 
of N onto S. 

(b) ::::} (c) If H is a surjection of N onto S, we define HI : S -+ N by letting HI (s) be 
the least element in the set H-I (s) := {n E N :  H(n) = s} . To see that HI is an injection 
of S into N, note that if s, t E S and nst : =  HI (s) = HI (t), then s = H(nst) = t . 
(c) ::::} (a) If HI i s  an injection of S into N, then i t  is  a bijection of S onto HI (S) � N. 
By Theorem 1 .3.9(a), HI (S) is countable, whence the set S is countable. Q.E.D. 

1.3.11 Theorem The set Q of all rational numbers is denumerable. 

Proof. The idea of the proof is to observe that the set Q+ of positive rational numbers is 
contained in the enumeration: 

I 1 2 1  2 3 1 
T '  2 '  T '  3 '  2 '  T '  4 '  

which is another "diagonal mapping" (see Figure 1 .3.2). However, this mapping is not an 
injection, since the different fractions ! and � represent the same rational number. 

To proceed more formally, note that since N x N is countable (by Theorem 1 .3.8), 
it follows from Theorem 1 .3 . 10(b) that there exists a surjection f of N onto N x N. If 
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Figure 1.3.2 The set Q+ 

g : N x N -+ Q+ is the mapping that sends the ordered pair (m, n) into the rational num­
ber having a representation m / n, then g is a surjection onto Q+. Therefore, the composition 
g 0 f is a surjection of N onto Q+, and Theorem 1 .3 . 10 implies that Q+ is a countable set. 

Similarly, the set Q- of all negative rational numbers is countable. It follows as in 
Example 1 .3.7(b) that the set Q = Q- U {O} U Q+ is countable. Since Q contains N, it 
must be a denumerable set. Q.E.D. 

The next result is concerned with unions of sets. In view of Theorem 1 .3. 10, we need 
not be worried about possible overlapping of the sets. Also, we do not have to construct a 
bijection. 

1.3.12 Theorem If Am is a countable set for each m E N, then the union A := U:=I Am 
is countable. 

Proof. For each m E N, let rpm be a surjection of N onto Am '  We define 1{1 : N x N -+ A 
by 

1{I(m, n) := rpm (n) .  
We claim that 1{1 i s  a surjection. Indeed, if a E A, then there exists a least m E N  such that 
a E Am ' whence there exists a least n E N such that a = rpm (n) . Therefore, a = 1{I(m, n). 

Since N x N is countable, it follows from Theorem 1 .3. 10 that there exists a surjection 
f : N -+ N x N whence 1{1 0 f is a surjection of N onto A. Now apply Theorem 1 .3 .10 
again to conclude that A is countable. Q.E.D. 

Remark A less formal (but more intuitive) way to see the truth of Theorem 1 .3 . 12 is to 
enumerate the elements of Am ' m E N, as: 

A l = {al l ' a12 , an' . . .  } , 
A2 = {a21 , a22 , a23 ' . . .  } , 
A3 = {a31 , a32 , a33 ' . . .  } ,  

We then enumerate this array using the "diagonal procedure": 

as was displayed in Figure 1 .3. 1 .  
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The argument that the set Q of rational numbers is countable was first given in 1 874 
by Georg Cantor (1 845-1918). He was the first mathematician to examine the concept of 
infinite set in rigorous detail. In contrast to the countability of Q, he also proved the set lR. 
of real numbers is an uncountable set. (This result will be established in Section 2.5.) 

In a series of important papers, Cantor developed an extensive theory of infinite sets and 
transfinite arithmetic. Some of his results were quite surprising and generated considerable 
controversy among mathematicians of that era. In a 1 877 letter to his colleague Richard 
Dedekind, he wrote, after proving an unexpected theorem, "I see it, but I do not believe it". 

We close this section with one of Cantor's more remarkable theorems. 

1.3.13 Cantor's Theorem If A is any set, then there is no surjection of A onto the set 
peA) of all subsets of A. 
Proof. Suppose that q; : A -+ peA) i s  a surjection. Since q;(a) i s  a subset of  A, either a 
belongs to q;(a) or it does not belong to this set. We let 

D := {a E A : a ¢ q;(a)} .  

Since D is a subset of A, if q; is a surjection, then D = q;(ao) for some ao E A. 
We must have either ao E D or ao ¢ D. If ao E D, then since D = q;(ao)' we must 

have ao E q;(ao) ,  contrary to the definition of D. Similarly, if ao ¢ D, then ao ¢ q;(ao) so 
that ao E D, which is also a contradiction. 

Therefore, q; cannot be a surjection. Q.E.D. 

Cantor's Theorem implies that there is an unending progression of larger and larger 
sets. In particular, it implies that the collection peN) of all subsets of the natural numbers 
N is uncountable. 

Exercises for Section 1.3 

1. Prove that a nonempty set Tl is finite if and only if there is a bijection from Tl onto a finite 
set Tz . 

2. Prove parts (b) and (c) of Theorem 1.3.4. 
3. Let S := { I ,  2} and T := {a, h, c}. 

(a) Determine the number of different injections from S into T. 
(b) Determine the number of different surjections from T onto S. 

4. Exhibit a bijection between N and the set of all odd integers greater than 13. 
5. Give an explicit definition of the bijection f from N onto Z described in Example 1 .3.7(b). 
6. Exhibit a bijection between N and a pr<lper subset of itself. 
7. Prove that a set Tl is denumerable if and only if there is a bijection from Tl onto a denumerable 

set Tz . 
8. Give an example of a countable collection of finite sets whose union is not finite. 
9. Prove in detail that if S and T are denumerable, then S U T is denumerable. 

10. Determine the number of elements in P(S), the collection of all subsets of S, for each of the 
following sets: 
(a) S := { I ,  2}, 
(b) S := { l ,  2, 3}, 
(c) S := { l ,  2, 3, 4}. 
Be sure to include the empty set and the set S itself in P(S). 

1 1 .  Use Mathematical Induction to prove that if the set S has n elements, then P (S) has 2n elements. 
12. Prove that the collection F(N) of all finite subsets of N is countable. 



CHAPTER 2 

THE REAL NUMBERS 

In this chapter we will discuss the essential properties of the real number system R 
Although it is possible to give a formal construction of this system on the basis of a more 

primitive set (such as the set N of natural numbers or the set Q of rational numbers), we 

have chosen not to do so. Instead, we exhibit a list of fundamental properties associated 

with the real numbers and show how further properties can be deduced from them. This 

kind of activity is much more useful in learning the tools of analysis than examining the 

logical difficulties of constructing a model for R 
The real number system can be described as a "complete ordered field", and we 

will discuss that description in considerable detail. In Section 2. 1 ,  we first introduce the 

"algebraic" properties-{)ften called the "field" properties in abstract algebra-that are 

based on the two operations of addition and multiplication. We continue the section with 

the introduction of the "order" properties of JR and we derive some consequences of these 

properties and illustrate their use in working with inequalities. The notion of absolute value, 

which is based on the order properties, is discussed in Section 2.2. 
In Section 2.3, we make the final step by adding the crucial "completeness" property to 

the algebraic and order properties of R It is this property, which was not fully understood 

until the late nineteenth century, that underlies the theory of limits and continuity and 

essentially all that follows in this book. The rigorous development of real analysis would 

not be possible without this essential property. 

In Section 2.4, we apply the Completeness Property to derive several fundamental 

results concerning JR, including the Archimedean Property, the existence of square roots, 

and the density of rational numbers in R We establish, in Section 2.5, the Nested Interval 

Property and use it to prove the uncountability of R We also discuss its relation to binary 

and decimal representations of real numbers. 

Part of the purpose of Sections 2. 1 and 2.2 is to provide examples of proofs of 

elementary theorems from explicitly stated assumptions. Students can thus gain experience 

in writing formal proofs before encountering the more subtle and complicated arguments 

related to the Completeness Property and its consequences. However, students who have 

previously studied the axiomatic method and the technique of proofs (perhaps in a course 

on abstract algebra) can move to Section 2.3 after a cursory look at the earlier sections. A 

brief discussion of logic and types of proofs can be found in Appendix A at the back of the 

book. 

Section 2.1 The Algebraic and Order Properties of lR 

We begin with a brief discussion of the "algebraic structure" of the real number system. We 

will give a short list of basic properties of addition and multiplication from which all other 

algebraic properties can be derived as theorems. In the terminology of abstract algebra, the 

system of real numbers is a "field" with respect to addition and multiplication. The basic 

22 
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properties listed in 2. 1 . 1  are known as the field axioms. A binary operation associates with 
each pair (a, b) a unique element B(a ,  b), but we will use the conventional notations of 
a + b and a . b when discussing the properties of addition and multiplication. 

2.1.1 Algebraic Properties of JR On the set JR of real numbers there are two binary 
operations, denoted by + and . and called addition and multiplication, respectively. These 
operations satisfy the following properties: 

(AI) a + b = b + a for all a, b in lR (commutative property of addition); 
(A2) (a + b) + c = a + (b + c) for all a ,  b, c in JR (associative property of addition); 
(A3) there exists an element 0 in JR such that 0 + a = a and a + 0 = a for all a in lR 

(existence of a zero element); 
(A4) for each a in JR there exists an element -a in JR such that a + (-a) = 0 and 

(-a) + a = 0 (existence of negative elements); 
(MI) a · b = b · a for all a, b in JR (commutative property of multiplication); 
(M2) (a · b) . c = a . (b · c) for all a, b, c in JR (associative property of multiplication); 
(M3) there exists an element 1 in JR distinct from 0 such that 1 . a = a and a . 1 = a for 

all a in JR (existence of a unit element); 
(M4) for each a =1= 0 in lR there exists an element 1 I a in JR such that a . ( l  I a) = 1 and 

( lla) . a = 1 (existence of reciprocals); 
(D) a . (b + c) = (a . b) + (a . c) and (b + c) . a = (b · a) + (c . a) for all a, b, c in JR 

(distributive property of multiplication over addition). 
These properties should be familiar to the reader. The first four are concerned with 

addition, the next four with multiplication, and the last one connects the two operations. 
The point of the list is that all the familiar techniques of algebra can be derived from these 
nine properties, in much the same spirit that the theorems of Euclidean geometry can be 
deduced from the five basic axioms stated by Euclid in his Elements. Since this task more 
properly belongs to a course in abstract algebra, we will not carry it out here. However, to 
exhibit the spirit of the endeavor, we will sample a few results and their proofs. 

We first establish the basic fact that the elements 0 and 1 ,  whose existence were asserted 
in (A3) and (M3), are in fact unique. We also show that multiplication by 0 always results 
in O. 

2.1.2 Theorem (a) If z and a are elements in JR with z + a = a, then z = O. 
(b) lfu and b =1= 0 are elements in JR with u . b = b, then u = 1 .  
(c) If a E JR, then a . 0 = o. 

Proof. (a) Using (A3), (A4), (A2), the hypothesis z + a = a, and (A4), we get 

Z = z + O  = z+  (a + (-a» = (z + a) + (-a) = a + (-a) = O. 
(b) Using (M3), (M4), (M2), the assumed equality u . b = b, and (M4) again, we get 

u = u . 1 = u . (b . (lIb» = (u . b) . ( lIb) = b . ( lIb) = 1 .  

(c) We have (why?) 

a + a · 0 = a . 1 + a · 0 = a . ( l  + 0) = a . 1 = a. 
Therefore, we conclude from (a) that a · 0  = O. Q.E.D. 
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We next establish two important properties of multiplication: the uniqueness of recip­
rocals and the fact that a product of two numbers is zero only when one of the factors is 
zero. 

2.1.3 Theorem (a) If a i= 0 and b in JR. are such that a . b = I ,  then b = Ila . 
(b) lia · b = 0, then either a = 0 orb = o. 

Proof. (a) Using (M3), (M4), (M2), the hypothesis a . b = I ,  and (M3), we have 
4 

b = 1 . b = «lla) . a) . b = ( lla) . (a . b) = ( 1Ia) . 1 = Ila . 
(b) It suffices to assume a i= 0 and prove that b = O. (Why?) We multiply a . b by Iia and 
apply (M2), (M4) and (M3) to get 

( lla) . (a . b) = ((1la) . a) . b = 1 . b = b. 
Since a . b = 0, by 2.1 .2(c) this also equals 

( 1Ia) . (a . b) = ( 1Ia) · 0  = o. 

Thus we have b = O. Q.E.D. 

These theorems represent a small sample of the algebraic properties of the real number 
system. Some additional consequences of the field properties are given in the exercises. 

The operation of subtraction is defined by a - b := a + (-b) for a, b in lR.. Similarly, 
division is defined for a , b in JR. with b i= 0 by alb := a . ( l Ib). In the following, we 
will use this customary notation for subtraction and division, and we will use all the 
familiar properties of these operations. We will ordinarily drop the use of the dot to indicate 
multiplication and write ab for a . b. Similarly, we will use the usual notation for exponents 
and write a2 for aa, a3 for (a2)a ; and, in general, we define an+1 : =  (an)a for n E N. We 
agree to adopt the convention that al = a. Further, if a i= 0, we write aD = 1 and a-I for 
1 I a, and if n E N, we will write a -n for (I I at, when it is convenient to do so. In general, 
we will freely apply all the usual techniques of algebra without further elaboration. 

Rational and Irrational Numbers 

We regard the set N of natural numbers as a subset of JR., by identifying the natural number 
n E N  with the n-fold sum of the unit element 1 E lR.. Similarly, we identify 0 E Z with the 
zero element of 0 E JR., and we identify the n-fold sum of -I with the integer -no Thus, 
we consider N and Z to be subsets of lR.. 

Elements of JR. that can be written in the form b I a where a, b E Z and a i= 0 are called 
rational numbers. The set of all rational numbers in JR. will be denoted by the standard 
notation Q. The sum and product of two rational numbers is again a rational number (prove 
this), and moreover, the field properties listed at the beginning of this section can be shown 
to hold for Q. 

The fact that there are elements in JR. that are not in Q is not immediately apparent. 
In the sixth century B.C. the ancient Greek society of Pythagoreans discovered that the 
diagonal of a square with unit sides could not be expressed as a ratio of integers. In view 
of the Pythagorean Theorem for right triangles, this implies that the square of no rational 
number can equal 2. This discovery had a profound impact on the development of Greek 
mathematics. One consequence is that elements of JR. that are not in Q became known 
as irrational numbers, meaning that they are not ratios of integers. Although the word 
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"irrational" in modem English usage has a quite different meaning, we shall adopt the 
standard mathematical usage of this term. 

We will now prove that there does not exist a rational number whose square is 2. In the 
proof we use the notions of even and odd numbers. Recall that a natural number is even if 
it has the form 2n for some n E N, and it is odd if it has the form 2n - 1 for some n E N. 
Every natural number is either even or odd, and no natural number is both even and odd. 

2.1.4 Theorem There does not exist a rational number r such that r2 = 2. 

Proof. Suppose, on the contrary, that p and q are integers such that (p j q)2 = 2. We 
may assume that p and q are positive and have no common integer factors other than 1 .  
(Why?) Since p2 

= 2q2, we see that p2 is even. This implies that p is also even (because 
if p = 2n - 1 is odd, then its square p2 

= 2(2n2 - 2n + 1) - 1 is also odd). Therefore, 
since p and q do not have 2 as a common factor, then q must be an odd natural number. 

Since p is even, then p = 2m for somem E N, andhence4m2 
= 2q2, so that 2m2 

= q2 . 
Therefore, q2 is even, and it follows from the argument in the preceding paragraph that q 
is an even natural number. 

Since the hypothesis that (pjq)2 = 2 leads to the contradictory conclusion that q is 
both even and odd, it must be false. Q.E.D. 

The Order Properties of JR. 

The "order properties" of JR. refer to the notions of positivity and inequalities between real 
numbers. As with the algebraic structure of the system of real numbers, we proceed by 
isolating three basic properties from which all other order properties and calculations with 
inequalities can be deduced. The simplest way to do this is to identify a special subset of JR. 
by using the notion of "positivity". 

2.1.5 The Order Properties of JR. There is a nonempty subset lP' of JR., called the set of 
positive real numbers, that satisfies the following properties: 
(i) If a, b belong to lP', then a + b belongs to lP'. 
(ii) If a, b belong to lP', then ab belongs to lP'. 
(iii) If a belongs to JR., then exactly one of the following holds: 

a E lP', a = 0, -a E lP'. 
The first two conditions ensure the compatibility of order with the operations of addi­

tion and multiplication, respectively. Condition 2. 1 .5 (iii) is usually called the Trichotomy 
Property, since it divides JR. into three distinct types of elements. It states that the set 
{-a : a E P} of negative real numbers has no elements in common with the set lP' of 
positive real numbers, and, m�eover, the set JR. is the union of three disjoint sets. 

If a E lP', we write a > 0 and say that a is a positive (or a strictly positive) real number. 
If a E lP' U {O}, we write a � 0 and say that a is a nonnegative real number. Similarly, if 
-a E lP', we write a < 0 and say that a is a negative (or a strictly negative) real number. 
If -a E lP' U {OJ, we write a � 0 and say that a is a nonpositive real number. . The notion of inequality between two real numbers will now be defined in terms of the 
set lP' of positive elements. 

2.1.6 Definition Let a, b be elements of R 

(a) If a - b E lP', then we write a > b or b < a. 
(b) If a - b E lP' U {OJ, then we write a � b or b � a . 
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The Trichotomy Property 2. 1 .5 (iii) implies that for a, b E lR exactly one of the follow­
ing will hold: 

a >  b, a = b, a < b. 
Therefore, if both a S b and b S a, then a = b. 

For notational convenience, we will write 

a < b < c  
to mean that both a < b and b < c are satisfied. The other "double" inequalities a S b < c, 
a S b S c, and a < b s c are defined in a similar manner. 

To illustrate how the basic Order Properties are used to derive the "rules of inequalities", 
we will now establish several results that the reader has used in earlier mathematics courses. 

2.1.7 Theorem Let a, b, c be any elements of R 

(a) If a > b and b > c, then a > c. 
(b) If a > b, then a + c > b + c. 
(c) Ifa > b and c > 0, then ca > cb. 

Ifa > b and c < 0, then ca < cb. 

Proof. (a) If a - b E  lP' and b - c E lP', then 2. 1 .5(i) implies that (a - b) + (b - c) = 
a - c belongs to lP'. Hence a > c. 
(b) If a - b E  lP', then (a + c) - (b + c) = a - b is in lP'. Thus a +c > b + c. 
(c) If a - b E  lP' and c E lP', then ca - cb = c(a - b) is in lP' by 2. 1 .5(ii). Thus ca > cb 
when c > O. 

On the other hand, if c < 0, then -c E lP', so that cb - ca = (-c) (a - b) is in lP'. Thus 
cb > ca when c < O. Q.E.D. 

It is natural to expect that the natural numbers are positive real numbers. This property 
is derived from the basic properties of order. The key observation is that the square of any 
nonzero real number is positive. 

2.1.8 Theorem (a) If a E lR and a i= 0, then a2 > o. 
(b) I > o. 
(c) Ifn E N, then n > o. 

Proof. (a) By the Trichotomy Property, if a i= 0, then either a E lP' or -a E lP'. If a E lP', 
then by 2 . 1 .5(ii), a2 = a . a E lP'. Also, if -a E lP', then a2 = (-a)( -a) E lP'. We conclude 
that if a i= 0, then a2 > O. 
(b) Since 1 = 12, it follows from (a) that 1 > O. 
(c) We use Mathematical Induction. The assertion for n = 1 is true by (b). If we suppose the 
assertion is true for the natural number k, then k E lP', and since 1 E lP', we have k + 1 E lP' 
by 2. 1 .5(i). Therefore, the assertion is true for all natural numbers. Q.E.D. 

It is worth noting that no smallest positive real number can exist. This follows by 
observing that if a > 0, then since ! > 0 (why?), we have that 

0 <  !a < a . 
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Thus if it is claimed that a is the smallest positive real number, we can exhibit a smaller 
positive number !a. 

This observation leads to the next result, which will be used frequently as a method of 
proof. For instance, to prove that a number a :::: 0 is actually equal to zero, we see that it 
suffices to show that a is smaller than an arbitrary positive number. 

2.1.9 Theorem If a E lR is such that 0 � a < £ for every £ > 0, then a = O. 

Proof. Suppose to the contrary that a > O. Then if we take £0 := !a, we have 0 < £0 < a. 
Therefore, it is false that a < £ for every £ > 0 and we conclude that a = O. Q.E.D. 

Remark It is an exercise to show that if a E lR is such that 0 � a � £ for every £ > 0, 
then a = O. 

The product of two positive numbers is positive. However, the positivity of a product 
of two numbers does not imply that each factor is positive. The correct conclusion is given 
in the next theorem. It is an important tool in working with inequalities. 

2.1.10 Theorem If ab > 0, then either 

(i) a > 0 and b > 0, or 

(ii) a < 0 and b < O. 

Proof. First we note that ab > 0 implies that a "I 0 and b "I O. (Why?) From the Tri­
chotomy Property, either a > 0 or a < O. If a > 0, then Ija > 0 (why?), and therefore 
b = Oja)(ab) > O. Similarly, if a < 0, then Ija < 0, so that b = Oja)(ab) < O. Q.E.D. 

2.1.11 Corollary If ab < 0, then either 

(i) a < 0 and b > 0, or 

(ii) a > 0 and b < O. 

Inequalities ___________________________ _ 

We now show how the Order Properties presented in this section can be used to "solve" 
certain inequalities. The reader should justify each of the steps. 

2.1.12 Examples (a) Determine the set A of all real numbers x such that 2x + 3 � 6. 
We note that we have t 

x E A 2x + 3 � 6 
Therefore A = {x E lR : x � � } .  
(b) Determine the set B : =  {x E lR : x2 + x > 2} . 

2x � 3 3 X � 2 '  

We rewrite the inequality so that Theorem 2. 1 . 10 can be applied. Note that 
x E B  ¢::=> x2 + X - 2 > 0 (x - l)(x + 2) > O. 

Therefore, we either have (i) x - I > 0 and x + 2 > 0, or we have (ii) x - I < 0 and 
x + 2 < O. In case (i) we must have both x > 1 and x > -2, which is satisfied if and only 

tThe symbol <==> should be read "if and only if'. 
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if x > 1 .  In case (ii) we must have both x < 1 and x < -2, which is satisfied if and only 
if x <: -2. 

We conclude that B = {x E lR. : x > I} U {x E lR. : x < -2}. 
(c) Detennine the set 

C := {x E lR. : 2x + 1 < I }  . x + 2  
We note that 

x E C {:::::::} 2x + 1 
-- - 1 < 0 {:::::::} x + 2  

x - I  -- < 0. x + 2 
Therefore we have either (i) x - I  < 0 and x + 2 > 0, or (ii) x - I  > 0 and x + 2 < o. 
(Why?) In case (i) we must have both x < 1 and x > -2, which is satisfied if and only if 
-2 < x < 1 .  In case (ii), we must have both x > 1 and x < -2, which is never satisfied. 

We conclude that C = {x E lR. : -2 < x < 1 } . D 

The following examples illustrate the use of the Order Properties of lR. in establishing 
certain inequalities. The reader should verify the steps in the arguments by identifying the 
properties that are employed. 

It should be noted that the existence of square roots of positive numbers has not yet 
been established; however, we assume the existence of these roots for the purpose of these 
examples. (The existence of square roots will be discussed in Section 2.4.) 

2.1.13 Examples (a) Let a ::: 0 and b ::: O. Then 

(1) 

We consider the case where a > 0 and b > 0, leaving the case a = 0 to the reader. It follows 
from 2. 1 .5(i) that a + b > O. Since b2 - a2 = (b - a) (b + a), it follows from 2.1 .7(c) that 
b - a > 0 implies that b2 - a2 > O. Also, it follows from 2. 1 . 10 that b2 - a2 > 0 implies 
that b - a >  O. 

If a > 0 and b > 0, then y'a > 0 and ,.jb > O. Since a = (y'a)2 and b = (.Jb)2, the 
second implication is a consequence of the first one when a and b are replaced by y'a and 
,.jb, respectively. 

We also leave it to the reader to show that if a ::: 0 and b ::: 0, then 

(1 ') 

(b) If a and b are positive real numbers, then their arithmetic mean is 4 (a + b) and their 
geometric mean is .j(J}. The Arithmetic-Geometric Mean Inequality for a, b is 

(2) 

with equality occurring if and only if a = b. 
To prove this, note that if a > 0, b > 0, and a =1= b, then y'a > 0, ,.jb > 0 and y'a =1= 

,.jb. (Why?) Therefore it follows from 2. 1 .8(a) that (y'a - ,.jb)2 > O. Expanding this 
square, we obtain 

a - 2M + b > 0, 
whence it follows that 

M < 4 (a + b) .  
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Therefore (2) holds (with strict inequality) when a #- b. Moreover, if a = be> 0) , then both 
sides of (2) equal a, so (2) becomes an equality. This proves that (2) holds for a > 0, b > O. 

On the other hand, suppose that a > 0, b > 0 and that ,Jab = ! (a + b) . Then, squar­
ing both sides and mUltiplying by 4, we obtain 

4ab = (a + b)2 = a2 + 2ab + b2 , 
whence it follows that 

0 =  a2 - 2ab + b2 = (a - b)2 . 
But this equality implies that a = b. (Why?) Thus, equality in (2) implies that a = b. 
Remark The general Arithmetic-Geometric Mean Inequality for the positive real num­
bers ai ' a2 , . . .  , an is 
(3) ( ) lin al + a2 + . . .  + an ala2 · ·  · an :::: n 
with equality occurring if and only if al = a2 = . . .  = an . It is possible to prove this more 
general statement using Mathematical Induction, but the proof is somewhat intricate. A 
more elegant proof that uses properties of the exponential function is indicated in Exercise 
8.3 .9 in Chapter 8. 
(c) Bernoulli's Inequality. If x > - 1 ,  then 
(4) (1 + x)n ::: 1 + nx for all n E N  

The proof uses Mathematical Induction. The case n = 1 yields equality, so the assertion 
is valid in this case. Next, we assume the validity of the inequality (4) for k E N  and will 
deduce it for k + 1 .  Indeed, the assumptions that (1 + x)k ::: 1 + kx and that 1 + x > 0 
imply (why?) that 

(1 + x)k+l = (1 + x)k . (1 + x) 
::: ( 1 + kx) . ( 1 + x) = 1 + (k + l )x + kx2 
::: 1 + (k + l )x .  

Thus, inequality (4) holds for n = k + 1 .  Therefore, (4) holds for all n E N. 

Exercises for Section 2.1 

1 .  If a, b E R, prove the following. 
(a) If a + b = 0, then b = -a, 
(c) (- I)a = -a, 

2. Prove that if a, b E R, then 
(a) -(a + b) = (-a) + (-b) , 
(c) 1/(-a) = -(1/a), 

(b) -(-a) = a, 
(d) (-1)(-1) = 1 . 

(b) (-a) · (-b) = a ·  b, 
(d) -(a/b) = (-a)/b if b =f. O. 

o 

3. Solve the following equations, justifying each step by referring to an appropriate property or 
theorem. 
(a) 2x + 5 = 8, 
(c) x2 - I = 3, 

(b) x2 = 2x, 
(d) (x - I)(x + 2) = O. 

4. If a E R satisfies a . a = a, prove that either a = 0 or a = 1 .  
5 .  If a =f. 0 and b =f. 0, show that I/(ab) = ( l/a)(1/b). 
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6. Use the argument in the proof of Theorem 2. 1 .4 to show that there does not exist a rational 
number s such that sZ = 6. 

7. Modify the proof of Theorem 2. 1 .4 to show that there does not exist a rational number t such 
that tZ = 3. 

8. (a) Show that if x, y are rational numbers, then x + y and xy are rational numbers. 
(b) Prove that if x is a rational number and y is an irrational number, then x + y is an irrational 

number. If, in addition, x =1= 0, then show that xy is an irrational number. 

9. Let K := {s + t./i : s, t E Q}. Show that K satisfies the following: 
(a) If xl ' Xz E K, then xl + Xz E K and xlxZ E K. 
(b) If x =1= 0 and x E K,  then l /x E K. 
(Thus the set K is a subfield of lR. With the order inherited from R, the set K is an ordered field 
that lies between Q and R). 

10. (a) If a < b and e .:::: d, prove that a + e < b + d. 
(b) If 0 < a < b and 0 .:::: e .:::: d, prove that 0 .:::: ae .:::: bd. 

1 1 .  (a) Show that if a >  0, then l /a > 0 and l/ ( l /a) = a. 
(b) Show that if a < b, then a < � (a + b) < b. 

12. Leta, b, e, d be numbers satisfying 0 < a < b and e < d < O. Give an example where ae < bd, 
and one where bd < ae. 

13 . If a, b E R, show that aZ + bZ = 0 if and only if a = 0 and b = O. 

14. If 0 .:::: a < b, show that aZ .:::: ab < bZ • Show by example that it does not follow that aZ < ab < 
bZ• 

15. If 0 < a < b, show that (a) a < ,;aij < b, and (b) l /b < l /a. 

16. Find all real numbers x that satisfy the following inequalities. 
(a) xZ > 3x + 4, (b) 1 < XZ < 4, 
(c) l /x < x, (d) l /x < xZ• 

17. Prove the following form of Theorem 2. 1 .9: If a E R is such that 0 .:::: a .:::: 8 for every 8 > 0, 
then a = O. 

18. Let a, b E  R, and suppose that for every 8 > 0 we have a ':::: b + 8. Show that a .:::: b. 
19. Prove that [ � (a + b)]

z 
.:::: � (aZ + bZ) for all a, b E lR. Show that equality holds if and only if 

a = b. 
20. (a) If O < e < l , show that O < ez < e < 1 . 

(b) If 1 < e, show that 1 < e < eZ • 

21 .  (a) Prove there is no n E N such that 0 < n < 1 .  (Use the Well-Ordering Property of N.) 
(b) Prove that no natural number can be both even and odd. 

22. (a) If e > 1, show that en 2: e for all n E N, and that en > e for n > 1 .  
(b) If 0 < e < 1 ,  show that en .:::: e for all n E N, and that en < e for n > 1 .  

23. If a > 0 ,  b > 0 and n E N, show that a < b if and only if a n  < bn . [Hint: Use Mathematical 
Induction]. 

24. (a) If e > 1 and m, n E N, show that em > en if and only if m > n. 
(b) If 0 < e < 1 and m, n E N, show that em < en if and only if m > n. 

25. Assuming the existence of roots, show that if e > 1, then e 1 lm < elln if and only if m > n. 
26. Use Mathematical Induction to show that if a E R and m, n, E N, then am+n = aman and 

(am)" = amn .  
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Section 2.2 Absolute Value and the Real Line 

From the Trichotomy Property 2. 1 .5(iii), we are assured that if a E JR and a i= 0, then 
exactly one of the numbers a and -a is positive. The absolute value of a i= ° is defined to 
be the positive one of these two numbers. The absolute value of ° is defined to be 0. 

2.2.1 Definition The absolute value of a real number a , denoted by l a l ,  is defined by 

l a l := {� 
-a 

if a >  0, 
if a = 0, 
if a < 0. 

For example, 15 1 = 5 and 1 - 8 1 = 8. We see from the definition that la l 2: ° for 
all a E JR, and that la l = ° if and only if a = 0. Also 1 - a l  = la l for all a E JR. Some 
additional properties are as follows. 

2.2.2 Theorem (a) labl = la I lb l  for all a, b E R 
(b) la l2 = a2 for all a E R 
(c) Ifc 2: 0, then l a l  � c if and only if -c � a � c. 

(d) - Ia l  � a � la l for all a E R 

Proof. (a) If either a or b is 0, then both sides are equal to 0. There are four other cases 
to consider. If a > 0, b > 0, then ab > 0, so that labl = ab = la l lb l .  If a > 0, b < 0, then 
ab < 0, so that labl = -ab = a(-b) = la l l b l .  The remaining cases are treated similarly. 
(b) Since a2 2: 0, we have a2 = la2 1 = laal = la l la l  = la l2 • 
(c) If l a l  � c, then we have both a � c and -a � c (why?), which is equivalent to -c � 
a � c. Conversely, if -c � a � c, then we have both a � c and -a � c (why?), so that 
la l � c. 

(d) Take c = la l in part (c). Q.E.D. 

The following important inequality will be used frequently. 

2.2.3 Triangle Inequality If a, b E  JR, then la + b l  � la l  + Ib l .  
Proof. From 2.2.2(d), we have - Ia l  � a � la l and -Ib l � b � I b l .  On adding these 
inequalities, we obtain 

- (Ia l + Ib l ) � a + b � la l + Ib l · 
Hence, by 2.2.2(c) we have la + b l  � la l + Ib l .  Q.E.D. 

It can be shown that equality occurs in the Triangle Inequality if and only if ab > 0, 
which is equivalent to saying that a and b have the same sign. (See Exercise 2.) 

There are many useful variations of the Triangle Inequality. Here are two. 

2.i.4 Corollary If a, b E JR, then 

(a) i la l - Ib l i � la - bl , 
(b) la - b l � la l  + Ib l . 
Proof. (a) We write a = a - b + b and then apply the Triangle Inequality to get la l = 
I (a - b) + b l � la - bl + Ib l .  Now subtract I b l to get la l - Ib l � la - b l .  Similarly, from 
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Ib l  = Ib - a + a l ::s Ib - a l + la l ,  we obtain - Ia  - bl = - Ib - a l ::s la l - Ib l · If we com­
bine these two inequalities, using 2.2.2(c), we get the inequality in (a). 
(b) Replace b in the Triangle Inequality by -b to get la - b I ::s la I + I - b I .  Since I - b I = 
Ib l  we obtain the inequality in (b). Q.Ep. 

A straightforward application of Mathematical Induction extends the Triangle Inequal­
ity to any finite number of elements of lR. 

2.2.5 Corollary If ai ' a2 , . . .  , an are any real numbers, then 

lal + a2 + . . .  + an I ::s lal l + la2 1 + . . .  + Ian I · 
The following examples illustrate how the properties of absolute value can be used. 

2.2.6 Examples (a) Determine the set A of x E lR such that 12x + 3 1  < 7. 
From a modification of 2.2.2(c) for the case of strict inequality, we see that x E A if 

and only if -7 < 2x + 3 < 7, which is satisfied if and only if -10 < 2x < 4. Dividing by 
2, we conclude that A = {x E lR : -5 < x < 2}. 
(b) Determine the set B := {x E lR : Ix - 1 1  < Ix l } .  

One method i s  to consider cases so that the absolute value symbols can be removed. 
Here we take the cases 

(i) x � 1 ,  (ii) O ::s x  < 1 ,  (iii) x < O. 

(Why did we choose these three cases?) In case (i) the inequality becomes x - I  < x, 
which is satisfied without further restriction. Therefore all x such that x � 1 belong to the 
set B. In case (ii), the inequality becomes -(x - 1) < x, which requires that x > ! .  Thus, 
this case contributes all x such that ! < x < 1 to the set B. In case (iii), the inequality 
becomes -(x - 1) < -x, which is equivalent to 1 < O. Since this statement is false, no 
value of x from case (iii) satisfies the inequality. Forming the union of the three cases, we 
conclude that B = {x E lR : x > ! } .  

There is a second method of determining the set B based on the fact that a < b if 
and only if a2 < b2 when both a � 0 and b � O. (See 2. 1 . 1 3(a).) Thus, the inequality 
Ix - 1 1  < Ix I is equivalent to the inequality Ix - 1 12 < Ix 12 . Since la 12 = a2 for any a by 
2.2.2(b), we can expand the square to obtain x2 - 2x + 1 < x2, which simplifies to x > ! .  
Thus, we again find that B = {x E lR : x > ! } . This method of squaring can sometimes be 
used to advantage, but often a case analysis cannot be avoided when dealing with absolute 
values. 
(c) Let the function f be defined by f(x) := (2x2 + 3x + 1)/(2x - 1) for 2 ::s x ::s 3. 
Find a constant M such that I f (x) I ::s M for all x satisfying 2 ::s x ::s 3. 

We consider separately the numerator and denominator of 

12x2 + 3x + 1 1  If(x) 1 = 1 2x - 1 1  
From the Triangle Inequality, we obtain 

12x2 + 3x + 1 1 ::s 2 1x l2 + 3 1x l  + 1 ::s 2 . 32 + 3 · 3  + 1 = 28 
since Ix I ::s 3 for the x under consideration. Also, 12x - 1 1  � 21x I - 1 � 2 . 2 - 1 = 3 
since Ix l � 2 for the x under consideration. Thus, 1 / 1 2x - 1 1  ::s 1/3 for x � 2. (Why?) 
Therefore, for 2 :s x ::s 3 we have I f(x) 1  :s 28/3. Hence we can take M = 28/3 . (Note 
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that we have found one such constant M; evidently any number H > 28/3 will also satisfy 
If(x) 1  ::::: H. 1t is also possible that 28/3 is not the smallest possible choice for M.) D 

The Real Line 

A convenient and familiar geometric interpretation of the real number system is the real 
line. In this interpretation, the absolute value la I of an element a in lEt is regarded as the 
distance from a to the origin O. More generally, the distance between elements a and b in 
lEt is la - bl .  (See Figure 2.2. 1 .) 

We will later need precise language to discuss the notion of one real number being 
"close to" another. If a is a given real number, then saying that a real number x is "close to" a 
should mean that the distance Ix - a I between them is "small". A context in which this idea 
can be discussed is provided by the terminology of neighborhoods, which we now define. 

-4 -3 -2 - 1  o 2 3 

'�IE--I(-2) - (3) 1 = 5 -��I 

4 

Figure 2.2.1 The distance between a = -2 and b = 3 

2.2.7 Definition Let a E lEt and £ > O. Then the £-neighborhood of a is the set V/a) := 
{x E lEt: Ix - a l < £} . 

For a E lEt, the statement that x belongs to V, (a) is equivalent to either of the statements 
(see Figure 2.2.2) 

-£ < x - a < £ -<==> a - £ < X < a + £. 

---------+--------�O�--------_r----------� 
a - e  a a + e  

Figure 2.2.2 An s-neighborhood of a 

2.2.8 Theorem Let a E lEt. If x belongs to the neighborhood V, (a) for every £ > 0, then 
x = a. 

Proof. If a particular x satisfies Ix - a I < £ for every E: > 0, then it follows from 2. 1 .9 
that Ix - a l = 0, and hence x = a. Q.E.D. 

2.2.9 Examples (a) Let U := {x : 0 < x < 1 } .  If a E U, then let £ be the smaller of 
the two numbers a and 1 - a. Then it is an exercise to show that V/a) is contained in U.  
Thus each element of U has some £-neighborhood of it contained in U.  
(b) If I := {x : 0 ::::: x ::::: 1 } ,  then for any £ > 0 , the £-neighborhood V, (0) of 0 contains 
points not in I, and so V, (0) is not contained in I .  For example, the number x, := -£/2 is 
in V, (0) but not in I . 
(c) If Ix - a l  < £ and I y - bl < £, then the Triangle Inequality implies that 

I (x + y) - (a + b) 1 = I (x - a) + (y - b) 1 
::::: Ix - a l  + Iy - bl < 2£. 
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Thus if x ,  y belong to the e-neighborhoods of a, b, respectively, then x + y belongs to the 
2e-neighborhood of a + b (but not necessarily to the e-neighborhood of a + b). 0 

Exercises for Section 2.2 

1 .  If a ,  b E � and b =f. 0, show that: 
(a) la l  = N, (b) lalb l = la i/ ib l .  

2. If a , b E �, show that la + bl = la I + Ib l if and only if ab 2: O. 

3. If x ,  y ,  Z E � and x :s z, show that x :s y :s z if and only if Ix - y l + Iy - zl = Ix - zl .  Inter-
pret this geometrically. 

4. Show that Ix - a l < e if and only if a - e < x < a + e. 

5. If a < x < b and a < y < b, show that Ix - y l < b - a. Interpret this geometrically. 
6. Find all x E � that satisfy the following inequalities: 

(a) 14x - 5 1  :s 13, (b) Ix2 - 11 :s 3. 
7. Find all x E � that satisfy the equation Ix + 1 1  + Ix - 21 = 7. 
8. Find all x E � that satisfy the following inequalities. 

(a) Ix - I I > lx + l I .  (b) Ix l + lx + I I < 2. 
9. Sketch the graph of the equation y = lx i - Ix - 1 1 -

10. Find all x E � that satisfy the inequality 4 < Ix + 21 + Ix - 1 1  < 5 .  
1 1 .  Find all x E � that satisfy both 12x - 3 1  < 5 and Ix + 1 1  > 2 simultaneously. 
12. Determine and sketch the set of pairs (x, y) in � x � that satisfy: 

(a) Ix l = IY I ,  (b) Ix l + Iy l  = 1 ,  
(c) Ixy l = 2, (d) Ix l - Iyl = 2. 

13 .  Determine and sketch the set of pairs (x, y) in � x � that satisfy: 
(a) Ix l :s Iy l ,  (b) Ix l + Iy l  :s 1 ,  
(c) Ixy l :s 2, (d) Ixl - Iyl 2: 2. 

14. Let e > 0 and /) > 0, and a E R Show that Vs(a) n V8(a) and Vs(a) U V8(a) are y-neighbor­
hoods of a for appropriate values of y .  

1 5 .  Show that if a , b E � ,  and a =f. b ,  then there exist e-neighborhoods U of a and V of b such that 
u n  V = 0. 

16. Show that if a, b E � then 
(a) max{a , b} = 4 (a + b + la - bl) and min{a , b} = 4 (a + b - Ia - bl) . 
(b) min{a, b, e} = min{min{a , b}, e}. 

17 . Show that ifa, b, e E �, then the "middle number" is mid{a, b, e} = min{max{a , b}, max{b, e} ,  
max{e, a}} . 

Section 2.3 The Completeness Property of IR 

Thus far, we have discussed the algebraic properties and the order properties of the real 
number system lR.. In this section we shall present one more property of IR. that is often called 
the "Completeness Property". The system Q of rational numbers also has the algebraic and 
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order properties described in the preceding sections, but we have seen that -J2 cannot be 
represented as a rational number; therefore -J2 does not belong to Q. This observation 
shows the necessity of an additional property to characterize the real number system. This 
additional property, the Completeness (or the Supremum) Property, is an essential property 
of R, and we will say that R is a complete ordered field. It is this special property that 
permits us to define and develop the various limiting procedures that will be discussed in 
the chapters that follow. 

There are several different ways to describe the Completeness Property. We choose to 
give what is probably the most efficient approach by assuming that each nonempty bounded 
subset of R has a supremum. 

Suprema and Infima ____________________________________________ ___ 

We now introduce the notions of upper bound and lower bound for a set of real numbers. 
These ideas will be of utmost importance in later sections. 

2.3.1 Definition Let S be a nonempty subset of R 

(a) The set S is said to be bounded above if there exists a number U E R such that s ::s U 
for all s E S. Each such number u is called an upper bound of S. 

(b) The set S is said to be bounded below if there exists a number W E R such that w ::s s 

for all S E S. Each such number w is called a lower bound of S. 

(c) A set is said to be bounded if it is both bounded above and bounded below. A set is 
said to be unbounded if it is not bounded. 

For example, the set S : =  {x E R : x < 2} is bounded above; the number 2 and any 
number larger than 2 is an upper bound of S. This set has no lower bounds, so that the set 
is not bounded below. Thus it is unbounded (even though it is bounded above). 

If a set has one upper bound, then it has infinitely many upper bounds, because if u 

is an upper bound of S, then the numbers u + 1 ,  u + 2, . . .  are also upper bounds of S. 
(A similar observation is valid for lower bounds.) 

In the set of upper bounds of S and the set of lower bounds of S, we single out their 
least and greatest elements, respectively, for special attention in the following definition. 
(See Figure 2.3 . 1 .) 

Figure 2.3.1 inf S and sup S 

2.3.2 Definition Let S be a nonempty subset of R 

(a) If S is bounded above, then a number u is said to be a supremum (or a least upper 
bound) of S if it satisfies the conditions: 
(1) u is an upper bound of S, and 
(2) if v is any upper bound of S, then u ::s  v. 
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(b) If S is bounded below, then a number w is said to be an infimum (or a greatest lower 
bouud) of S if it satisfies the conditions: 
(1') w is a lower bound of S, and 
(2') if t is any lower bound of S, then t :s w. 

It is not difficult to see that there can be only one supremum of a given subset S of R 
(Then we can refer to the supremum of a set instead of a supremum.) For, suppose that 
uj and u2 are both suprema of S. If u j < u2' then the hypothesis that u2 is a supremum 
implies that u j cannot be an upper bound of S. Similarly, we see that u2 < u \  is not 
possible. Therefore, we must have u \ = u2. A similar argument can be given to show that 
the infimum of a set is uniquely determined. 

If the supremum or the infimum of a set S exists, we will denote them by 

sup S and inf S. 

We also observe that if u' is an arbitrary upper bound of a nonempty set S, then sup S :s u'. 
This is because sup S is the least of the upper bounds of S. 

First of all, it needs to be emphasized that in order for a nonempty set S in JR. to have 
a supremum, it must have an upper bound. Thus, not every subset of JR. has a supremum; 
similarly, not every subset of JR. has an infimum. Indeed, there are four possibilities for a 
nonempty subset S of R it can 

(i) have both a supremum and an infimum, 
(ii) have a supremum but no infimum, 
(iii) have a infimum but no supremum, 
(iv) have neither a supremum nor an infimum. 
We also wish to stress that in order to show that u = sup S for some nonempty subset S 

of JR., we need to show that both (1) and (2) of Definition 2.3 .2(a) hold. It will be instructive 
to reformulate these statements. First the reader should see that the following two statements 
about a number u and a set S are equivalent: 

( 1 ) u i s  an upper bound of S, 
(1 ') s :S u for all s E S. 

Also, the following statements about an upper bound u of a set S are equivalent: 
(2) if v is any upper bound of S, then u :s v, 
(2') if z < u, then z is not an upper bound of S, 
(2") if z < u, then there exists Sz E S such that z < sz' 
(2"') if e > 0, then there exists se E S such that u - e < se ' 

Therefore, we can state two alternate formulations for the supremum. 

2.3.3 Lemma A number u is the supremum of a nonempty subset S of JR. if and only if 
u satisfies the conditions: 

(1) s :s  u for all s E S, 
(2) if v < u, then there exists s' E S such that v < s'. 

We leave it to the reader to write out the details of the proof. 

2.3.4 Lemma An upper bound u of a nonempty set S in JR. is the supremum of S if and 
only if for every e > 0 there exists an Se E S such that u - e < s e ' 
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Proof. If u is an upper bound of S that satisfies the stated condition and if v < u, then we 
put e := U - v. Then e > 0, so there exists Ss E S such that v = U - e < ss . Therefore, v 
is not an upper bound of S, and we conclude that U = sup S. 

Conversely, suppose that U = sup S and let e > O. Since U - e < u, then U - e is not 
an upper bound of S. Therefore, some element s s of S must be greater than U - e ;  that is, 
U - e < ss . (See Figure 2.3 .2.) Q.E.D. 

U - E SE U 

I t_ t I - III "'""' _ 
�--------�'V---------J 

S 
Figure 2.3.2 u = sup S 

It is important to realize that the supremum of a set may or may not be an element 
of the set. Sometimes it is and sometimes it is not, depending on the particular set. We 
consider a few examples. 

2.3.5 Examples (a) If a nonempty set Sl has a finite number of elements, then it can 
be shown that Sl has a largest element U and a least element w. Then U = sup Sl and 
w = inf Sl ' and they are both members of Sl . (This is clear if Sl has only one element, and 
it can be proved by induction on the number of elements in Sl ; see Exercises 1 1  and 12.) 
(b) The set S2 := {x : 0 .::: x .::: I} clearly has 1 for an upper bound. We prove that 1 is 
its supremum as follows. If v < 1 ,  there exists an element s' E S2 such that v < s' . (Name 
one such element s' .) Therefore v is not an upper bound of S2 and, since v is an arbitrary 
number v < 1 ,  we conclude that sup S2 = l . 1t is similarly shown that inf S2 = O. Note that 
both the supremum and the infimum of S2 are contained in S2 . 
(c) The set S3 := {x : 0 < x < I }  clearly has 1 for an upper bound. Using the same 
argument as given in (b), we see that sup S3 = 1 .  In this case, the set S3 does not contain 
its supremum. Similarly, inf S3 = 0 is not contained in S3 . D 

The Completeness Property of R 

It is not possible to prove on the basis of the field and order properties of R that were 
discussed in Section 2. 1 that every nonempty subset of R that is bounded above has a 
supremum in R However, it is a deep and fundamental property of the real number system 
that this is indeed the case. We will make frequent and essential use of this property, 
especially in our discussion of limiting processes. The following statement concerning the 
existence of suprema is our final assumption about R Thus, we say that R is a complete 
orderedfield. 

2.3.6 The Completeness Property of R Every nonempty set of real numbers that has 
an upper bound also has a supremum in R 

This property is also called the Supremum Property of R The analogous property 
for infima can be deduced from the Completeness Property as follows. Suppose that S is 
a nonempty subset of R that is bounded below. Then the nonempty set S := {-s : s E S} 
is bounded above, and the Supremum Property implies that U := sup S exists in R The 
reader should verify in detail that -u is the infimum of S. 
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Exercises for Section 2.3 

1. Let Sl := {x E R : x ::: O}. Show in detail that the set Sl has lower bounds, but no upper bounds. 
Show that inf Sl = O. 

2. Let Sz = {x E R : x > O}. Does Sz have lower bounds? Does Sz have upper bounds? Does 
inf Sz exist? Does sup Sz exist? Prove your statements. 

3. Let S3 = { lIn : n E N}. Show that SUP S3 = 1 and inf S3 ::: O. (It will follow from the Archi-
medean Property in Section 2.4 that inf S3 = 0.) 

4. Let S4 := { I - (-I)nln : n E N}. Find inf S4 and sup S4' 
5. Let S be a nonempty subset of R that is bounded below. Prove that inf S = - sup{ -s: S E S}. 
6. If a set S � R contains one of its upper bounds, show that this upper bound is the supremum of 

S. 
7. Let S � R be nonempty. Show that U E R is an upper bound of S if and only if the conditions 

t E R and t > u imply that t � S. 
8. Let S � R be nonempty. Show that if u = sup S, then for every number n E N the number 

u - 1 I n is not an upper bound of S, but the number u + 1 I n is an upper bound of S. (The 
converse is also true; see Exercise 2.4.3.) 

9. Show that if A and B are bounded subsets of R, then A U B is a bounded set. Show that 
sup(A U B) = sup{sup A ,  sup B}. 

10. Let S be a bounded set in R and let So be a nonempty subset of S. Show that inf S :s inf So :s 
sup So :s sup S. 

1 1 .  Let S � R and suppose that s* := sup S belongs to S. If u � S, show that sup(S U {u}) = 
sup{s* , u} .  

12 .  Show that a nonempty finite set S � R contains its supremum. [Hint: Use Mathematical Induc-
tion and the preceding exercise.] 

13. Show that the assertions (1) and (I ') before Lemma 2.3.3 are equivalent. 
14. Show that the assertions (2), (2'), (2"), and (2111) before Lemma 2.3.3 are equivalent. 
15. Write out the details of the proof of Lemma 2.3.3. 

Section 2.4 Applications of the Supremum Property 

We will now discuss how to work with suprema and infima. We will also give some very 
important applications of these concepts to derive fundamental properties of R We begin 
with examples that illustrate useful techniques in applying the ideas of supremum and 
infimum. 

2.4.1 Example (a) It is an important fact that taking suprema and infima of sets is com­
patible with the algebraic properties of JR. As an example, we present here the compatibility 
of taking suprema and addition. 

Let S be a nonempty subset of JR that is bounded above, and let a be any number in 
R Define the set a + S := {a + s : S E S}. We will prove that 

sup(a + S) = a + sup S. 
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If we let u := sup S, then x ::::: u for all X E S, so that a + x ::::: a + u. Therefore, a + u 

is an upper bound for the set a + S; consequently, we have sup(a + S) ::::: a + u. 
Now if v is any upper bound of the set a + S, then a + x ::::: v for all X E S. Con­

sequently x ::::: v - a for all X E S, so that v - a is an upper bound of S. Therefore, 
u = sup S ::::: v - a, which gives us a + u ::::: v .  Since v is any upper bound of a + S, 
we can replace v by sup(a + S) to get a + u ::::: sup(a + S). 

Combining these inequalities, we conclude that 

sup(a + S) = a + u = a + sup S. 

For similar relationships between the suprema and infima of sets and the operations of 
addition and multiplication, see the exercises. 
(b) If the suprema or infima of two sets are involved, it is often necessary to establish 
results in two stages, working with one set at a time. Here is an example. 

Suppose that A and B are nonempty subsets of lR that satisfy the property: 

for all a E A and all b E B. 

We will prove that 

sup A ::::: inf B .  

For, given b E B, we have a ::::: b for all a E A. This means that b is an upper bound of A, so 
that sup A ::::: b. Next, since the last inequality holds for all b E B, we see that the number 
sup A is a lower bound for the set B. Therefore, we conclude that sup A ::::: inf B .  0 

Functions 

The idea of upper bound and lower bound is applied to functions by considering the 
range of a function. Given a function f : D -+ lR, we say that f is bounded above if 
the set feD) = {f(x) : x E D} is bounded above in lR; that is, there exists B E lR such 
that f(x) ::::: B for all x E D. Similarly, the function f is bounded below if the set feD) 
is bounded below. We say that f is bounded if it is bounded above and below; this is 
equivalent to saying that there exists B E lR such that I f (x) I ::::: B for all x E D. 

The following example illustrates how to work with suprema and infima of functions. 

2.4.2 Example Suppose that f and g are real-valued functions with common domain 
D � R We assume that f and g are bounded. 
(a) If f(x) ::::: g(x) for all x E D, then sup f(D) ::::: sup g(D), which is sometimes written: 

sup f(x) ::::: sup g (x) .  
XED xED 

We first note that f(x) ::::: g (x) ::::: sup g (D), which implies that the number sup g(D) 
is an upper bound for feD). Therefore, sup feD) ::::: sup g(D). 
(b) We note that the hypothesis f(x) ::::: g(x) for all x E D  in part (a) does not imply any 
relation between sup feD) and inf g (D). 

For example, if f(x) := x2 and g(x) : =  x with D = {x : 0 ::::: x ::::: I } ,  then f(x) ::::: 
g(x) for all x E D. However, we see that sup f(D) = l and inf g (D) = O. Since sup g(D) = 

1, the conclusion of (a) holds. 
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(c) If f (x) :::: g (y) for all x ,  y E D, then we may conclude that sup f(D) :::: inf g(D), 
which we may write as: 

sup f(x) :::: inf g(y) . 
XED yED 

(Note that the functions in (b) do not satisfy this hypothesis.) 
The proof proceeds in two stages as in Example 2.4. 1 (b). The reader should write out 

the details of the argument. 0 

Further relationships between suprema and infima of functions are given in the exer­
cises. 

The Archimedean Property 

Because of your familiarity with the set JR and the customary picture of the real line, it may 
seem obvious that the set N of natural numbers is not bounded in R How can we prove this 
"obvious" fact? In fact, we cannot do so by using only the Algebraic and Order Properties 
given in Section 2. 1 .  Indeed, we must use the Completeness Property of JR as well as the 
Inductive Property of N (that is, if n E N, then n + 1 E N). 

The absence of upper bounds for N means that given any real number x there exists a 
natural number n (depending on x) such that x < n. 

2.4.3 Archimedean Property If x E JR, then there exists nx E N  such that x < nx ' 
Proof. If the assertion is false, then n :::: x for all n E N; therefore, x is an upper bound of 
N. Therefore, by the Completeness Property, the nonempty set N has a supremum U E R 
Subtracting 1 from u gives a number u - 1 which is smaller than the supremum u of N. 
Therefore u - 1 is not an upper bound of N, so there exists m E N with u - 1 < m. Adding 
1 gives u < m + 1 ,  and since m + 1 E N, this inequality contradicts the fact that u is an 
upper bound of N. Q.E.D. 

2.4.4 Corollary If S := {lin : n E N}, then inf S = O. 

Proof. Since S =f. 0 is bounded below by 0, it has an infimum and we let w := inf S. 1t is 
clear that w ::: O. For any e > 0, the Archimedean Property implies that there exists n E N 
such that l ie < n, which implies l in < e. Therefore we have 

0 :::: w :::: l in < e. 
But since e > 0 is arbitrary, it follows from Theorem 2. 1 .9 that w = O. 

2.4.5 Corollary 1ft > 0, there exists nt E N  such that 0 < lint < t . 

Q.E.D. 

Proof. Since inf{ l /n : n E N} = 0 and t > 0, then t is not a lower bound for the set 
{ lIn : n E N}. Thus there exists nt E N  such that 0 < l int < t . Q.E.D. 

2.4.6 Corollary Ify > 0, there exists ny E N  such that ny - 1 :::: y < ny• 
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Proof. The Archimedean Property ensures that the subset Ey := {m E N :  y < m} of N 
is not empty. By the Well-Ordering Property 1 .2. 1 , Ey has a least element, which we denote 
by ny . Then ny - 1 does not belong to Ey, and hence we have ny - 1 :'S y < ny. Q.E.D. 

Collectively, the Corollaries 2.4.4-2.4.6 are sometimes referred to as the Archimedean 
Property of R 

The Existence of ,J2 
The importance of the Supremum Property lies in the fact that it guarantees the existence of 
real numbers under certain hypotheses. We shall make use of it in this way many times. At 
the moment, we shall illustrate this use by proving the existence of a positive real number 
x such that x2 = 2; that is, the positive square root of 2. It was shown earlier (see Theorem 
2.1 .4) that such an x cannot be a rational number; thus, we will be deriving the existence 
of at least one irrational number. 

2.4.7 Theorem There exists a positive real number x such that x2 = 2. 

Proof. Let S := {s E JR.: 0 :'S S, S2 < 2} . Since 1 E S, the set is not empty. Also, S is 
bounded above by 2, because if t > 2, then t2 > 4 so that t ¢ S. Therefore the Supremum 
Property implies that the set S has a supremum in JR., and we let x := sup S. Note that 
x > 1 . 

We will prove that x2 = 2 by ruling out the other two possibilities: x2 < 2 and x2 > 2. 
First assume that x2 < 2. We will show that this assumption contradicts the fact that 

x = sup S by finding an n E N such that x + 1 In E S, thus implying that x is not an upper 
bound for S. To see how to choose n, note that l ln2 :'S l in so that 

( 1 )
2 2x 1 1 x + - = x2 + - + 2" :'S x2 + - (2x + 1 ) . n n n n 

Hence if we can choose n so that 
1 - (2x + 1 ) < 2 _ x2 , n 

then we get (x + l ln)2 < x2 + (2 - x2) = 2. By assumption we have 2 - x2 > 0, so that 
(2 - x2)/(2x + 1 ) > O. Hence the Archimedean Property (Corollary 2.4.5) can be used to 
obtain n E N such that 

1 2 - x2 - < ---. n 2x + 1 
These steps can be reversed to show that for this choice of n we have x + 1 In E S, which 
contradicts the fact that x is an upper bound of S. Therefore we cannot have x2 < 2. 

Now assume that x2 > 2. We will show that it is then possible to find m E N such that 
x - 1 I m is also an upper bound of S, contradicting the fact that x = sup S. To do this, note 
that 

(x - � y = x2 - � + �2 > x2 
Hence if we can choose m so that 

2x 2 - < x  - 2, m 

2x 
m 
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then (x - I /m)2 > X2 - (X2 - 2) = 2. Now by assumption we have x2 - 2 >  0, so that 
(x2 - 2)/2x > 0. Hence, by the Archimedean Property, there exists m E N such that 

1 x2 - 2 - < -- . m 2x 
These steps can be reversed to show that for this choice of m we have (x - 1 Im)2 > 2. Now 
if S E S, then s2 < 2 < (x - I/m)2, whence it follows from 2. 1 . 1 3(a) that s < x - 11m . 
This implies that x - I  I m is an upper bound for S, which contradicts the fact that x = sup S. 
Therefore we cannot have x2 > 2. 

Since the possibilities x2 < 2 and x2 > 2 have been excluded, we must have x2 = 2. 
Q.E.D. 

By slightly modifying the preceding argument, the reader can show that if a > 0, then 
there is a unique b > ° such that b2 = a . We call b the positive square root of a and denote 
it by b = Ja or b = a 1/2 . A slightly more complicated argument involving the binomial 
theorem can be formulated to establish the existence of a unique positive nth root of a, 
denoted by:.ya or a1/n , for each n E No 

Remark If in the proof of Theorem 2.4.7 we replace the set S by the set of rational 
numbers T : =  {r E Q : ° :::: r, r2 < 2}, the argument then gives the conclusion that y := 

sup T satisfies i = 2. Since we have seen in Theorem 2. 1 .4 that y cannot be a rational 
number, it follows that the set T that consists of rational numbers does not have a supremum 
belonging to the set Q. Thus the ordered field Q of rational numbers does not possess the 
Completeness Property. 

Density of Rational Numbers in lR. 
We now know that there exists at least one irrational real number, namely .j2. Actually 
there are "more" irrational numbers than rational numbers in the sense that the set of 
rational numbers is countable (as shown in Section 1 .3), while the set of irrational numbers 
is uncountable (see Section 2.5). However, we next show that in spite of this apparent 
disparity, the set of rational numbers is "dense" in lR. in the sense that given any two real 
numbers there is a rational number between them (in fact, there are infinitely many such 
rational numbers). 

2.4.8 The Density Theorem If x and y are any real numbers with x < y, then there 
exists a rational number r E Q such that x < r < y .  

Proof. It is no loss of generality (why?) to assume that x > 0. Since y - x > 0, it 
follows from Corollary 2.4.5 that there exists n E N such that 1/ n < y - x. Therefore, 
we have nx + I < ny. If we apply Corollary 2.4.6 to nx > 0, we obtain m E N  with 
m - 1 :::: nx < m. Therefore, m :::: nx + 1 < ny, whence nx < m < ny. Thus, the rational 
number r := min satisfies x < r < y. Q.E.D. 

To round out the discussion of the interlacing of rational and irrational numbers, we 
have the same "betweenness property" for the set of irrational numbers. 

2.4.9 Corollary If x and y are real numbers with x < y, then there exists an irrational 
number z such that x < z < y. 
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Proof. If we apply the Density Theorem 2.4.8 to the real numbers x /..;2 and y /..;2, we 
obtain a rational number r =1= 0 (why?) such that 

x y 
..;2 < r < ..;2 '  

Then z := r..;2 is irrational (why?) and satisfies x < z < y .  

Exercises for Section 2.4 

1 .  Show that sup{ l - l in : n E N} = 1 .  
2 .  If S :=  { lin - 11m: n, m E N} , find inf S and sup S. 

Q.E.D. 

3. Let S s:; JR be nonempty. Prove that if a number u in JR has the properties: (i) for every n E N 
the number u - lin is not an upper bound of S, and (ii) for every number n E N the number 
u + 1 I n is an upper bound of S, then u = sup S. (This is the converse of Exercise 2.3.8.) 

4. Let S be a nonempty bounded set in R 
(a) Let a > 0, and let as := {as: s E S}. Prove that 

inf(aS) = a inf S, sup(aS) = a sup S. 
(b) Let b < ° and let bS = {bs: S E S}. Prove that 

inf(bS) = b sup S, sup(bS) = b inf S. 
5. Let X be a nonempty set and let I: X --+ JR have bounded range in R If a E JR, show that 

Example 2.4. 1(a) implies that 
sup{a + I(x): x E X} = a + sup{f(x): x E X} 

Show that we also have 
inf{a + I(x): x E X} = a + inf{f(x): x E X} 

6. Let A and B be bounded nonempty subsets of JR, and let A + B := {a + b: a E A, b E  B } . 
Prove that sup(A + B) = sup A + sup B and inf(A + B) = inf A + inf B. 

, 

7. Let X be a nonempty set, and let I and g be defined on X and have bounded ranges in R Show 
that 

sup{f(x) + g(x): x E X} :::: sup{f(x) : x E X} + sup{g(x) : x E X} 
and that 

inf{f(x) : x E X} + inf{g(x) : x E X} :::: inf{f(x) + g(x) : x E X}. 
Give examples to show that each of these inequalities can be either equalities or strict inequalities. 

8. Let X = Y := {x E JR: ° < x < 1} .  Define h: X x Y --+ R by hex ,  y) := 2x + y. 
(a) For each x E X, find I(x) := sup{h(x ,  y): y E Y}; then find inf{f(x): x E X}. 
(b) For each y E Y, find g(y) := inf{h(x, y): x E X}; then find sup{g(y): y E Y} . Compare 

with the result found in part (a). 
9. Perform the computations in (a) and (b) of the preceding exercise for the function h: X x Y --+ R 

defined by {o if x < y, hex ,  y) ::= 1 if x :::: y .  
10 .  Let X and Y be nonempty sets and let h : X x Y --+ R have bounded range in R Let I : X --+ R 

and g : Y --+ R be defined by 
I(x) := sup{h(x , y) : y E y}, g(y) := inf{h(x, y) : x E X}. 
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Prove that 
sup{g(y) : y E Y} :s inf{f(x) : x E X} 

We sometimes express this by writing 
sup inf hex, y) :s inf sup h (x ,  y). 

y x x y 

Note that Exercises 8 and 9 show that the inequality may be either an equality or a strict 
inequality. 

1 1 .  Let X and Y be nonempty sets and let h : X x Y -+ JR have bounded range in JR. Let F :  X -+ JR 
and G : Y -+ JR be defined by 

F(x) := sup{h(x, y) : y E Y}, G(y) := sup{h(x, y) : x E X}. 
Establish the Principle of the Iterated Suprema: 

sup{h(x ,  y) : x E X, Y E Y} = sup{F(x) : x E X} = sup{G(y) : y E Y} 
We sometimes express this in symbols by 

suph (x ,  y) = sup sup h(x ,  y) = sup sup h(x ,  y). 
x.y x y y x 

12. Given any x E JR, show that there exists a unique n E Z such that n - 1 :s x < n. 
13. If y > 0, show that there exists n E N  such that 1/2n 

< y. 
14. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number y such 

that l = 3. 
15. Modify the argument in Theorem 2.4.7 to show that if a > 0, then there exists a positive real 

number z such that z?- = a .  
16. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number u such 

that u3 = 2. 
17. Complete the proof of the Density Theorem 2.4.8 by removing the assumption that x > O. 

18 .  If u > 0 is any real number and x < y, show that there exists a rational number r such that 
x < ru < y. (Hence the set {ru: r E Q} is dense in JR.) 

Section 2.5 Intervals 

The Order Relation on lR. detennines a natural collection of subsets called "intervals". The 
notations and tenninology for these special sets will be familiar from earlier courses. If 
a, b E lR. satisfy a < b, then the open interval detennined by a and b is the set 

(a , b) := {x E lR. :  a < x < b}. 
The points a and b are called the endpoints of the interval; however, the endpoints are not 
included in an open interval. If both endpoints are adjoined to this open interval, then we 
obtain the closed interval detennined by a and b; namely, the set 

[a , b] := {x E lR. :  a :s x :s b}. 
The two half-open (or half-closed) intervals detennined by a and b are [a , b), which 
includes the endpoint a, and (a , b], which includes the endpoint b. 

Each of these four intervals is bounded and has length defined by b - a. If a = b, the 
corresponding open interval is the empty set (a , a) = 0, whereas the corresponding closed 
interval is the singleton set [a , a] = {a}. 
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There are five types of unbounded intervals for which the symbols 00 (or +00) and -oo 
are used as notational convenience in place of the endpoints. The infinite open intervals 
are the sets of the form 

(a , 00) := {x E JR. : x > a} and (-00, b) := {x E JR. :  x < b}. 
The first set has no upper bounds and the second one has no lower bounds. Adjoining 
endpoints gives us the infinite closed intervals: 

[a , 00) := {x E JR. :  a :'S x} and (-00, b] := {x E JR. :  x :'S b}. 
It is often convenient to think of the entire set JR. as an infinite interval; in this case, we write 
(-00, 00) := R No point is an endpoint of (-00, 00) . 
Warning It must be emphasized that 00 and -00 are not elements of JR., but only conve­
nient symbols. 

Characterization of Intervals 

An obvious property of intervals is that if two points x ,  y with x < y belong to an interval I, 
then any point lying between them also belongs to I . That is, if x < t < y, then the point t 
belongs to the same interval as x and y. In other words, if x and y belong to an interval I, 
then the interval [x , y] is contained in I . We now show that a subset of JR. possessing this 
property must be an interval. 

2.5.1 Characterization Theorem If S is a subset of JR. that contains at least two points 
and has the property 

(1) if x, Y E S  and x < y, then [x , y] S; S, 

then S is an interva1. 

Proof. There are four cases to consider: (i) S is bounded, (ii) S is bounded above but 
not below, (iii) S is bounded below but not above, and (iv) S is neither bounded above nor 
below. 

Case (i): Let a := inf S and b := sup S. Then S S; [a , b] and we will show that 
(a, b) S; S. 

If a < z < b, then z is not a lower bound of S, so there exists X E S  with x < z. Also, 
z is not an upper bound of S, so there exists y E S  with z < y. Therefore z E [x , y], so 
property ( 1 )  implies that z E S. Since z is an arbitrary element of (a , b), we conclude that 
(a , b) S; S. 

Now if a E S and b E S, then S = [a, b] . (Why?) If a 1. S and b f- S, then S = (a, b). 
The other possibilities lead to either S = (a, b] or S = [a , b). 

Case (ii): Let b := sup S. Then S S; (-00, b] and we will show that (-00, b) S; S. For, 
if z < b, then there exist x , Y E S  such that z E [x , y] S; S. (Why?) Therefore (-00, b) S; S. 
If b E  S, then S = (-00, b], and if b 1. S, then S = (-00, b) . 

Cases (iii) and (iv) are left as exercises. Q.E.D. 

Nested Intervals 

We say that a sequence of intervals In ' n E N, is nested if the following chain of inclusions 
holds (see Figure 2.5. 1 ) :  
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( 

( 

Figure 2.5.1 Nested intervals 

For example, if In := [0, l in] for n E N, then In :;2 In+1 for each n E N so that this 
sequence of intervals is nested. In this case, the element ° belongs to all In and the 
Archimedean Property 2.4.5 can be used to show that ° is the only such common point. 
(Prove this.) We denote this by writing n:::1 In = {O} . 

It is important to realize that, in general, a nested sequence of intervals need not 
have a common point. For example, if in := (0, l in) for n E N, then this sequence of 
intervals is nested, but there is no common point, since for every given x > 0, there exists 
(why?) m E N  such that 11m < x so that x ¢ 1m ' Similarly, the sequence of intervals 
Kn := (n , (0) , n E N, is nested but has no common point. (Why?) 

However, it is an important property of lR that every nested sequence of closed, bounded 
intervals does have a common point, as we will now prove. Notice that the completeness 
of lR plays an essential role in establishing this property. 

2.5.2 Nested Intervals Property If In = [an ' bnJ ' n E N, is a nested sequence of closed 
bounded intervals, then there exists a number � E lR such that � E In for all n E N. 

Proof. Since the intervals are nested, we have In S; II for all n E N, so that an S bl for 
all n E No Hence, the nonempty set {an : n E N} is bounded above, and we let � be its 
supremum. Clearly an S � for all n E N. 

We claim also that � S b n for all n . This is established by showing that for any particular 
n, the number bn is an upper bound for the set {ak : k E N} .  We consider two cases. (i) If 
n S k, then since In :;2 Ik , we have ak S bk S bn . (ii) If k < n, then since Ik ;2 In ' we have 
ak S an S bn · (See Figure 2.5.2.) Thus, we conclude that ak S bn for all k, so that bn is an 
upper bound of the set {ak : k E N} .  Hence, � S bn for each n E N. Since an S � S bn for 
all n, we have � E In for all n E N. Q.E.D. 

I �E------ 4  ----------------��I 

Figure 2.5.2 If k < n, then In � Ik 



2.5 INTERVALS 47 

2.5.3 Theorem IfIn := [an ' bn] ,  n E fir, is a nested sequence of closed, bounded intervals 
such that the lengths bn - an of In satisfy 

inf{bn - an : n E fir} = 0, 
then the number � contained in In for all n E fir is unique. 

Proof. If rJ := inf{bn : n E fir}, then an argument similar to the proof of 2.5.2 can be used 
to show that an .::: '1 for all n, and hence that � .::: '1. In fact, it is an exercise (see Exercise 
10) to show that x E In for all n E fir if and only if � .::: x .::: '1. If we have inf{bn - an : n E 
N} = 0, then for any e > 0, there exists an m E N  such that ° .::: '1 - � .::: bm - am < e. 
Since this holds for all e > 0, it follows from Theorem 2. 1 .9 that '1 - � = 0. Therefore, we 
conclude that � = '1 is the only point that belongs to In for every n E N. Q.E.D. 

The Uncountability of IR ____________________ _ 

The concept of a countable set was discussed in Section 1 .3 and the countability of the set 
Q of rational numbers was established there. We will now use the Nested Interval Property 
to prove that the set IR is an uncountable set. The proof was given by Georg Cantor in 
1 874 in the first of his papers on infinite sets. He later published a proof that used decimal 
representations of real numbers, and that proof will be given later in this section. 

2.5.4 Theorem The set IR of real numbers is not countable. 

Proof. We will prove that the unit interval I := [0, 1 ]  is an uncountable set. This implies 
that the set IR is an uncountable set, for if IR were countable, then the subset I would also 
be countable. (See Theorem 1 .3.9(a).) 

The proof is by contradiction. If we assume that I is countable, then we can enumerate 
the set as 1 =  {x\ ,  x2 ' " ' , xn ' • • .  } .  We first select a closed subinterval 1\ of I such that 
x\ ¢ 1\ , then select a closed subinterval 12 of 1\ such that x2 ¢ 12, and so on. In this way, 
we obtain nonempty closed intervals 

1\ ;2 12 ;2 . . .  ;2 In ;2 . . .  
such that In S; I and Xn ¢ In for all n . The Nested Intervals Property 2.5.2 implies that 
there exists a point � E I such that � E In for all n .  Therefore � =j:. xn for all n E N, so the 
enumeration of I is not a complete listing of the elements of I , as claimed. Hence, I is an 
uncountable set. Q.E.D. 

The fact that the set IR of real numbers is uncountable can be combined with the fact 
that the set Q of rational numbers is countable to conclude that the set IR\Q of irrational 
numbers is uncountable. Indeed, since the union of two countable sets is countable (see 
l .3.7(c)), if IR\Q is countable, then since IR = Q U (IR\Q), we conclude that IR is also a 
countable set, which is a contradiction. Therefore, the set of irrational numbers IR\Q is an 
uncountable set. 

tBinary Representations 

We will digress briefly to discuss informally the binary (and decimal) representations of real 
numbers. It will suffice to consider real numbers between ° and 1 ,  since the representations 
for other real numbers can then be obtained by adding a positive or negative number. 

tThe remainder of this section can be omitted on a first reading. 
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If x E [0, 1 ] , we will use a repeated bisection procedure to associate a sequence (an) of 
Os and I s  as follows. If x i= 4 belongs to the left subinterval [0, 4] we take al := 0, while 
if x belongs to the right subinterval [ 4 ,  1 ] we take al = 1 .  If x = & '  then we may take al 
to be either ° or 1 . In any case, we have 

al al + 1 - < x < --2 - - 2 
We now bisect the interval [4al ' 4 (al + 1 )] .  If x is not the bisection point and belongs 
to the left subinterval we take a2 := 0, and if x belongs to the right subinterval we take 
a2 := 1 .  If x = ! or x = � ,  we can take a2 to be either ° or 1 .  In any case, we have 

aj a2 aj a2 + 1 
- + - < x < - + -- . 2 22 - - 2 22 

We continue this bisection procedure, assigning at the nth stage the value an := ° if x is not 
the bisection point and lies in the left subinterval, and assigning the value an := 1 if x lies 
in the right subinterval. In this way we obtain a sequence (an) of Os or I s  that correspond 
to a nested sequence of intervals containing the point x .  For each n, we have the inequality 

aj a2 an aj a2 an + 1 (2) 2" + 22 + . . .  + 2n :s x :s 2" + 22 + . . . + � . 
If x is the bisection point at the nth stage, then x = m /2n with m odd. In this case, we may 
choose either the left or the right subinterval; however, once this subinterval is chosen, then 
all subsequent subintervals in the bisection procedure are determined. [For instance, if we 
choose the left subinterval so that an = 0, then x is the right endpoint of all subsequent 
subintervals, and hence ak = 1 for all k � n + 1 . On the other hand, if we choose the right 
subinterval so that an = 1 ,  then x is the left endpoint of all subsequent subintervals, and 
hence ak = ° for all k � n + 1 .  For example, if x = � ,  then the two possible sequences for 
x are 1 , 0, 1 ,  1 ,  1 , · "  and 1 ,  1 , 0, 0, 0" . . . ] 

To summarize: If x E [0, 1 ] ,  then there exists a sequence (an) of Os and I s  such that 
inequality (2) holds for all n E N. In this case we write 

(3) 
and call (3) a binary representation of x. This representation is unique except when 
x = m /2n for m odd, in which case x has the two representations 

x = (.aja2 • • •  an_l lOOO · . ')2 = (.aja2 • • •  an_jOl 1 1  . .  ')2 ' 
one ending in Os and the other ending in 1 s. 

Conversely, each sequence of Os and Is is the binary representation of a unique real 
number in [0, 1 ] .  The inequality corresponding to (2) determines a closed interval with 
length 1/2n and the sequence of these intervals is nested. Therefore, Theorem 2.5.3 implies 
that there exists a unique real number x satisfying (2) for every n E N. Consequently, x has 
the binary representation (.ala2 • • .  an ' . ')2 ' 

Remark The concept of binary representation is extremely important in this era of digital 
computers. A number is entered in a digital computer on "bits", and each bit can be put in 
one of two states--either it will pass current or it will not. These two states correspond to 
the values 1 and 0, respectively. Thus, the binary representation of a number can be stored 
in a digital computer on a string of bits. Of course, in actual practice, since only finitely 
many bits can be stored, the binary representations must be truncated. If n binary digits 
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are used for a number x E [0, 1 ] ,  then the accuracy is at most 1 /2n . For example, to assure 
four-decimal accuracy, it is necessary to use at least 1 5  binary digits (or 1 5  bits). 

Decimal Representations 

Decimal representations of real numbers are similar to binary representations, except that 
we subdivide intervals into ten equal subintervals instead of two. 

Thus, given x E [0, 1 ] ,  if we subdivide [0, 1 ]  into ten equal subintervals, then x belongs 
to a subinterval [bl / lO, (bl + 1 )/ 10] for some integer bl in {O, 1 ,  . . .  , 9}. Proceeding as in 
the binary case, we obtain a sequence (bn) of integers with 0 � bn � 9 for all n E N such 
that x satisfies 

(4) 

In this case we say that x has a decimal representation given by 

x = .bl b2 · ·  . bn • • • • 
If x :::: I and if B E N  is such that B � x < B + 1 ,  then x = B.blb2 ' " bn • • •  where the 
decimal representation of x - B E [0, 1 ]  is as above. Negative numbers are treated similarly. 

The fact that each decimal determines a unique real number follows from Theorem 
2.5.3, since each decimal specifies a nested sequence of intervals with lengths l / lOn • 

The decimal representation of x E [0, 1 ]  is unique except when x is a subdivision 
point at some stage, which can be seen to occur when x = m/lOn for some m, n E N, 1 � 
m � IOn . (We may also assume that m is not divisible by 10.) When x is a subdivision 
point at the nth stage, one choice for bn corresponds to selecting the left subinterval, which 
causes all subsequent digits to be 9, and the other choice corresponds to selecting the 
right subinterval, which causes all subsequent digits to be O. [For example, if x = ! then 
x = .4999 · · ·  = .5000 · · · ,  and if y = 38/100 then y = .37999 · · ·  = .38000 · · · .] 

Periodic Decimals 

A decimal B.blb2 • • . bn . . • is said to be periodic (or to be repeating), if there existk, n E N 
such that bn = bn+m for all n :::: k. In this case, the block of digits bkbk+1 . . .  bk+m_1 is 
repeated once the kth digit is reached. The smallest number m with this property is called 
the period of the decimal. For example, 19/88 = .2159090 · ·  · 90 · · ·  has period m = 2 
with repeating block 90 starting at k = 4. A terminating decimal is a periodic decimal 
where the repeated block is simply the digit O. 

We will give an informal proof of the assertion: A positive real number is rational if 
and only if its decimal representation is periodic. 

For, suppose that x = p/q where p, q E N  have no common integer factors. For 
convenience we will also suppose that 0 < p < q .  We note that the process of "long 
division" of q into p gives the decimal representation of p / q .  Each step in the division 
process produces a remainder that is an integer from 0 to q - 1 .  Therefore, after at most q 
steps, some remainder will occur a second time and, at that point, the digits in the quotient 
Will begin to repeat themselves in cycles. Hence, the decimal representation of such a 
rational number is periodic. 

Conversely, if a decimal is periodic, then it represents a rational number. The idea of the 
proof is best illustrated by an example. Suppose that x = 7.3 1414 · · · 14 · · · .  We multiply 
by a power of 10 to move the decimal point to the first repeating block; here obtaining 
lOx = 73 . 1414 · · · .  We now multiply by a power of 10 to move one block to the left 
of the decimal point; here getting 1000x = 73 14. 1414 · . ' . We now subtract to obtain an 
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integer; here getting 1000x - lOx = 73 14 - 73 = 7241 ,  whence x = 7241/990, a rational 
number. 

Cantor's Second Proof ______________________ _ 

We will now give Cantor's second proof of the uncountability of R This is the elegant 
"diagonal" argument based on decimal representations of real numbers. 

2.5.5 Theorem The unit interval [0, 1 ]  := {x E lR. : 0 � x � I }  is not countable. 

Proof. The proof is by contradiction. We will use the fact that every real number x E [0, 1] 
has a decimal representation x = O.b! bzb3 . . . , where bi = 0, 1 . . .  , 9. Suppose that there 
is an enumeration xl ' xZ ' X3 . . . of all numbers in [0, 1 ] ,  which we display as: 

x! = O.bl lb12b13 . . • bIn . . .  , 

Xz = O.bZ! bzzbz3 . . .  bZn . . .  , 
x3 = 0.b3! b3Zb33 . . .  b3n . . .  , 

We now define a real number Y := 0'Y!YZY3 . . .  Yn . . .  by setting Y! := 2 if bll :::: 5 and 
Y! := 7 if bl l � 4; in general, we let 

if bnn :::: 5 ,  
if bnn � 4. 

Then Y E [0, 1 ] .  Note that the number Y is not equal to any of the numbers with two 
decimal representations, since Yn # 0, 9 for all n E N. Further, since Y and xn differ in 
the nth decimal place, then Y # xn for any n E N. Therefore, Y is not included in the 
enumeration of [0, 1 ] ,  contradicting the hypothesis. Q.E.D. 

Exercises for Section 2.5 

1. If I := [a, b] and I' := [a', b'] are closed intervals in JR, show that I S; I' if and only if a' ::: a 
and b ::: b'. 

2. If S S; JR is nonempty, show that S is bounded if and only if there exists a closed bounded 
interval I such that S S; I .  

3. If S S; JR i s  a nonempty bounded set, and Is := [inf S ,  sup S], show that S S; Is ' Moreover, if J 
is any closed bounded interval containing S, show that Is S; J.  

4. In the proof of Case (ii) of Theorem 2.5 . 1 ,  explain why x ,  y exist in S. 
5. Write out the details of the proof of case (iv) in Theorem 2.5 . 1 .  
6 .  If II :2 12 :2 . .  , :2 In :2 . , . i s  a nested sequence of intervals and if In = [an ' bn] ,  show that 

al ::: a2 ::: • • •  ::: an ::: . . . and bl :::: b2 :::: • • • :::: bn :::: . . . . 

7. Let In := [0, lin] for n E N. Prove that n:l In = {O}. 
8. Let In : =  (0, lin) for n E N. Prove that n::1 In = 0. 

9. Let Kn : =  (n, (0) for n E N. Prove that n::1 Kn = 0. 
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10. With the notation in the proofs of Theorems 2.5.2 and 2.5.3, show that we have YJ E n:1 In .  
Also show that [� , YJ ]  = n�=1 In · 

1 1 . Show that the intervals obtained from the inequalities in (2) form a nested sequence. 

12. Give the two binary representations of � and n,.  
13. (a) Give the first four digits in the binary representation of t .  

(b) Give the complete binary representation of t .  
14. Show that if ak , bk E {O, 1 , · · · ,  9} and if 

al az an bl bz bm 
10 + lOz + 

. . . + IOn = 10 + lOz + . . .  + 10m =P 0, 

then n = m and ak = bk for k = I ,  . . . , n.  

15 . Find the decimal representation of - � . 
16. Express � and fg as periodic decimals. 

17. What rationals are represented by the periodic decimals 1 .25137 · · ·  1 37 . . .  and 
35. 14653 · · · 653 · · ·? 



CHAPTER 3 

SEQUENCES AND SERIES 

Now that the foundations of the real number system lR have been laid, we are prepared 
to pursue questions of a more analytic nature, and we will begin with a study of the 
convergence of sequences. Some of the early results may be familiar to the reader from 
calculus, but the presentation here is intended to be rigorous and will lead to certain more 
profound theorems than are usually discussed in earlier courses. 

We will first introduce the meaning of the convergence of a sequence of real numbers 
and establish some basic, but useful, results about convergent sequences. We then present 
some deeper results concerning the convergence of sequences. These include the Monotone 
Convergence Theorem, the Bolzano-Weierstrass Theorem, and the Cauchy Criterion for 
convergence of sequences. It is important for the reader to learn both the theorems and how 
the theorems apply to special sequences. 

Because of the linear limitations inherent in a book it is necessary to decide where 
to locate the subject of infinite series. It would be reasonable to follow this chapter with 
a full discussion of infinite series, but this would delay the important topics of continuity, 
differentiation, and integration. Consequently, we have decided to compromise. A brief 
introduction to infinite series is given in Section 3 .7 at the end of this chapter, and a more 
extensive treatment is given later in Chapter 9. Thus readers who want a fuller discussion 
of series at this point can move to Chapter 9 after completing this chapter. 

Augustin-Louis Cauchy 

Augustin-Louis Cauchy (1789-1857) was born in Paris just after the start 
of the French Revolution. His father was a lawyer in the Paris police de­
partment, and the family was forced to flee during the Reign of Terror. As 
a result, Cauchy's early years were difficult and he developed strong anti­
revolutionary and pro-royalist feelings. After returning to Paris, Cauchy's 
father became secretary to the newly-formed Senate, which included the 
mathematicians Laplace and Lagrange. They were impressed by young 
Cauchy's mathematical talent and helped him begin his career. 

He entered the Ecole Poly technique in 1805 and soon established a reputation as an excep­
tional mathematician. In 1815, the year royalty was restored, he was appointed to the faculty 
of the Ecole Poly technique, but his strong political views and his uncompromising standards in 
mathematics often resulted in bad relations with his colleagues. After the July revolution of 1830, 
Cauchy refused to sign the new loyalty oath and left France for eight years in self-imposed exile. 
In 1838, he accepted a minor teaching post in Paris, and in 1848 Napoleon III reinstated him to 
his former position at the Ecole Poly technique, where he remained until his death. 

Cauchy was amazingly versatile and prolific, making substantial contributions to many areas, 
including real and complex analysis, number theory, differential equations, mathematical physics 
and probability. He published eight books and 789 papers, and his collected works fill 26 volumes. 
He was one of the most important mathematicians in the first half of the nineteenth century. 

52 
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Section 3.1 Sequences and Their Limits 

A sequence in a set S is a function whose domain is the set N of natural numbers, and 
whose range is contained in the set S. In this chapter, we will be concerned with sequences 
in JR and will discuss what we mean by the convergence of these sequences. 

3.1.1 Definition A sequence of real numbers (or a sequence in JR) is a function defined 
on the set N = { I , 2, . . .  } of natural numbers whose range is contained in the set JR of real 
numbers. 

In other words, a sequence in JR assigns to each natural number n = 1 ,  2, . . .  a uniquely 
determined real number. If X : N -+ JR is a sequence, we will usually denote the value of X 
at n by the symbol xn rather than using the function notation X (n) . The values xn are also 
called the terms or the elements of the sequence. We will denote this sequence by the 
notations 

X, (Xn : n E N). 

Of course, we will often use other letters, such as Y = (Yk) ' Z = (Zj )' and so on, to denote 
sequences. 

We purposely use parentheses to emphasize that the ordering induced by the natural 
order of N is a matter of importance. Thus, we distinguish notation ally between the se­
quence (xn : n E N), whose infinitely many terms have an ordering, and the set of values 
{xn : n E N} in the range of the sequence which are not ordered. For example, the se­
quence X := « _ l)n : n E N) has infinitely many terms that alternate between - 1  and 1 ,  
whereas the set of values { (_l)n : n E N }  is equal to the set {- I ,  I } ,  which has only two 
elements. 

Sequences are often defined by giving a formula for the nth term xn ' Frequently, it is 
convenient to list the terms of a sequence in order, stopping when the rule of formation 
seems evident. For example, we may define the sequence of reciprocals of the even numbers 
by writing 

X := (� , � , � ,  � , . .  -) , 
though a more satisfactory method is to specify the formula for the general term and write 

X := (;n : n E N) 
or more simply X = ( 1 /2n) . 

Another way of defining a sequence is to specify the value of Xl and give a formula 
for xn+l (n ::=: 1 )  in terms of xn '  More generally, we may specify Xl and give a formula 
for obtaining xn+l from xl ' x2 ' " ' , xn ' Sequences defined in this manner are said to be 
inductively (or recursively) defined. 

3.1.2 Examples (a) If b E JR, the sequence B := (b, b, b, . . .  ), all of whose terms equal 
b, is called the constant sequence b. Thus the constant sequence 1 is the sequence 
( 1 , 1 , 1 ,  . . .  ), and the constant sequence ° is the sequence (0, 0, 0, . . .  ) .  
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(b) If b E �, then B := (bn) is the sequence B = (b, b2 , b3 , • • • , bn , • • • ) . In particular, if 
b = � ,  then we obtain the sequence 

(� . n E N) = (� � � . . .  � . . .  ) . 2n • 2 ' 4 ' 8 ' , 2n ' 

(c) The sequence of (2n : n E N) of even natural numbers can be defined inductively by 

or by the definition 

Yl := 2, Yn+l := Yl + Yn • 
(d) The celebrated Fibonacci sequence F := Un) is given by the inductive definition 

11 := I ,  12 := 1 ,  In+1 := In-1 + In (n ::: 2). 
Thus each term past the second is the sum of its two immediate predecessors. The first ten 
terms of F are seen to be ( 1 , 1 , 2, 3 , 5 , 8, 13 , 2 1 , 34, 55" , .) . D 

The Limit of a Sequence 

There are a number of different limit concepts in real analysis. The notion of limit of a 
sequence is the most basic, and it will be the focus of this chapter. 

3.1.3 Definition A sequence X = (xn) in � is said to converge to x E �, or x is said to 
be a limit of (xn), if for every e > 0 there exists a natural number K (e) such that for all 
n ::: K (e), the terms xn satisfy IXn - x l  < e .  

If a sequence has a limit, we say that the sequence is  convergent; if  i t  has no limit, we 
say that the sequence is divergent. 

Note The notation K (e) is used to emphasize that the choice of K depends on the value 
of e .  However, it is often convenient to write K instead of K(e). In most cases, a "small" 
value of e will usually require a "large" value of K to guarantee that the distance IXn - x l  
between xn and x is less than e for all n ::: K = K (e). 

When a sequence has limit x, we will use the notation 

lim X = x or 

We will sometimes use the symbolism xn -+ x, which indicates the intuitive idea that the 
values xn "approach" the number x as n -+ 00. 

3.1.4 Uniqueness of Limits A sequence in lR. can have at most one limit. 

Proof. Suppose that x' and x" are both limits of (xn) .  For each e > 0 there exist K' such 
that IXn - x' i < e/2 for all n ::: K', and there exists K" such that IXn - x"I < e/2 for all 
n ::: K". We let K be the larger of K' and K". Then for n ::: K we apply the Triangle 
Inequality to get 

lx' - x"I = lx' - xn + xn - x"I 
:s lx' - xn l + IXn - x" I < e/2 + e/2 = e. 

Since e > 0 is an arbitrary positive number, we conclude that x' - x" = O. Q.E.D. 
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For x E lR and e > 0, recall that the e-neighborhood of x is the set 

V/x) := {u E lR :  l u  - x l < e} .  
(See Section 2.2.) Since u E V/x) is equivalent to l u  - x l  < e, the definition of conver­
gence of a sequence can be formulated in terms of neighborhoods. We give several different 
ways of saying that a sequence xn converges to x in the following theorem. 

3.1.5 Theorem LetX = (xn) bea sequence of real numbers, andletx E R Thefollowing 
statements are equivalent. 

(a) X converges to x .  
(b) For every e > 0, there exists a natural number K such that for all n ::: K, the terms xn 
satisfy IXn - x l  < e .  
(c) For every e > 0, there exists a natural number K such that for all n ::: K,  the terms xn 
satisfy x - e < xn < X + e .  
(d) For every e -neighborhood Vg (x) of x ,  there exists a natural number K such that for 
all n ::: K, the terms xn belong to Vg (x) .  

Proof. The equivalence of (a) and (b) is just the definition. The equivalence of (b), (c), 
and (d) follows from the following implications: 

lu - x l  < e -¢:=> -e < u - x < e -¢:=> x - e < u < x + e -¢:=> u E V/x). 

Q.E.D. 

With the language of neighborhoods, one can describe the convergence of the sequence 
X = (xn) to the number x by saying: for each e-neighborhood Vg (x) of x, all but a finite 
number of terms of X belong to Vg (x) .  The finite number of terms that may not belong to 
the e-neighborhood are the terms x l '  x2 '  • • •  , X K -1 . 

Remark The definition of the limit of a sequence of real numbers is used to verify that a 
proposed value x is indeed the limit. It does not provide a means for initially determining 
what that value of x might be. Later results will contribute to this end, but quite often it is 
necessary in practice to arrive at a conjectured value of the limit by direct calculation of a 
number of terms of the sequence. Computers can be helpful in this respect, but since they 
can calculate only a finite number of terms of a sequence, such computations do not in any 
way constitute a proof of the value of the limit. 

The following examples illustrate how the definition is applied to prove that a sequence 
has a particular limit. In each case, a positive e is given and we are required to find a K,  
depending on e, as required by the definition. 

3.1.6 Examples (a) lim(l /n) = o. 
. If e > 0 is given, then l /e > O. By the Archimedean Property 2.4.5, there is a nat­
ural number K = K(e) such that l /K < e .  Then, if n ::: K, we have l/n  � l /K < e .  
Consequently, if n ::: K, then 

\ �  - 0 \ = � < e. 

Therefore, we can assert that the sequence ( l/n) converges to O. 
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(b) lim(1/(n2 + 1» = o. 
Let £ > 0 be given. To find K, we first note that if n E N, then 

1 1 1 -- < - < -. 
n2 + 1 n2 - n 

Now choose K such that 1/ K < £, as in (a) above. Then n � K implies that l /n < £, and 
therefore 

1_1_ - 0 1 = _1_ < .!. < e. 
n2 + 1 n2 + 1 n 

Hence, we have shown that the limit of the sequence is zero. 

(c) lim ( 3n + 2) = 3. n + l  

( 1 ) 

Given £ > 0, we want to obtain the inequality 

1 3n + 2 _ 3 1 < £ n + l  
when n is sufficiently large. We first simplify the expression on the left: 1 3n + 2 _ 3

1 
= 1 3n + 2 - 3n - 3 1 = 121 = _1 < .!. . n + l  n + l  n + l n + l  n 

Now if the inequality l/n < £ is satisfied, then the inequality ( 1 ) holds. Thus if 1/ K < £, 
then for any n � K, we also have l /n < £ and hence (1 ) holds. Therefore the limit of the 
sequence is 3 . 
(d) If 0 < b < 1 ,  then lim(bn) = o. 

We will use elementary properties of the natural logarithm function. If £ > 0 is given, 
we see that 

bn < £ {::::::} n In b < In £ {::::::} n > In £ j In b. 
(The last inequality is reversed because In b < 0.) Thus if we choose K to be a number such 
that K > In £ / In b, then we will have 0 < bn < £ for all n � K. Thus we have lim(bn) = O. 

For example, ifb = . 8, and if £ = .01 is given, then we would need K > In .01/ In .8 � 

20.6377. Thus K = 21 would be an appropriate choice for £ = .01 .  0 

Remark The K (£) Game In the notion of convergence of a sequence, one way to keep 
in mind the connection between the £ and the K is to think of it as a game called the K (£) 
Game. In this game, Player A asserts that a certain number x is the limit of a sequence (xn) . 
Player B challenges this assertion by giving Player A a specific value for £ > O. Player A 
must respond to the challenge by coming up with a value of K such that IXn - x I < £ for all 
n > K. If Player A can always find a value of K that works, then he wins, and the sequence 
is convergent. However, if Player B can give a specific value of £ > 0 for which Player A 
cannot respond adequately, then Player B wins, and we conclude that the sequence does 
not converge to x . 

In order to show that a sequence X = (xn) does not converge to the number x, it 
is enough to produce one number £0 > 0 such that no matter what natural number K is 
chosen, one can find a particular n K satisfying n K � K such that IXn - x I � £0. (This K 
will be discussed in more detail in Section 3.4.) 
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3.1.7 Example The sequence (0, 2, 0, 2, . . .  , 0, 2, . . . ) does not converge to the 
number O. 

If Player A asserts that 0 is the limit of the sequence, he will lose the K (e) Game 
when Player B gives him a value of e < 2. To be definite, let Player B give Player A 
the value eo = 1 .  Then no matter what value Player A chooses for K,  his response will 
not be adequate, for Player B will respond by selecting an even number n > K. Then the 
corresponding value is xn = 2 so that IXn - 01 = 2 > 1 = eo . Thus the number 0 is not the 
limit of the sequence. 0 

Tails of Sequences 

It is important to realize that the convergence (or divergence) of a sequence X = (xn) 
depends only on the "ultimate behavior" of the terms. By this we mean that if, for any 
natural number m, we drop the first m terms of the sequence, then the resulting sequence 
Xm converges if and only if the original sequence converges, and in this case, the limits are 
the same. We will state this formally after we introduce the idea of a "tail" of a sequence. 

3.1.8 Definition If X = (Xl ' x2 , · · · ,  xn , · · ·) is a sequence of real numbers and if m is a 
given natural number, then the m-tail of X is the sequence 

Xm := (xm+n : n E N) = (xm+! ' xm+2 ' . . .  ) 
For example, the 3-tail of the sequence X = (2, 4, 6, 8, 10, . . .  , 2n , . . .  ), is the se­

quence X3 = (8, 10, 12, . . .  , 2n + 6, . . .  ) .  

3.1.9 Theorem Let X = (xn : n E N) be a sequence ofreal numbers andletm E N. Then 
the m-tail Xm = (xm+n : n E N) of X converges if and only if X converges. In this case, 
lim Xm = limX. 

Proof. We note that for any p E N, the pth term of Xm is the (p + m)th term of X. 
Similarly, if q > m,  then the qth term of X is the (q - m)th term of Xm .  

Assume X converges to x . Then given any e > 0, if the terms of X for n 2: K(e) 
satisfy IXn - X I , < e, then the terms of Xm for k 2: K (e) - m satisfy IXk - X I < e. Thus we 
can take Km (e) = K (e) - m, so that Xm also converges to x .  

Conversely, if the terms of Xm for k 2: Km (e) satisfy IXk - x l < e, then the terms of 
X for n 2: K(e) + m satisfy IXn - x l < e. Thus we can take K (e) = Km (e) + m.  

Therefore, X converges to X if and only if Xm converges to X. Q.E.D. 

We shall sometimes say that a sequence X ultimately has a certain property if some 
tail of X has this property. For example, we say that the sequence (3, 4, 5 ,  5 ,  5 ,  . . .  , 5 ,  . . .  ) 
is "ultimately constant". On the other hand, the sequence (3, 5 , 3 , 5 ,  . . .  , 3, 5, . . .  ) is not 
ultimately constant. The notion of convergence can be stated using this terminology: A se­
quence X converges to x if and only if the terms of X are ultimately in every e-neighborhood 
of x .  Other instances of this "ultimate terminology" will be noted below. 

Further Examples _______________________ _ 

In establishing that a number x is the limit of a sequence (xn), we often try to simplify 
the difference IXn - x l  before considering an e > 0 and finding a K(e) as required by the 
definition of limit. This was done in some of the earlier examples. The next result is a more 
formal statement of this idea, and the examples that follow make use of this approach. 
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3.1.10 Theorem Let (xn) be a sequence of real numbers and let x E JR.. If (an) is a 
sequence of positive real numbers with lim(an) = 0 and if for some constant C > 0 and 
some m E N we have 

IXn - x l S Can 
then it follows that lim(xn) = x .  

for all n � m, 

Proof. If e > 0 is given, then since lim(an) = 0 , we know there exists K = K(e/C) such 
that n � K implies 

an = Ian - 01 < e/C. 
Therefore it follows that if both n � K and n � m, then 

IXn - x l  s Can < C(e/C) = e. 
Since e > 0 is arbitrary, we conclude that x = lim(xn). 

3.1.11 Examples (a) If a > 0, then lim (_1_) = O. 1 + na 

Q.E.D. 

Since a > 0, then 0 < na < 1 + na , and therefore 0 < 1/(1 + na) < 1 /(na). Thus 
we have 1_1 - 0 1 S (�) � 1 + na a n for all n E N. 

Since lim(l/n) = 0, we may invoke Theorem 3. 1 . 10 with C = I/a and m = 1 to infer that 
lim(I / ( l + na» = O. 
(b) If 0 < b < 1, then lim(bn) = O. 

This limit was obtained earlier in Example 3 . 1 .6(d). We will give a second proof that 
illustrates the use of Bernoulli's Inequality (see Example 2. 1 . 1 3(c» . 

Since 0 < b < 1 , we can write b = 1/ ( 1 + a), where a := ( l/b) - 1 so that a > O. 
By Bernoulli's Inequality, we have ( 1 + at � 1 + na . Hence 

n I l  1 O < b  = < -- < -. ( 1 + a)n - 1 + na na 
Thus from Theorem 3 . 1 . 10 we conclude that lim(bn) = O. 

In particular, if b = .8, so that a = .25, and if we are given e = .01 , then the preceding 
inequality gives us K(e) = 4/(.01 ) = 400. Comparing with Example 3 . 1 .6(d), where we 
obtained K = 25, we see this method of estimation does not give us the "best" value of K . 
However, for the purpose of establishing the limit, the size of K is immaterial. 
(c) If c > 0, then lim(c1/n) = 1 .  

The case c = 1 is trivial, since then (c1/n ) i s  the constant sequence ( l ,  1 , . . .  ) ,  which 
evidently converges to 1 .  

If c >  1 ,  then c1/'1 = 1 + dn for some dn > O. Hence by Bernoulli's Inequality 
2. 1 . 1 3(c), 

for n E N. 
Therefore we have c - 1 � ndn ; so that dn S (c - 1)/n. Consequently we have 

1 / c1/n - I / = dn s (c - I)- for n E N. n 
We now invoke Theorem 3. 1 . 10 to infer that lim(c1/n) = 1 when c > 1 .  
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Now suppose that 0 < e < 1 ;  then el/n = I/O + hn) for some hn > O. Hence Ber­
noulli 's Inequality implies that 

1 1 1 e =  < < - , 
o + hnt 1 + nhn nhn 

from which it follows that 0 < hn < l /ne for n E N. Therefore we have 

so that 

h 1 o < 1 - el/n = __ n_ < h < -1 + hn n ne 

lel/n - 1 1  < (�) � for n E N. 

We now apply Theorem 3. 1 . 10 to infer that lim(el/n) = 1 when 0 < e < 1 .  
(d) limen lin) = 1 

Since nl/n > 1 for n > 1 ,  we can write nl/n = 1 + kn for some kn > 0 when n > 1 .  
Hence n = ( 1 + kn)n for n > 1 .  By the Binomial Theorem, if n > 1 we have 

n = 1 +  nkn + !n(n - l)k� + . . .  2: 1 + !n(n - l)k� , 
whence it follows that 

n - 1 2: �n(n - l )k� . 

Hence k� :::: 2/n for n > 1 .  If 8 > 0 is given, it follows from the Archimedean Property 
that there exists a natural number Ne such that 2/ Ne < 82. It follows that if n 2: sup{2, Ne} 
then 2/n < 82, whence 

0 <  nl/n - 1 = kn :::: (2/n) I/2 < 8. 
Since 8 > 0 is arbitrary, we deduce that limen lin) = 1 .  o 

Exercises for Section 3.1 

1 .  The sequence (xn ) is defined by the following formulas for the nth term. Write the first five terms 
in each case: 
(a) Xn := 1 + (_l)n , 

1 
(c) Xn := 

n(n + 1) , 

(b) Xn := (-It In, 
1 

(d) X := -2--. 
n + 2  

2. The first few terms of a sequence (xn) are given below. Assuming that the "natural pattern" 
indicated by these terms persists, give a formula for the nth term xn . 
(a) 5 , 7, 9, 1 1 , · · · , (b) 1/2, -1/4, 1/8, - 1/16, · · · , 
(c) 1/2, 2/3, 3/4, 4/5, · · · , (d) 1 , 4, 9, 16, · · · .  

3: List the first five terms of the following inductively defined sequences. 
(a) xl := 1 , xn+l = 3xn + 1 ,  
(b) Yl := 2, Yn+l = t (Yn + 2/yn), 
(c) Zl := 1 , Z2 := 2, zn+2 := (zn+l + zn)/(Z�+l - zn) ' 
(d) sl = 3 , S2 := 5 , sn+2 := sn + sn+l · '  

4. For any b E  JR, prove that lim(b/n) = O. 
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5. Use the definition of the limit of a sequence to establish the following limits. 

6. 

(a) 

(c) 

lim 
( --;-) = 0, 

n + 1 

lim en + 1 ) = � 
2n + 5  2 ' 

Show that 

(a) lim (_1_) = 0, 
.jn + 7  

(c) 11m -- = 0, . ( In ) 
n + l  

7. Let xn := 1/ 1n(n + 1) for n E N. 

(b) 

(d) 

(b) 

(d) 

lim (�) = 2  n + l  ' ( n2 - 1 ) 1 lim 
2n2 + 3  

= 2 · 

11m -- = 2  . ( 2n ) 
n + 2  ' 

11m --- = 0. . C- l )
n n ) 

n2 + 1 

(a) Use the definition of limit to show that lim (x) = o. 
(b) Find a specific value of K(f) as required in the definition of limit for each of (i) f = 1/2, 

and (ii) f = 1/10. 
8. Prove that lim(xn) = 0 if and only if lim( lxn I) = O. Give an example to show that the conver­

gence of (Ixn I) need not imply the convergence of (xn) .  
9 .  Show that if xn 2: 0 for all n E N and lim(xn) = 0, then lim (IX: ) = o. 

10 .  Prove that if lim(xn) = x and if x > 0, then there exists a natural number M such that xn > 0 
for all n 2: M. 

11 .  ShOW that lim (� 
_ _  

1_) = 0. n n + 1 
12. Show that lim(1/3n) = O. 
13. Let b E lR satisfy 0 < b < 1. Show that lim(nb

n
) = O. [Hint: Use the Binomial Theorem as in 

Example 3. 1 . 1 1 (d).] 
14. Show that lim ( 2n) '/

n
) = 1 .  

15. Show that lim(n2 In ! )  = O. 
16. Show that lim(2

n 
In!) = O. [Hint: If n 2: 3, then 0 < 2

n 
In! � 2 (�r-2 .] 

17. If lim(xn) = x > 0, show that there exists a natural number K such that if n 2: K, then t x < 

xn < 2x. 

Section 3.2 Limit Theorems 

In this section we will obtain some results that enable us to evaluate the limits of certain 
sequences of real numbers. These results will expand our collection of convergent sequences 
rather extensively. We begin by establishing an important property of convergent sequences 
that will be needed in this and later sections. 

3.2.1 Definition A sequence X = (xn) of real numbers is said to be bounded if there 
exists a real number M > 0 such that IXn I s: M for all n E N. 

Thus, the sequence (xn ) is bounded if and only if the set {xn : n E N} of its values is a 
bounded subset of R 

3.2.2 Theorem A convergent sequence of real numbers is bounded. 
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Proof. Suppose that lim(xn) = x and let € : =  1. Then there exists a natural number 
K = K (1 )  such that IXn - x I < I for all n ::: K.  If we apply the Triangle Inequality with 
n ::: K we obtain 

If we set 

M := sup { lxI I ,  Ix2 1 , · · · ,  IXK_I I , 1 + Ix l } , 
then it follows that IXn I S M for all n E N. Q.E.D. 

We will now examine how the limit process interacts with the operations of addition, 
subtraction, multiplication, and division of sequences. If X = (xn) and Y = (Yn) are se­
quences of real numbers, then we define their sum to be the sequence X + Y := (xn + yn) ,  
their difference to be the sequence X - Y := (xn - yn) ,  and their product to be the se­
quence X . Y := (xnyn) .  If c E JR, we define the multiple of X by c to be the sequence 
cX := (cxn) .  Finally, if Z = (zn )  is a sequence of real numbers with zn =1= ° for all n E N, 
then we define the quotient of X and Z to be the sequence X/Z : =  (xn/zn) .  

For example, if X and Y are the sequences 

then we have 

X := (2, 4, 6, . . .  2n , . . .  ) ,  Y .- (� � � . . .  � . . .  ) .- 1 ' 2 ' 3 ' , n ' , 

X + Y = (� � 19  . . .  2n2 + 1 
. . .  ) l ' 2 ' 3 ' , n ' , 

X _ Y = (� 2 17 . . .  2n2 - 1 . . .  ) l ' 2 ' 3 ' , n ' , 
X ·  Y = (2, 2, 2, . . .  , 2, . . .  ) ,  

3X = (6, 12 ,  1 8, . . .  , 6n, . . .  ) ,  
X/ Y = (2, 8, 1 8, · · · ,  2n2 , • • •  ) .  

We note that if Z i s  the sequence 
Z := (0, 2 , 0, · · · , 1 + (_ 1 )n , . . .  ) , 

then we can define X + Z, X - Z and X . Z, but X / Z is not defined since some of the 
terms of Z are zero. 

We now show that sequences obtained by applying these operations to convergent 
sequences give rise to new sequences whose limits can be predicted. 

3.2.3 Theorem (a) Let X = (xn) and Y = (Yn) be sequences of real numbers that 
converge to x and Y, respectively, and let c E R Then the sequences X + Y, X - Y, X . Y, 
and c X converge to x + y, x - y, x y, and CX, respectively. 

(b) If X = (xn) converges to x and Z = (zn) is a sequence of nonzero real numbers that 
converges to Z and if Z =1= 0, then the quotient sequence X / Z converges to x / z. 

Proof. (a) To show that lim(xn + Yn) = x + y ,  we need to estimate the magnitude of 
I (xn + Yn) - (x + Y) I .  To do this we use the Triangle Inequality 2.2.3 to obtain 

I (xn + Yn) - (x + y) 1 = I (xn - x) + (Yn - y) 1 
s IXn - x l + IYn - Y I · 
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By hypothesis, if e > 0 there exists a natural number K 1 such that if n � K l '  then IXn - x I < 
e12; also there exists a natural number K2 such that if n � K2, then I Yn - y l  < e/2. Hence 
if K(e) := sup{KI ' K2} ,  it follows that if n � K(e) then 

I (xn + Yn) - (x + y) 1 s IXn - x l + I Yn - y l  
1 1 < 2e + 2e = e. 

Since e > 0 is arbitrary, we infer that X + Y = (xn + Yn) converges to x + y. 
Precisely the same argument can be used to show that X - Y = (xn - Yn) converges 

to x - y. 
To show that X . Y = (xnyn) converges to xY, we make the estimate 

IXnYn - xy l = l (xnYn - xnY) + (xny - xy) 1 
S IXn (Yn - y) 1 + I (xn - x)Y I 
= Ixn l l Yn - y l  + IXn - x l ly l · 

According to Theorem 3 .2.2 there exists a real number M1 > 0 such that IXn I S M] for all 
n E N  and we set M := SUp{M1 ' l y l ) . Hence we have the estimate 

IXnYn - xY I S MIYn - y l + Mlxn - x l . 
From the convergence of X and Y we conclude that if e > 0 is given, then there exist 
natural numbers K1 and K2 such that if n � K1 then IXn - x l < e/2M, and if n � K2 then 
IYn - y l  < e12M. Now let K (e) = SUp{K1 ' K2}; then, if n � K(e) we infer that 

IXnYn - xy l S MIYn - y l  + Mlxn - x l 
< M(e/2M) + M(e/2M) = e . 

. Since e > 0 is arbitrary, this proves that the sequence X . Y = (xnyn) converges to xy. 
The fact that eX = (exn) converges to ex can be proved in the same way; it can also 

be deduced by taking Y to be the constant sequence (e, e, e, . . . ) .  We leave the details to 
the reader. 

(b) We next show that if Z = (zn) is a sequence of nonzero numbers that converges 
to a nonzero limit z, then the sequence (1 I zn) of reciprocals converges to liz. First let 
a : =  � Izi so that a > O. Since lim(zn) = z, there exists a natural number K1 such that if 
n � K 1 then IZn - zi < a .. It follows from Corollary 2.2.4(a) of the Triangle Inequality that 
-a S - Izn - zl S IZn l - Izl for n � K1 , whence it follows that � Izl = Izl - a S IZn l  for 
n � K1 . Therefore l / lzn I S 2/ 1z1 for n � K1 so we have the estimate 

I :n - � I = I Z�:n 1 = 
Iz�zl l

z - zn l 
2 < -Iz - z I for all n � K1 • - Izl2 n 

Now, if e > 0 is given, there exists a natural number K2 such that if n � K2 then I Zn - zl 
< �e lzI 2 . Therefore, it follows that if K (e) = SUp{Kl ' K2} ,  then 

I :n - � I < e for all n > K (e) . 

Since e > 0 is arbitrary, it follows that 

lim (:J = � . 
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The proof of (b) is now completed by taking Y to be the sequence ( l /zn) and using the 
fact that X . Y = (xn/zn) converges to x( l/z) = x/z. Q.E.D. 

Some of the results of Theorem 3.2.3 can be extended, by Mathematical Induction, to a 
finite number of convergent sequences. For example, if A = (an) ' B = (bn) ,  . . .  , Z = (zn) 
are convergent sequences of real numbers, then their sum A + B + . . .  + Z = (an + bn + 
. . .  + zn) is a convergent sequence and 

(1) lim(an + bn + . . .  + zn) = lim(an) + lim(bn) + . . .  + lim(zn)' 
Also their product A . B · . .  Z := (anbn . . .  zn) is a convergent sequence and 

(2) 
Hence, if k E N  and if A = (an ) is a convergent sequence, then 

(3) 

We leave the proofs of these assertions to the reader. 

3.2.4 Theorem If X = (xn) is a convergent sequence of real numbers and if xn 2: 0 for 
all n E N, then x = lim(xn) 2: O. 

Proof. Suppose the conclusion is not true and that x < 0; then B : = -x is positive. Since X converges to x, there is a natural number K such that 
x - B < xn < X + B  for all n 2: K. 

In particular, we have x K < X + B = X + (-x) = O. But this contradicts the hypothesis 
that xn 2: 0 for all n E N. Therefore, this contradiction implies that x 2: O. Q.E.D. 

We now give a useful result that is formally stronger than Theorem 3.2.4. 

3.2.5 Theorem If X = (xn) and Y = (Yn) are convergent sequences of real numbers and 
ifxn ::::: Yn for all n E N, then lim(xn) ::::: lim(yn) .  

Proof. Let zn := Yn - xn so that Z := (zn ) = Y - X and zn 2: 0 for all n E N. It follows 
from Theorems 3.2.4 and 3.2.3 that 

Q.E.D. 

The next result asserts that if all the terms of a convergent sequence satisfy an inequality 
of the form a ::::: xn ::::: b, then the limit of the sequence satisfies the same ineqUality. Thus 
if the sequence is convergent, one may "pass to the limit" in an inequality of this type. 

3.2.6 Theorem If X = (xn) is a convergent sequence and if a ::::: xn ::::: b for all n E N, 
then a ::::: lim(xn) ;£ b. 

Proof. Let Y be the constant sequence (b, b, b, . . .  ) . Theorem 3.2.5 implies that lim X ::::: 
lim Y = b. Similarly one shows that a ::::: lim X. Q.E.D. 

The next result asserts that if a sequence Y is squeezed between two sequences that 
converge to the same limit, then it must also converge to this limit. 
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3.2.7 Squeeze Theorem Suppose that X = (Xn) , Y = (Yn) , and Z = (zn) are sequences 
of real numbers such that 

for all n E N, 
and that lim(xn) = lim(zn) ' Then Y = (Yn) is convergent and 

lim(xn) = lim(yn) = lim(zn) ' 

Proof. Let w := lim(xn) = lim(zn) . If8 > o i s given, then it follows from the convergence 
of X and Z to w that there exists a natural number K such that if n :::: K then 

IXn - w i < 8 
Since the hypothesis implies that 

it follows (why?) that 

and IZn - w i < 8. 

for all n E N, 

-8 < Yn - w < 8 
for all n :::: K. Since 8 > 0 is arbitrary, this implies that lim(yn) = w. Q.E.D. 

Remark Since any tail of a convergent sequence has the same limit, the hypotheses of 
Theorems 3.2.4, 3 .2.5, 3.2.6, and 3.2.7 can be weakened to apply to the tail of a sequence. 
For example, in Theorem 3.2.4, if X = (xn) is "ultimately positive" in the sense that there 
exists m E N such that xn :::: 0 for all n :::: m, then the same conclusion that x :::: 0 will hold. 
Similar modifications are valid for the other theorems, as the reader should verify. 

3.2.8 Examples (a) The sequence (n) is divergent. 
It follows from Theorem 3.2.2 that if the sequence X := (n) is convergent, then there 

exists a real number M > 0 such that n = In l < M for all n E N. But this violates the 
Archimedean Property 2.4.3. 
(b) The sequence « _1)n) is divergent. 

This sequence X = « - It) is bounded (take M := 1) , so we cannot invoke Theorem 
3.2.2. However, assume that a := lim X exists. Let 8 := 1 so that there exists a natural 
number K I such that 

1 (-1 ) - a I < 1 for all n :::: K I ' 
If n is an odd naturai number with n :::: KI , this gives I - 1 - a l  < 1 ,  so that -2 < a < O. 
(Why?) On the other hand, if n is an even natural number with n :::: K I ' this inequality 
gives 1 1  - a I < 1 so that 0 < a < 2. Since a cannot satisfy both of these inequalities, 
the hypothesis that X is convergent leads to a contradiction. Therefore the sequence X is 
divergent. 

(c) lim (2n: 1 ) = 2. 
If we let X := (2) and Y := (l In), then « 2n + 1)ln) = X + Y. Hence it follows 

from Theorem 3.2.3(a) that lim (X + y) = lim X + lim Y = 2 + 0 = 2. 
(d) lim (� :5

1 ) = 2. 
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Since the sequences (2n + 1) and (n + 5) are not convergent (why?), it is not possible 
to use Theorem 3.2.3(b) directly. However, if we write 

2n + l  2 + 1/n -- = , n + 5 1 + 5/n 
we can obtain the given sequence as one to which Theorem 3.2.3(b) applies when we 
take X := (2 + l /n) and Z := (1 + 5/n). (Check that all hypotheses are satisfied.) Since 
limX = 2 and lim Z = 1 # 0, we deduce that lim( 2n + 1)/(n + 5») = 2/ 1 = 2. 

(e) lim (-{!!-) = O. n + 1 
Theorem 3.2.3(b) does not apply directly. (Why?) We note that 

2n 2 
n2 + 1 = n + l/n ' 

but Theorem 3.2.3(b) does not apply here either, because (n + l /n) is not a convergent 
sequence. (Why not?) However, if we write 

2n 2/n 
n2 + 1 = 1 + 1/n2 ' 

then we can apply Theorem 3.2.3(b), since lim(2/n) = 0 and lim(1 + 1/n2) = 1 # O. 
Therefore lim(2n/(n2 + 1» = 0/1 = O. 
(f) lim Ci:n) = O. 

We cannot apply Theorem 3.2.3(b) directly, since the sequence (n) is not convergent 
[neither is the sequence (sinn)] .  It does not appear that a simple algebraic manipulation 
will enable us to reduce the sequence into one to which Theorem 3.2.3 will apply. However, 
if we note that -1 :::: sin n :::: 1 , then it follows that 

1 sin n 1 -- < -- < -n n n for all n E N. 

Hence we can apply the Squeeze Theorem 3.2.7 to infer that lim(n-1 sin n) = O. (We note 
that Theorem 3 . 1 . 10 could also be applied to this sequence.) 
(g) Let X = (xn) be a sequence of real numbers that converges to x E R Let p be a 
polynomial; for example, let 

pet) := aktk + ak_1 tk-1 + . . .  + al t + ao ' 
where k E N  and aj E IR for j = 0, 1 ,  . . . , k. It follows from Theorem 3.2.3 that the se­
quence (p(xn» converges to p(x) . We leave the details to the reader as an exercise. 
(h) Let X = (xn) be a sequence of real numbers that converges to x E R Let r be a 
rational function (that is, r et) := p(t)/q (t) , where p and q are polynomials). Suppose 
that q (xn) # 0 for all n E N  and that q (x) # O. Then the sequence (r(xn» converges to 
r Ex) = p(x)/q(x) . We leave the details to the reader as an exercise. D 

We conclude this section with several results that will be useful in the work that follows. 

3.2.9 Theorem Let the sequence X = (xn) converge to x. Then the sequence ( Ixn l ) of 
absolute values converges to Ix I .  That is, if x = lim(xn ), then Ix I = lim(lxn I ) .  
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Proof. It follows from the Triangle Inequality (see Corollary 2.2.4(a» that 
for all n E N. 

The convergence of ( Ixn I) to Ix I is then an immediate consequence of the convergence of 
(xn ) to x .  Q.E.D. 

3.2.10 Theorem Let X = (xn) be a sequence of real numbers that converges to x and 

suppose that xn � O. Then the sequence (Fn) of positive square roots converges and 

lim (Fn) = ../x. 

Proof. It follows from Theorem 3.2.4 that x = lim(xn) � 0 so the assertion makes sense. 
We now consider the two cases: (i) x = 0 and (ii) x > O. 

Case (i) If x = 0, let 8 > 0 be given. Since xn -+ 0 there exists a natural number K 
such that if n � K then 

o ::: xn = xn - 0 < 82 . 
Therefore [see Example 2 . 1 . 13(a)] , 0 ::: Fn < 8 for n � K . Since 8 > 0 is arbitrary, this 
implies that Fn -+ O. 

Case (ii) If x > 0, then Jx > 0 and we note that 

A - ../X 
= 

(Fn - ../X) (Fn + ../X) 
= 

xn - X 
n Fn + ../X Fn+ ../X 

Since Fn + ../X � ../X > 0, it follows that 

The convergence of Jx n -+ Jx follows from the fact that xn -+ x .  Q.E.D. 

For certain types of sequences, the following result provides a quick and easy "ratio 
test" for convergence. Related results can be found in the exercises. 

3.2.11 Theorem Let (xn) be a sequence of positive real numbers such that L := 

lim(xn+dxn) exists. If L < 1, then (xn) converges and lim(xn) = O. 

Proof. By 3 .2.4 it follows that L � O. Let r be a number such that L < r < 1, and let 
8 := r - L > O. There exists a number K E N  such that if n � K then IX::! - L I < 8. 
It follows from this (why?) that if n � K ,  then 

X n+! < L + 8 = L + (r - L) = r. xn 
Therefore, if n � K, we obtain 

o < x < x r < x r2 < . . .  < x rn-K+! n+! n n-! K 
If we set C := xK/rK , we see that 0 < xn+! < Crn+! for all n � K. Since 0 < r < 
1 ,  it follows from 3 . 1 . 1 1 (b) that lim(rn) = 0 and therefore from Theorem 3 . 1 . 10  that 
lim(xn) = O. Q.E.D. 
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As an illustration of the utility of the preceding theorem, consider the sequence (xn) 
given by xn := nl2n . We have 

xn+1 = n + 1 . 2
n 

= 
� ( 1 + �) , x 2n+1 n 2 n n 

so that lim(xn+1/xn) = ! . Since ! < 1 ,  it follows from Theorem 3.2. 1 1  that lim(nI2n) = O. 

Exercises for Section 3.2 

1 . For xn given by the following formulas, establish either the convergence or the divergence of 
the sequence X = (xn) . 

n (_1)n n (a) xn := n + l ' (b) xn := �' 
n
2 

2n
2 
+ 3 (c) xn := n + l ' (d) xn := n

2 
+ 1 

. 

2. Give an example of two divergent sequences X and Y such that: 
(a) their sum X + Y converges, (b) their product XY converges. 

3. Show that if X and Y are sequences such that X and X + Y are convergent, then Y is convergent. 
4. Show that if X and Y are sequences such that X converges to x =1= 0 and XY converges, then Y 

converges. 
5. Show that the following sequences are not convergent. 

6. 

(a) (2n), (b) « _ 1)nn
2
) . 

Find the limits of the following sequences: 
(a) 

(c) 

lim 
(2 + 1In)

2)
. 

. (In- 1 ) hm In
+ 1  ' 

(b) 

(d) 

hm --. «_1)n ) 
n + 2  ' 

(n + 1 ) lim nJn . 

7. If (bn) is a bounded sequence and lim(an ) = 0, show that 1im(anbn) = O. Explain why Theorem 
3.2.3 cannot be used. 

8. Explain why the result in equation (3) before Theorem 3.2.4 cannot be used to evaluate the limit 
of the sequence (0 + l/n)n) . 

9. Let Yn := ,JnTI - In for n E N. Show that (Yn) and (Jnyn) converge. Find their limits. 
10. Determine the following limits. 

(a) lim 
(
3Jn) 1/

2n), (b) lim 
(
n + l ) l / ln(n+ l )) . (an+1 + bn+ 1 ) 1 1 .  If 0 < a < b, determine lim n n . a + b  

12. If a >  0, b > 0, show that lim (J(n + a)(n + b) - n) = (a + b)/2. 
13. Use the Squeeze Theorem 3.2.7 to determine the limits of the following. 

(a) 
(
n lln2) , (b) 

(
n !) l ln2) . 

14, Show that if z := (an + bn) l in where 0 < a < b, then lim(z ) = b. n n 
15. Apply Theorem 3.2. 1 1  to the following sequences, where a, b satisfy 0 < a < 1, b > 1 . 

(a) (an ), (b) (b" 12n) , 
(c) (nlbn), (d) (2

3n 13
2n) . 
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16. (a) Give an example of a convergent sequence (xn) of positive numbers with lim(xn+ 1 Ixn) = l .  
(b) Give an example of a divergent sequence with this property. (Thus, this property cannot be 

used as a test for convergence.) 

1 7. Let X = (xn ) be a sequence of positive real numbers such that lim(xn+ 1 lxn) = L > l .  Show 
that X is not a bounded sequence and hence is not convergent. 

1 8. Discuss the convergence of the following sequences, where a ,  b satisfy 0 < a < 1 ,  b > l .  
(a) (n2a

n
) ,  (b) Wln2), 

(c) Win!) , (d) (n !/n
n
)' 

19. Let (xn) be a sequence of positive real numbers such that lim(x�/n) = L < l .  Show that there 
exists a number r with 0 < r < 1 such that 0 < xn < r

n 
for all sufficiently large n E N. Use 

this to show that lim(xn) = O. 

20. (a) Give an example of a convergent sequence (xn) of positive numbers with lim(x�/n) = l .  
(b) Give an example of a divergent sequence (xI! ) of positive numbers with lim(x,:/n) = l .  

(Thus, this property cannot be used as a test for convergence.) 

2l .  Suppose that (xn) i s  a convergent sequence and (Yn ) is such that for any [; > 0 there exists M 
such that IXn - YI! I < [; for all n 2: M. Does it follow that (y,) is convergent? 

22. Show that if (xn) and (Yn) are convergent sequences, then the sequences (un) and (vn) defined 
by un :=  max{xn , Yn} and Vn := min{xn , Yn }  are also convergent. (See Exercise 2.2. 16.) 

23. Show that if (xn), (yn ), (zn) are convergent sequences, then the sequence (w,) defined by 
wn := mid{xn , Yn ' zn } is also convergent. (See Exercise 2.2. 17.) 

Section 3.3 Monotone Sequences 

Until now, we have obtained several methods of showing that a sequence X = (xn) of real 
numbers is convergent: 

(i) We can use Definition 3. 1 .3 or Theorem 3 . 1 .5 directly. This is often (but not 
always) difficult to do. 

(ii) We can dominate IXn - x I by a multiple of the terms in a sequence (an) known 
to converge to 0, and employ Theorem 3. 1 . 10. 

(iii) We can identify X as a sequence obtained from other sequences that are known 
to be convergent by taking tails, algebraic combinations, absolute values, or square roots, 
and employ Theorems 3. 1 .9, 3.2.3, 3.2.9, or 3 .2. 10. 

(iv) We can "squeeze" X between two sequences that converge to the same limit and 
use Theorem 3.2.7. 

(v) We can use the "ratio test" of Theorem 3 .2. 1 1 .  
Except for (iii), all of these methods require that we already know (or at least suspect) the 
value of the limit, and we then verify that our suspicion is correct. 

There are many instances, however, in which there is no obvious candidate for the limit 
of a sequence, even though a preliminary analysis may suggest that convergence is likely. In 
this and the next two sections, we shall establish results that can be used to show a sequence 
is convergent even though the value of the limit is not known. The method we introduce in 
this section is more restricted in scope than the methods we give in the next two, but it is 
much easier to employ. It applies to sequences that are monotone in the following sense. 
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3.3.1 Definition Let X = (xn) be a sequence of real numbers. We say that X is increasing 
if it satisfies the inequalities 

We say that X is decreasing if it satisfies the inequalities 

We say that X is monotone if it is either increasing or decreasing. 
The following sequences are increasing: 

( 1 , 2, 3 , 4, · · · , n , · · ·) , 
(a , a2 , a3 , • . .  , an , . . .  ) 

The following sequences are decreasing: 

( 1 , 2, 2, 3 , 3 , 3 , . . .  ) , 
i f a > 1 .  

(1 , 1 /2, 1/3, · · · , l/n, · ·  .) , ( 1 , 1 /2, 1/22, . . .  , 1 /2n-1 , . . .  ) , 
(b, b2 , b3 , · · · , bn , • • • ) if 0 < b < 1 . 

The following sequences are not monotone: 

(+1 , - 1 ,  +1 " " ,  (- It+ 1
, . . .  ) , (-1 ,  +2, -3" " , (- ltn . . . ) 

The following sequences are not monotone, but they are "ultimately" monotone: 

(7, 6, 2, 1 , 2, 3 , 4, , , 0 , (-2, 0, 1 , 1 /2, 1 /3, 1/4, · · .) . 

3.3.2 Monotone Convergence Theorem A monotone sequence of real numbers is con­
vergent if and only if it is bounded. Further: 

(a) If X = (xn ) is a bounded increasing sequence, then 

lim(xn) = sup{xn : n E N}. 
(b) If Y = (Yn) is a bounded decreasing sequence, then 

lim(yn) = inf{Yn : n E N} .  
Proof. It was seen in Theorem 3.2.2 that a convergent sequence must be bounded. 

Conversely, let X be a bounded monotone sequence. Then X is either increasing or 
decreasing. 

(a) We first treat the case where X = (xn) is a bounded, increasing sequence. Since 
X is bounded, there exists a real number M such that xn :::: M for all n E N. According to 
the Completeness Property 2.3 .6, the supremum x* = sup{xn : n E N} exists in JR.; we will 
show that x* = lim(xn) . 

If e > 0 is given, then x * - e is not an upper bound of the set {x n : n E N}, and hence 
there exists a member of set xK such that x* - e < xK • The fact that X is an increasing 
sequence implies that x K :::: xn whenever n � K, so that 

X* - e < x K :::: xn :::: x* < x* + e for all n � K. 
Therefore we have 

for all n � K. 
Since e > 0 is arbitrary, we conclude that (xn) converges to x*. 
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(b) If Y = (Yn) is a bounded decreasing sequence, then it is clear that X := -Y = 
( -Y n) is a bounded increasing sequence. It was shown in part (a) that lim X = sup{ -Y n : 
n E N}. Now lim X = - lim Y and also, by Exercise 2.4.4(b), we have 

sup{-Yn : n E N} = - inf{Yn : n E N} . 
Therefore lim Y = - lim X = inf{Yn : n E N}. Q.E.D. 

The Monotone Convergence Theorem establishes the existence of the limit of a 
bounded monotone sequence. It also gives us a way of calculating the limit of the se­
quence provided we can evaluate the supremum in case (a), or the infimum in case (b). 
Sometimes it is difficult to evaluate this supremum (or infimum), but once we know that it 
exists, it is often possible to evaluate the limit by other methods. 

3.3.3 Examples (a) lim(ll y'n) = O. 
It is possible to handle this sequence by using Theorem 3.2. 10; however, we shall 

use the Monotone Convergence Theorem. Clearly 0 is a lower bound for the set { I/.Ji1: 
n E N}, and it is not difficult to show that 0 is the infimum of the set { I  1.Ji1: n E N}; hence 
0 =  lim(I /.Ji1). 

On the other hand, once we know that X : = (I 1.Ji1) is bounded and decreasing, we 
know that it converges to some real number x . Since X = (I I y'n) converges to x, it follows 
from Theorem 3.2.3 that X . X = ( lIn) converges to x2 • Therefore x2 = 0, whence x = O. 
(b) Let xn := 1 + 1/2 + 1 /3 + . . .  + 1In for n E N. 

Since xn+1 = xn + I/ (n + 1) > xn ' we see that (xn) is an increasing sequence. By the 
Monotone Convergence Theorem 3.3 .2, the question of whether the sequence is convergent 
or not is reduced to the question of whether the sequence is bounded or not. Attempts to use 
direct numerical calculations to arrive at a conjecture concerning the possible boundedness 
of the sequence (xn) lead to inconclusive frustration. A computer run will reveal the 
approximate values xn :::::: 1 1 .4 for n = 50, 000, and xn :::::: 12 . 1 for n = 100,000. Such 
numerical facts may lead the casual observer to conclude that the sequence is bounded. 
However, the sequence is in fact divergent, which is established by noting that 

x n = 1 + � + (� + �) + . . .  + ( 1 + . . . + �) 2 2 3 4 2n-1 + 1 2n 

> 1 + � + (� + �) + . . .  + (� + . . .  + �) 2 4 4 2n 2n 
1 1 1 = 1 + 2: + 2: + " ' + 2:  
n = 1 + 2: '  

Since (xn) is unbounded, Theorem 3.2 .2 implies that it is divergent. 
The terms xn increase extremely slowly. For example, it can be shown that to achieve 

xn > 50 would entail approximately 5.2 x 1021 additions, and a normal computer perform­
ing 400 million additions a second would require more than 400,000 years to perform 
the calculation (there are 31 ,536,000 seconds in a year). Even a supercomputer that can 
perform more than a trillion additions a second, would take more than 164 years to reach 
that modest goal. D 

Sequences that are defined inductively must be treated differently. If such a sequence 
is known to converge, then the value of the limit can sometimes be determined by using the 
inductive relation. 
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For example, suppose that convergence has been established for the sequence (xn) 
defined by 

1 xn+l = 2 + -, n E N. xn 
If we let x = lim(xn), then we also have x = lim(xn+1 ) since the I -tail (xn+1 ) converges 
to the same limit. Further, we see that xn ::: 2, so that x "1 0  and xn "1 0  for all n E N. 
Therefore, we may apply the limit theorems for sequences to obtain 

1 1 x = lim(x ) = 2 + -- = 2 + - .  n+l lim(x ) x n 

Thus, the limit x is a solution of the quadratic equation x2 - 2x - 1 = 0, and since x must 
be positive, we find that the limit of the sequence is x = 1 + ,J2. 

Of course, the issue of convergence must not be ignored or casually assumed. For ex­
ample, if we assumed the sequence (Yn) defined by Yl := 1 ,  Yn+l := 2Yn + 1 i s  convergent 
with limit Y, then we would obtain Y = 2 Y + 1 ,  so that Y = - 1 .  Of course, this is absurd. 

In the following examples, we employ this method of evaluating limits, but only after 
carefully establishing convergence using the Monotone Convergence Theorem. Additional 
examples of this type will be given in Section 3.5. 

3.3.4 Examples (a) Let Y = (Yn) be defined inductively by Yl := 1 ,  Yn+l := � (2Yn + 
3) for n ::: 1 .  We shall show that lim Y = 3/2. 

Direct calculation shows that Y2 = 5/4. Hence we have Yl < Y2 < 2. We show, by 
Induction, that Yn < 2 for all n E N. Indeed, this is true for n = 1 , 2. If Yk < 2 holds for 
some k E N, then 

Yk+l = � (2Yk + 3) < � (4 + 3) = � < 2, 

so that Yk+l < 2. Therefore Yn < 2 for all n E N. 
We now show, by Induction, that Y n < Y n+ 1 for all n E N. The truth of this assertion has 

been verified for n = 1 .  Now suppose that Yk < Yk+l for some k; then 2Yk + 3 < 2Yk+l + 3, 
whence it follows that 

Yk+l = � (2Yk + 3) < � (2Yk+l + 3) = Yk+2' 
Thus Yk < Yk+l implies that Yk+l < Yk+2' Therefore Yn < Yn+l for all n E N. 

We have shown that the sequence Y = (Yn) is increasing and bounded above by 2. 
It follows from the Monotone Convergence Theorem that Y converges to a limit that is 
at most 2. In this case it is not so easy to evaluate lim(y n) by calculating sup{y n: n E N}. 
However, there is another way to evaluate its limit. Since Yn+l = � (2Yn + 3) for all n E N, 
the nth term in the I -tail Y1 of Y has a simple algebraic relation to the nth term of Y. Since, 
by Theorem 3. 1 .9, we have Y := lim Y1 = lim Y, it therefore follows from Theorem 3.2.3 
(why?) that 

y = � (2y + 3) ,  

from which it follows that Y = 3/2. 
(b) Let Z = (zn) be the sequence of real numbers defined by zl := 1 ,  zn+l := J2Z: for 
n E N. We will show that lim(zn) = 2. 

Note that zl = 1 and Z2 = ,J2; hence 1 :::: zl < z2 < 2. We claim that the sequence 
Z is increasing and bounded above by 2. To show this we will show, by Induction, that 
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1 S zn < zn+l < 2 for all n E No This fact has been verified for n = 1 .  Suppose that it is 
true for n = k; then 2 S 2Zk < 2zk+1 < 4, whence it follows (why?) that 

1 < h S zk+l = ;:;;; < Zk+2 = j2Zk+1 < .J4 = 2. 

[In this last step we have used Example 2. 1. 1 3(a).] Hence the validity of the inequality 1 S 

Zk < Zk+l < 2 implies the validity of 1 S Zk+l < zk+2 < 2. Therefore 1 S zn < zn+l < 2 
for all n E N. 

Since Z = (zn) is a bounded increasing sequence, it follows from the Monotone 
Convergence Theorem that it converges to a number Z : = sup{ zn }' It may be shown directly 
that sup{zn } = 2, so that Z = 2. Alternatively we may use the method employed in part (a). 
The relation zn+l = J2i:. gives a relation between the nth term of the I-tail ZI of Z and the 
nth term of Z. By Theorem 3 . 1 .9, we have lim Zl = Z = lim Z. Moreover, by Theorems 
3.2.3 and 3 .2. 10, it follows that the limit Z must satisfy the relation 

z = Ez. 

Hence Z must satisfy the equation z2 = 2z which has the roots Z = 0, 2. Since the terms of 
Z = (zn) all satisfy 1 S zn S 2, it follows from Theorem 3.2.6 that we must have 1 S Z S 2. 
Therefore Z = 2. 0 

The Calculation of Square Roots 

We now give an application of the Monotone Convergence Theorem to the calculation of 
square roots of positive numbers. 

3.3.5 Example Let a > 0; we will construct a sequence (sn) of real numbers that con­
verges to Ja. 

Let Sl > ° be arbitrary and define sn+l := ! (sn + ajsn) for n E N. We now show that 
the sequence (sn) converges to Ja. (This process for calculating square roots was known 
in Mesopotamia before 1500 B.C.) 

We first show that s; ::: a for n ::: 2. Since sn satisfies the quadratic equation s; -
2sn+1 sn + a = 0, this equation has a real root. Hence the discriminant 4s;+1 - 4a must be 
nonnegative; that is, S;+l ::: a for n ::: 1 .  

To see that (sn) is ultimately decreasing, we note that for n ::: 2 we have 

S - S = S _ � (s + �) = � . (s; - a) > 0. n n+l n 2 n S 2 S -n n 
Hence, sn+l S sn for all n ::: 2. The Monotone Convergence Theorem implies that S := 
lim(sn) exists. Moreover, from Theorem 3 .2.3, the limit S must satisfy the relation 

S = � (s + �) , 
whence it follows (why?) that S = ajs or s2 = a .  Thus S = Ja. 

For the purposes of calculation, it is often important to have an estimate of how rapidly 
the sequence (sn) converges to Ja. As above, we have Ja S sn for all n ::: 2, whence it 
follows that ajsn S Ja S sn '  Thus we have 

° < S - fa < S - ajs = (s2 - a)js - n y u  - n n n n for n ::: 2. 

Using this inequality we can calculate Ja to any desired degree of accuracy. o 
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Euler's Number ________________________ _ 

We conclude this �ection by introducing a sequence that converges to one of the most 
important "transcendental" numbers in mathematics, second in importance only to 7T • 

3.3.6 Example Let en := ( 1 + I/n)n for n E N. We will now show that the sequence 
E = (en) is bounded and increasing; hence it is convergent. The limit of this sequence is 
the famous Euler number e, whose approximate value is 2.7 18 28 1 828 459 045 · . " which 
is taken as the base of the "natural" logarithm. 

If we apply the Binomial Theorem, we have 

e = (1 + �)
n 
= 1 + � . � + n(n - 1) . � + n(n - l ) (n - 2) . � n n 1 n 2 ! n2 3 !  n3 

n(n - 1 ) . .  · 2  . 1 1 + . . .  + ' - . n ! nn 
If we divide the powers of n into the terms in the numerators of the binomial coefficients, 
we get 

e = 1 + 1 + � (1 - �) + � (1 - �) (1 - �) n 2 ! n 3! n n 

Similarly we have 

+ . . .  + :! (1 _ �) (1 _ �) . . .  ( 1 _ 
n : 1 ) . 

e = I + 1 + � (1 _ _ 
1 ) + � (1 _ _ 

1 ) (1 _ _ 
2 ) n+l 2 ! n + 1 3 !  n + 1 n + 1 

+ . . .  + � (1 _ _ 
1 ) (1 _ _  

2 ) . . .  ( 1 _ �) n !  n + l  n + l  n + l  
+ (n � I ) ! (1 - n � 1 ) (1 - n ! 1 ) . . . (1 - n : 1 ) . 

Note that the expression for en contains n + 1 terms, while that for en+1 contains n + 2 
terms. Moreover, each term appearing in en is less than or equal to the corresponding term 
in en+l ' and en+1 has one more positive term. Therefore we have 2 ::s e1 < e2 < . . .  < en < 
en+! < . . . , so that the terms of E are increasing. 

To show that the terms of E are bounded above, we note that if p = 1 ,  2, . . .  , n, then 
( 1 - pin) < 1 . Moreover 2P-1 

::s p !  [see 1 .2.4(e)] so that l ip ! ::s 1 /2P-1 • Therefore, if 
n > 1 , then we have 

1 1 1 2 < e < 1 + 1 + - + - + . . .  + -- . n 2 22 2n-1 
Since it can be verified that [see 1 .2.4(f)] 

1 1 1 1 - + - + . .  · + - = 1 - - < 1  2 22 2n-1 2n-1 ' 
we deduce that 2 < en < 3 for all n E N. The Monotone Convergence Theorem implies 
that the sequence E converges to a real number that is between 2 and 3. We define the 
number e to be the limit of this sequence. 

By refining our estimates we can find closer rational approximations to e, but we cannot 
evaluate it exactly, since e is an irrational number. However, it is possible to calculate e to 
as many decimal places as desired. The reader should use a calculator (or a computer) to 
evaluate en for "large" values of n. 0 
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Leonhard Euler 
Leonhard Euler (1707-1783) was born near Basel, Switzerland. His clergy­
man father hoped that his son would follow him into the ministry, but when 
Euler entered the University of Basel at age 14, his mathematical talent was 
noted by Johann Bernoulli, who became his mentor. In 1727, Euler went 
to Russia to join Johann's son, Daniel, at the new St. Petersburg Academy. 
There he met and married Katharina Gsell, the daughter of a Swiss artist. 
During their long marriage they had 13 children, but only five survived 
childhood. 

In 1741 ,  Euler accepted an offer from Frederick the Great to join the Berlin Academy, where 
he stayed for 25 years. During this period he wrote landmark books on calculus and a steady stream 
of papers. In response to a request for instruction in science from the Princess of Anhalt-Dessau; 
he wrote a multi-volume work on science that became famous under the title Letters to a German 
Princess. 

In 1766, he returned to Russia at the invitation of Catherine the Great. His eyesight had 
deteriorated over the years, and soon after his return to Russia he became totally blind. Incredibly, 
his blindness made little impact on his mathematical output, for he wrote several books and over 
400 papers while blind. He remained busy and active until the day of his death. 

Euler's productivity was remarkable: he wrote textbooks on physics, algebra, calculus, real 
and complex analysis, analytic and differential geometry, and the calculus of variations. He also 
wrote hundreds of original papers, many of which won prizes. A current edition of his collected 
works consists of 74 volumes. 

Exercises for Section 3.3 

1 .  Let Xl := 8 and xn+ l := �xn + 2 for n E N. Show that (xn) is bounded and monotone. Find the 
limit. 

2. Let Xl > 1 and xn+ l  := 2 - Ijxn for n E N. Show that (xn) is bounded and monotone. Find the 
limit. 

3. Let x ,  � 2 and xn+l := 1 + Fn-=-I for n E N. Show that (xn) is decreasing and bounded 
below by 2. Find the limit. 

4. Let Xl := 1 and xn+ l := .)2 + xn for n E N. Show that (xn) converges and find the limit. 

5. Let Y, := .jp, where p > 0, and Yn+l := .)p + Yn for n E N. Show that (Y,) converges and 
find the limit. [Hint: One upper bound is 1 + 2.jp.] 

6. Let a > 0 and let z, > O. Define zn+ l  := .)a + zn for n E N. Show that (z,) converges and find 
the limit. 

7. Let x ,  := a >  0 and xn+l := xn + Ijxn for n E N. Deterrnine if (xn) converges or diverges. 

8. Let (a ) be an increasing sequence, (b ) a decreasing sequence, and assume that a < b for 
all n E

n 
N. Show that lim(an) � lim(bn)� and thereby deduce the Nested Intervals Property 42 

from the Monotone Convergence Theorem 3.3.2. 

9. Let A be an infinite subset of lR that is bounded above and let u := sup A. Show there exists an 
increasing sequence (xn) with xn E A for all n E N such that u = lim(xn). 

10. Let (xn) be a bounded sequence, and for each n E N let sn := SUP{xk : k � n} and tn := inf{xk : 
k � n}. Prove that (sn) and (tn) are monotone and convergent. Also prove that if lim(sn) = 
lim(tn), then (xn) is convergent. [One calls lim(sn ) the limit superior of (xn), and lim(tn ) the 
limit inferior of (xn).] 
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1 1 .  Establish the convergence or the divergence of the sequence (Y n)' where 
1 1 1 

Y := -- + -- + . . .  + - for n E N. n n + l  n + 2  2n 
12. Let xn := 1/12 + 1/22 + . . .  + l /n2 for each n E N. Prove that (xn) is increasing and boundel 

and hence converges. [Hint: Note that if k ::: 2, then 1/  k2 � 1/  k(k - 1) = l /(k - 1) - 1/ k.] 
13. Establish the convergence and find the limits of the following sequences. 

(a) (0 + l /n)n+ l
), (b) (0 + l /n)2

n
) ,  

(c) ((l + n � lr) . (d) ((l - I/n)n) . 

14. Use the method in Example 3.3.5 to calculate ../2, correct to within 4 decimals. 
15. Use the method in Example 3.3.5 to calculate v'5, correct to within 5 decimals. 

16. Calculate the number en in Example 3.3.6 for n = 2, 4, 8, 16. 
17. Use a calculator to compute en for n = 50, n = 100, and n = 1 ,000. 

Section 3.4 Subsequences and the Bolzano-Weierstrass Theorem 

In this section we will introduce the notion of a subsequence of a sequence of real numbers. 
Informally, a subsequence of a sequence is a selection of terms from the given sequence 
such that the selected terms form a new sequence. Usually the selection is made for a definite 
purpose. For example, subsequences are often useful in establishing the convergence or the 
divergence of the sequence. We will also prove the important existence theorem known as 
the Bolzano-Weierstrass Theorem, which will be used to establish a number of significant 
results. 

3.4.1 Definition Let X = (xn) be a sequence of real numbers and let n1 < n2 < . . .  < nk < . . .  be a strictly increasing sequence of natural numbers. Then the sequence X' = (xn ) 
• k gIVen by 

(X x . . .  x . . .  ) n1 '  n2 '  ' nk ' 
is called a subsequence of X. 

For example, if X : = (t, !, �, . . .  ) , then the selection of even indexed terms produces 
the subsequence 

I ( 1 1 1 1 ) X = 2 '  4 '  6 '  " '
, 2k ' . . . , 

where n1 = 2, n2 = 4, " ' , nk = 2k, . . . . Other subsequences of X = ( lIn) are the fol­
lo�ing: 

(� , � , � , . . .  , 2k � 1 ' " -
) , (;! ' :! ' �! ' . . .  , (2�) ! '  . .  -

) . 

The following sequences are not subsequences of X = ( lin): 

(� , � , � , �, �, � , . .  -) , (�, 0, � , O, � , O, . .  -) . 
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A tail of a sequence (see 3. 1 .8) is a special type of subsequence. In fact, the m-tail 
corresponds to the sequence of indices 

n l = m + 1 ,  n2 = m + 2" " , nk = m + k, · · · .  
But, clearly, not every subsequence of a given sequence need be a tail of the sequence. 

Subsequences of convergent sequences also converge to the same limit, as we now 
show. 

3.4.2 Theorem If a sequence X = (xn) of real numbers converges to a real number x, 
then any subsequence X' = (xn ) of X also converges to X .  k 

Proof. Let c > 0 be given and let K(c) be such that if n ?: K(c), then IXn - x l  < c. 
Since n l < n2 < . . .  < nk < . . .  is an increasing sequence of natural numbers, it is easily 
proved (by Induction) that nk ?: k. Hence, if k ?: K(c), we also have nk ?: k ?: K(c) so 
that Ix - x I < c. Therefore the subsequence (xn ) also converges to x. Q.E.D. nk k 

3.4.3 Example (a) lim(bn) = 0 if 0 <lb < 1 .  
We have already seen, in Example 3 . 1 . 1 1 (b), that if 0 < b < 1 and if xn : =  bn , then 

it follows from Bernoulli's Inequality that lim(xn) = O. Alternatively, we see that since 
o < b < 1 ,  then xn+1 = bn+1 < bn = xn so that the sequence (xn) is decreasing. It is 
also clear that 0 :::: xn :::: 1 ,  so it follows from the Monotone Convergence Theorem 3.3.2 
that the sequence is convergent. Let x : =  limxn . Since (x2n )  is a subsequence of (xn) 
it follows from Theorem 3.4.2 that x = lim(x2n ). Moreover, it follows from the relation 
x2n = b2n = (bn )2 = x� and Theorem 3.2.3 that 

x = lim(x2n )  = (lim(xn) f = x2 . 

Therefore we must either have x = 0 or x = 1 .  Since the sequence (xn) is decreasing and 
bounded above by b < 1 ,  we deduce that x = O. 
(b) lim(cl/n) = 1 for c > 1 .  

This limit has been obtained in Example 3 . 1 . 1 1  (c) for c > 0, using a rather ingenious 
argument. We give here an alternative approach for the case c > 1 .  Note that if zn := cl/n , 
then zn > 1 and zn+1 < zn for all n E N. (Why?) Thus by the Monotone Convergence 
Theorem, the limit Z := lim(zn) exists. By Theorem 3.4.2, it follows that Z = lim(z2n) ' In 
addition, it follows from the relation 

z2n = CI/2n = (cl/n) I/2 = z�/2 

and Theorem 3.2. 10 that 
Z = lim(z2n) = (lim(zn») 

1/2 = ZI/2 . 

Therefore we have � = z whence it follows that either z = 0 or z = 1 .  Since zn > 1 for all 
n E N, we deduce that z = 1 .  

We leave it as an exercise to the reader to consider the case 0 < c < 1 .  0 

The following result is based on a careful negation of the definition of lim(xn) = x. It 
leads to a convenient way to establish the divergence of a sequence. 

3.4.4 Theorem Let X = (xn) be a sequence of real numbers. Then the following are 
equivalent: 

(i) The sequence X = (xn) does not converge to x E R 
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(ii) There exists an Co > 0 such that for any k E N, there exists nk E N such that nk :::: k 
and IXn - x l :::: Co ' k 
(iii) There exists an Co > 0 and a subsequence X' = (xnk ) of X such that IXnk - x I :::: Co 
for all k E N. 

Proof. (i) => (ii) If (xn) does not converge to x, then for some Co > 0 it is impossible to 
find a natural number k such that for all n :::: k the terms xn satisfy IXn - x I < Co- That is, 
for each k E N  it is not true that for all n :::: k the inequality IXn - x I < Co holds. In other 
words, for each k E N  there exists a natural number nk :::: k such that IXn - x I :::: Co -. k (ii) => (iii) Let Co be as in (ii) and let n l E N  be such that n I :::: I and l,xn - x I :::: Co' 

I Now let n2 E N be such that n2 > n l and IXn - x l  :::: co; let n3 E N  be such that n3 > n2 2 
and Ix - x I :::: Co ' Continue in this way to obtain a subsequence X' = (x ) of X such n3 nk that IXn - x l :::: Co for all k E N. k 

(iii) => (i) Suppose X = (x ) has a subsequence X' = (x ) satisfying the condition n nk in (iii). Then X cannot converge to x; for if it did, then, by Theorem 3.4.2, the subsequence 
X' would also converge to x. But this is impossible, since none of the terms of X' belongs 
to the co-neighborhood of x .  Q.E.D. 

Since all subsequences of a convergent sequence must converge to the same limit, 
we have part (i) in the following result. Part (ii) follows from the fact that a convergent 
sequence is bounded. 

3.4.5 Divergence Criteria If a sequence X = (xn) of real numbers has either of the 
following properties, then X is divergent. 

(i) X has two convergent subsequences X' = (x ) and X" = (xr ) whose limits are not nk k 
equal. 

(ii) X is unbounded. 

3.4.6 Examples (a) The sequence X := «_ In)) is divergent. 
The subsequence X' : = « - 1 )2n) = ( 1 ,  I ,  . . .  ) converges to 1 ,  and the subsequence 

X" := «_ 1)2n-l ) = (- 1 ,  - 1 , · · ·) converges to - 1 .  Therefore, we conclude from Theo­
rem 3.4.5(i) that X is divergent. 
(b) The sequence ( 1 ,  ! ,  3, ! ,  . . .  ) is divergent. 

This is the sequence Y = (Yn) , where Yn = n if n is odd, and Yn = l/n if n is even. 
It can easily be seen that Y is not bounded. Hence, by Theorem 3.4.5(ii), the sequence is 
divergent. 
(c) The sequence S := (sin n) is divergent. 

This sequence is not so easy to handle. In discussing it we must, of course, make use 
of elementary properties of the sine function. We recall that sin(rr /6) = ! = sin(5rr /6) 
and that sinx > ! for x in the interval II := (rr /6, 5rr /6). Since the length of II is 5rr /6 -
rr16 = 2rr/3 > 2, there are at least two natural numbers lying inside II ; we let n l be the 
first such number. Similarly, for each k E N, sinx > ! for x in the interval 

Ik := (rr/6 + 2rr(k - 1) , 5rr/6 + 2rr(k - l)) . 

Since the length of Ik is greater than 2, there are at least two natural numbers lying inside 
Ik ; we let nk be the first one. The subsequence S' := (sin nk) of S obtained in this way has 
the property that all of its values lie in the interval [! ,  1 ] .  
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Similarly, if k E N  and 'k is the interval 

'k := (7n /6 + 2n(k - 1 ) , l In /6 + 2n(k - 1)) , 
then it is seen that sinx < -! for all x E 'k and the length of 'k is greater than 2. Let mk 
be the first natural number lying in 'k . Then the subsequence S" := (sinmk) of S has the 
property that all of its values lie in the interval [- 1 ,  -!] .  

Given any real number c, it i s  readily seen that at least one of the subsequences S' 
and Sil lies entirely outside of the !-neighborhood of c. Therefore c cannot be a limit of S. 
Since c E lR is arbitrary, we deduce that S is divergent. D 

The Existence of Monotone Subsequences 

While not every sequence is a monotone sequence, we will now show that every sequence 
has a monotone subsequence. 

3.4.7 Monotone Subsequence Theorem If X = (xn) is a sequence of real numbers, then 
there is a subsequence of X that is monotone. 

Proof. For the purpose of this proof, we will say that the mth term xm is a "peak" if 
xm � xn for all n such that n � m. (That is, xm is never exceeded by any term that follows 
it in the sequence.) Note that, in a decreasing sequence, every term is a peak, while in an 
increasing sequence, no term is a peak. 

We will consider two cases, depending on whether X has infinitely many, or finitely 
many, peaks. 

Case 1: X has infinitely many peaks. In this case, we list the peaks by increasing 
subscripts: x , xm , · · · ,  x , . . . . Since each term is a peak, we have m] 2 mk 

x > x > · · · > X > . . . . m ] - m2 - - mk -
Therefore, the subsequence (x ) of peaks is a decreasing subsequence of X. mk Case 2: X has a finite number (possibly zero) of peaks. Let these peaks be listed by 
increasing subscripts: x , x , . . .  , Xm • Let s 1 : = mr + I be the first index beyond the last m1 m2 r 

peak. Since x is not a peak, there exists s2 > s 1 such that x < x . Since x is not a peak, S1 S] S2 S2 there exists S3 > s2 such that x < x . Continuing in this way, we obtain an increasing 82 s3 
subsequence (xs ) of X. Q.E.D. k 

It is not difficult to see that a given sequence may have one subsequence that is 
increasing, and another subsequence that is decreasing. 

The Bolzano-Weierstrass Theorem 

We will now use the Monotone Subsequence Theorem to prove the Bolzano-Weierstrass 
Theorem, which states that every bounded sequence has a convergent subsequence. Because 
of the importance of this theorem we will also give a second proof of it based on the Nested 
Interval Property. 

3.4.8 The Bolzano-Weierstrass Theorem A bounded sequence of real numbers has a 
convergent subsequence. 

First Proof. It follows from the Monotone Subsequence Theorem that if X = (xn) is 
a bounded sequence, then it has a subsequence X' = (x ) that is monotone. Since this nk 
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subsequence is also bounded, it follows from the Monotone Convergence Theorem 3.3.2 
that the subsequence is convergent. Q.E.D. 

Second Proof. Since the set of values {xn : n E N} is bounded, this set is contained in an 
interval II := [a , b]. We take n l : =  1 .  

We now bisect II into two equal subintervals I{ and Ir, and divide the set of indices 
{n E N :  n > I }  into two parts: 

Al := {n E N :  n > n l ' xn E I{} ,  BI = {n E N : n > n l ' xn E In. 

If Al is infinite, we take 12 := I{ and let n2 be the smallest natural number in AI ' (See 
1 .2. 1 .) If Al is a finite set, then BI must be infinite, and we take 12 := I{' and let n2 be the smallest natural number in B I ' 

We now bisect 12 into two equal subintervals I� and I;, and divide the set {n E N :  
n > n2} into two parts: 

If A2 is infinite, we take 13 := I� and let n3 be the smallest natural number in A2 . If A2 is a 
finite set, then B2 must be infinite, and we take 13 := I; and let n3 be the smallest natural number in B2• 

We continue in this way to obtain a sequence of nested intervals II ;2 12 ;2 . . .  ;2 Ik ;2 
. . .  and a subsequence (xn) of X such that xnk E Ik for k E No Since the length of Ik is 
equal to (b - a)/2k-l , it follows from Theorem 2.5.3 that there is a (unique) common point 
� E Ik for all k E N. Moreover, since xnk and � both belong to Ik, we have 

IXn - � I  :::: (b - a)/2k-l , k 
whence it follows that the subsequence (x ) of X converges to � . nk Q.E.D. 

Theorem 3.4.8 is sometimes called the Bolzano-Weierstrass Theoremjor sequences, 
because there is another version of it that deals with bounded sets in IR (see Exercise 1 1 .2.6). 

It is readily seen that a bounded sequence can have various subsequences that converge 
to different limits or even diverge. For example, the sequence « _1)n) has subsequences 
that converge to -1 ,  other subsequences that converge to + 1 ,  and it has subsequences that 
diverge. 

Let X be a sequence of real numbers and let X' be a subsequence of X. Then X' is a 
sequence in its own right, and so it has subsequences. We note that if X" is a subsequence 
of X', then it is also a subsequence of X. 

3.4.9 Theorem Let X = (xn) be a bounded sequence of real numbers and let x E IR have 
the property that every convergent subsequence of X converges to x. Then the sequence X 
converges to x. 

Proof. Suppose M > 0 is a bound for the sequence X so that IXn I :::: M for all n E N. 
If.X does not converge to x, then Theorem 3.4.4 implies that there exist Co > 0 and a 
subsequence X' = (x ) of X such that nk 
(1) IXn - x l � Co for all k E N. k 
Since X' is a subsequence of X, the number M is also a bound for X'. Hence the Bolzano­
Weierstrass Theorem implies that X' has a convergent subsequence X". Since X" is also a 
subsequence of X, it converges to x by hypothesis. Thus, its terms ultimately belong to the 
co-neighborhood of x, contradicting ( 1 ). Q.E.D. 
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Exercises for Section 3.4 

1 .  Give an example of an unbounded sequence that has a convergent subsequence. 

2. Use the method of Example 3.4.3(b) to show that if 0 < c < 1 , then lim(cllli ) = 1 .  
3 .  Let Un) be the Fibonacci sequence of Example 3 .1 .2(d), and let Xli := 1n+ I /

1
n ' Given that 

lim(xn) = L exists, determine the value of L. 
4. Show that the following sequences are divergent. 

(a) (1 - (_l)n + l/n
)
, (b) (sin nn/4). 

5. Let X = (xn) and Y = (Y,,) be given sequences, and let the "shuffled" sequence Z = (zn) be 
defined by zl := xI ' Zz := YI , " ' , zZn_ 1 := xn '  zZn := Y" , · · · · Show that Z is convergent if and 
only if both X and Y are convergent and lim X = lim Y. 

6. Let X := n l in for n E N. n 
(a) Show that xn+ 1 < x" if and only if 0 + l/n)" < n, and infer that the inequality is valid 

for n 2: 3. (See Example 3 .3 .6.) Conclude that (xn) is ultimately decreasing and that 
X := lim(xn) exists. 

(b) Use the fact that the subsequence (xz' ) also converges to x to conclude that x = 1 .  
7 .  Establish the convergence and find the limits of the following sequences: 

(a) ((1 + l/n
Z
)n} (b) 

(
(1 + 1/2n)n

)
, 

(c) (0 + 1/n
Z
)
Zn2) , (d) (0 + 2/n)n

)
. 

8. Determine the limits of the following. 
(a) 

(
3n)1 /

2
"
)
, (b) (0 + 1/2n)

3n) . 
9. Suppose that every subsequence of X = (x,) has a subsequence that converges to O. Show that 

lim X = O. 
10. Let (x. ) be a bounded sequence and for each n E N let sn := sup{xk : k 2: n} and S := inf{sli } '  

Show that there exists a subsequence of (xn ) that converges to S. 
1 1 .  Suppose that x" 2: 0 for all n E N and that lim 

( 
_ 1)" xJ exists. Show that (Xli ) converges. 

12. Show that if (x ) is unbounded, then there exists a subsequence (x ) such that lim(1/x ) = O. n � � 
13 . If xn := (_ I)n /n, find the subsequence of (x. ) that is constructed in the second proof of the 

Bolzano-Weierstrass Theorem 3.4.8, when we take II := [- 1 ,  1] . 

14. Let (xn) be a bounded sequence and let S := sup{xn : n E N). Show that if S � {xn : n E N}, then 
there is a subsequence of (x,,) that converges to s .  

15. Let (In) be a nested sequence of closed bounded intervals. For each n E N, let xn E In ' Use the 
Bolzano-Weierstrass Theorem to give a proof of the Nested Intervals Property 2.5.2. 

16. Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequence 
is dropped. 

Section 3.5 The Cauchy Criterion 

The Monotone Convergence Theorem is extraordinarily useful and important, but it has the 
significant drawback that it applies only to sequences that are monotone. It is important for 
us to have a condition implying the convergence of a sequence that does not require us to 
know the value of the limit in advance, and is not restricted to monotone sequences. The 
Cauchy Criterion, which will be established in this section, is such a condition. 
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3.5.1 Definition A sequence X = (xn) of real numbers is said to be a Cauchy sequence 
if for every e > 0 there exists a natural number H(e) such that for all natural numbers 
n, m ::: H(e), the terms xn ' xm satisfy IXn - xm I < e . 

The significance of the concept of Cauchy sequence lies in the main theorem of this 
section, which asserts that a sequence of real numbers is convergent if and only if it is a 
Cauchy sequence. This will give us a method of proving a sequence converges without 
knowing the limit of the sequence. 

However, we will first highlight the definition of Cauchy sequence in the following 
examples. 

3.5.2 Examples (a) The sequence ( l /n) is a Cauchy sequence. 
If e > 0 is given, we choose a natural number H = H(e) such that H > 2/e . Then 

if m ,  n ::: H, we have 1/ n S 1 /  H < e /2 and similarly 1 /  m < e /2. Therefore, it follows 
that if m ,  n ::: H, then 

I �  - � I < � + � < � 
+ 

� 
= e. n m - n  m 2 2 

Since e > 0 is arbitrary, we conclude that ( l/n) is a Cauchy sequence. 
(b) The sequence ( 1 + (_ l )n) is not a Cauchy sequence. 

The negation of the definition of Cauchy sequence is: There exists Co > 0 such that for 
every H there exist at least one n > H and at least one m > H such that IXn - xm I ::: Co . 
For the terms xn := 1 + (- It , we observe that if n is even, then xn = 2 and xn+l = o. If 
we take Co = 2, then for any H we can choose an even number n > H and let m := n + 1 
to get 

IXn - xn+l l = 2 = Co · 
We conclude that (xn) is not a Cauchy sequence. D 

Remark We emphasize that to prove a sequence (xn ) is a Cauchy sequence, we may 
not assume a relationship between m and n, since the required inequality IXn - xm I < e 
must hold for all n, m ::: H (c) . But to prove a sequence is not a Cauchy sequence, we may 
specify a relation between n and m as long as arbitrarily large values of n and m can be 
chosen so that IXn - xm I ::: Co· 

Our goal is to show that the Cauchy sequences are precisely the convergent sequences. 
We first prove that a convergent sequence is a Cauchy sequence. 

3.5.3 Lemma If X = (xn) is a convergent sequence of real numbers, then X is a Cauchy 
sequence. 

Proof. If x := lim X, then given e > 0 there is a natural number K(e/2) such that if 
n- ::: K(e/2) then IXn - x l < e/2. Thus, if H(e) := K(e/2) and if n, m ::: H(e), then we 
have 

IXn - xm l = I (xn - x) + (x - xm) 1 
S IXn - x l  + IXm - x l < e/2 + 8/2 = 8. 

Since 8 > 0 is arbitrary, it follows that (xn) is a Cauchy sequence. Q.E.D. 
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In order to establish that a Cauchy sequence is convergent, we will need the following 
result. (See Theorem 3 .2.2.) 

3.5.4 Lemma A Cauchy sequence of real numbers is bounded. 

Proof. Let X := (xn ) be a Cauchy sequence and let 8 := 1 . If H := H(l)  and n ::: H, 
then IXn - X H I < 1. Hence, by the Triangle Inequality, we have IXn I ::: Ix H I + 1 for all 
n ::: H .  If we set 

M := sup { lXI I , Ix2 1 , " " IxH_I I ,  IXH I + I } , 

then it follows that IXn I ::: M for all n E N. 
We now present the important Cauchy Convergence Criterion. 

Q.E.D. 

3.5.5 Cauchy Convergence Criterion A sequence of real numbers is convergent if and 
only if it is a Cauchy sequence. 

Proof. We have seen, in Lemma 3.5.3, that a convergent sequence is a Cauchy sequence. 
Conversely, let X = (xn) be a Cauchy sequence; we will show that X is convergent to 

some real number. First we observe from Lemma 3.5 .4 that the sequence X is bounded. 
Therefore, by the Bolzano-Weierstrass Theorem 3.4.8, there is a subsequence X' = (xn ) k 
of X that converges to some real number x*. We shall complete the proof by showing that 
X converges to x* . 

Since X = (xn) is a Cauchy sequence, given 8 > 0 there is a natural number H(8/2) 
such that if n, m ::: H(8/2) then 

( 1 ) 
Since the subsequence X' = (xn ) converges to x*, there is  a natural number K ::: H (8 /2) 

k 
belonging to the set {np n2 , • • •  } such that 

IXK - x* 1 < 8/2. 
Since K ::: H(8/2), it follows from (1) with m = K that 

IXn - xK I < 8/2 
Therefore, if n ::: H (8/2), we have 

for n ::: H (8/2) . 

IXn - x* 1 = I (xn - xK) + (xK - x*) 1 
::: IXn - xK I + IXK - x* 1 
< 8/2 + 8/2 = 8. 

Since 8 > 0 is arbitrary, we infer that lim(xn) = x*. Therefore the sequence X is convergent. 

We will nqw give some examples of applications of the Cauchy Criterion. 

3.5.6 Examples (a) Let X = (xn) be defined by 

and for n > 2. 

Q.E.D. 
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It can be shown by Induction that 1 :s xn :s 2 for all n E N. (Do so.) Some calculation shows 
that the sequence X is not monotone. However, since the terms are formed by averaging, it 
is readily seen that 

1 IXn -
xn+1 1 = 2n-1 for n E N. 

(Prove this by Induction.) Thus, if m > n, we may employ the Triangle Inequality to obtain 

Therefore, given e > 0, if n is chosen so large that l/2n < e 14 and if m � n, then it follows 
that IXn - xm I < e. Therefore, X is a Cauchy sequence in R By the Cauchy Criterion 3 .5.5 
we infer that the sequence X converges to a number x . 

To evaluate the limit x, we might first "pass to the limit" in the rule of definition 
xn = ! (xn-t + xn_2) to conclude that x must satisfy the relation x = ! (x + x), which is 
true, but not informative. Hence we must try something else. 

Since X converges to x, so does the subsequence X' with odd indices. By Induction, 
the reader can establish that [see 1 .2.4(f)] 

1 1 1 x2n+t = 1 + "2 + 23 + . . . + 22n-1 

= 1 + � ( 1 - �) 3 4n • 

It follows from this (how?) that x = lim X = lim X' = 1 + � = � .  
(b) Let Y = (y n) be the sequence of real numbers given by 

1 1 1 1 1 ( - 1  )n+ 1 
Y1 := l! '  Y2 := l! - 2! ' . . .  , Yn := l! - 2! + . . .  + n ! 

Clearly, Y is not a monotone sequence. Ho�ever, if m > n, then 

(_ l)n+2 (- It+3 (_ l )m+1 
Ym - Yn = (n + I) ! + (n + 2) ! + . . .  + m ! 

Since 2r-1 :s r ! [see 1 .2.4( e)] , it follows that if m > n, then (why?) 
1 1 1 I Ym - Yn l :s (n + l) ! + (n + 2) ! + . . .  + m ! 

1 1 1 1 :s 2n + 2n+1 + . . .  + 2m-I < 2n-l · 
Therefore, it follows that (y n) is a Cauchy sequence. Hence it converges to a limit y. At the 
present moment we cannot evaluate Y directly; however, passing to the limit (with respect 
to m) in the above inequality, we obtain 

I Yn - y l  :s 1/2n-l . 
Hence we can calculate Y to any desired accuracy by calculating the terms Y n for sufficiently 
large n. The reader should do this and show that Y is approximately equal to 0.632 1 20 559. 
(The exact value of Y is 1 - l ie.) 
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(c) The sequence (� + � + . . .  + �) diverges. 1 2 n 
Let H := (hn) be the sequence defined by 

1 1 1 h := - + - + . . .  + -n 1 2 n 
which was considered in 3.3.3(b). If m > n, then 

for n E N, 

1 1 h - h = -- + " . + - .  m n n + 1 m 
Since each of these m - n tenus exceeds 11m,  then hm - hn > (m - n)lm = 1 - nlm. In 
particular, if m = 2n we have h2n - hn > ! .  This shows that H is not a Cauchy sequence 
(why?); therefore H is not a convergent sequence. (In tenus that will be introduced in 
Section 3.7, we have just proved that the "harmonic series" I::l lin is divergent.) 0 

3.5.7 Definition We say that a sequence X = (xn) of real numbers is contractive if there 
exists a constant C, 0 < C < 1 ,  such that 

IXn+2 - xn+1 1 ::s: Clxn+1 - xn I 
for all n E N. The number C is called the constant of the contractive sequence. 

3.5.8 Theorem Every contractive sequence is a Cauchy sequence, and therefore is con­
vergent. 

Proof. If we successively apply the defining condition for a contractive sequence, we can 
work our way back to the beginning of the sequence as follows: 

IXn+2 - xn+1 1 ::s: Clxn+1 - xn I ::s: C2 1xn - xn_1 1 
< C3 1x - x I < . . .  < Cn Ix - x I .  - n- I n-2 - - 2 I 

For m > n, we estimate IXm - xn I by first applying the Triangle Inequality and then using 
the fonuula for the sum of a geometric progression (see 1 .2.4(t) . This gives 

IXm - xn l ::s: IXm - xm_1 1 + IXm_1 - xm_2 1 + . . .  + IXn+1 - xn l 
::s: (Cm-2 + Cm-3 + . . .  + en-I) IX2 - XI I ( 1 - cm-n ) = Cn-I 

1 - C IX2 - XI I 
n-I ( 1 ) ::s: C 1 _ C IX2 - x I I .  

Since 0 < C < 1 ,  we know 1im(Cn) = 0 [see 3 . 1 . 1 1 (b)] . Therefore, we infer that (xn) i s  a 
Cauchy sequence. It now follows from the Cauchy Convergence Criterion 3.5.5. that (xn) 
is a convergent sequence. Q.E.D. 

In the process of calculating the limit of a contractive sequence, it is often very 
important to have an estimate of the error at the nth stage. In the next result we give two 
such estimates: the first one involves the first two tenus in the sequence and n; the second 
one involves the difference xn - xn_l . 

3.5.9 Corollary If X := (xn ) is a contractive sequence with constant C, 0 < C < 1 ,  and 
ifx* := lim X, then 
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(i) 

(ii) 

Proof. From the preceding proof, if m > n, then IXm - xn l  ::: (C-l/(l - C» lx2 - xI I · 
If we let m --+ 00 in this inequality, we obtain (i). 

To prove (ii), recall that if m > n, then 
IXm - xn l  ::: IXm - xm_l l + . . .  + IXn+1 - xn l . 

Since it is readily established, using Induction, that 

we infer that 
IXn+k - xn+k-l l  ::: Ck lxn - xn_l l , 

IXm - xn l  ::: (Cm-n + . . . + C2 + C) lxn - xn_l l 
C 

::: 1 _ C IXn - xn_l l  
We now let m --+ 00 in this inequality to obtain assertion (ii). Q.E.D. 

3.5.10 Example We are told that the cubic equation x3 - 7x + 2 = 0 has a solution 
between 0 and 1 and we wish to approximate this solution. This can be accomplished by 
means of an iteration procedure as follows. We first rewrite the equation as X = (x3 + 2) /7 
and use this to define a sequence. We assign to Xl an arbitrary value between 0 and 1 , and 
then define 

for n E N. 
Because 0 < Xl < 1 ,  it follows that 0 < xn < 1 for all n E N. (Why?) Moreover, we have 

IXn+2 - xn+l l  = I � (x�+l + 2) - � (x� + 2) 1 = � IX�+1 - x� 1 
= � IX;+1 + xn+lxn + x; l lxn+1 - xn l ::: � Ixn+l - xn l . 

Therefore, (xn) is a contractive sequence and hence there exists r such that lim(xn) = r. Ifwe 
pass to the limit on both sides of the equality xn+l = (x� + 2)/7, we obtain r = (r3 + 2)/7 
and hence r3 - 7r + 2 = O. Thus r is a solution of the equation. 

We can approximate r by choosing Xl and calculating x2 ' x3 ' • • •  successively. For 
example, if we take Xl = 0.5, we obtain (to nine decimal places): 

X2 = 0.303 57 1 429, 
x4 = 0.289 1 88 016, 
x6 = 0.289 168 57 1 , 

X3 = 0.289 710 830, 
Xs = 0.289 169 244, 
etc. 

To estimate the accuracy, we note that IX2 - xI I  < 0.2. Thus, after n steps it follows from 
Corollary 3.5.9(i) that we are sure that Ix* - xn I ::: 3n-lj (7n-2 . 20). Thus, when n = 6, 
we are sure that 

Ix* - x6 1 ::: 3S/(74 . 20) = 243/48 020 < 0.005 1 . 
Actually the approximation is substantially better than this. In fact, since IX6 - xs i < 
0.000 0005, it follows from 3.5 .9(ii) that Ix* - x6 1 ::: � IX6 - xs i < 0.0000004. Hence the 
first five decimal places of x6 are correct. 0 
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Exercises for Section 3.5 

1 .  Give an example of a bounded sequence that is not a Cauchy sequence. 

2. Show directly from the definition that the following are Cauchy sequences. 

(a) (n + 1 )
, (b) ( 1 + � + . . .  + �) . 

n 2!  n !  
3 .  Show directly from the definition that the following are not Cauchy sequences. 

(a) ( _I)n) , (b) (n + 
(_:)n ) . (c) (inn) . 

4. Show directly from the definition that if (xn) and (Yn) are Cauchy sequences, then (xn + Yn) and 
(xnyn ) are Cauchy sequences. 

5. If xn := y'n, show that (xn) satisfies lim IXn+1 - xn I = 0, but that it is not a Cauchy sequence. 

6. Let p be a given natural number. Give an example of a sequence (xn) that is not a Cauchy 
sequence, but that satisfies lim Ixn+p - xn I = O. 

7. Let (xn) be a Cauchy sequence such that xn is an integer for every n E N. Show that (xn) is 
ultimately constant. 

8. Show directly that a bounded, monotone increasing sequence is a Cauchy sequence. 

9. If 0 < r < 1 and IXn+1 - xn I < rn for all n E N, show that (xn) is a Cauchy sequence. 

10. If Xl < Xz are arbitrary real numbers and xn := 1 (Xn_Z + xn-l ) for n > 2, show that (xn ) is 
convergent. What is its limit? 

1 1 . If Yl < Yz are arbitrary real numbers and Yn := bn-l + � Yn-z for n > 2, show that (Yn ) is 
convergent. What is its limit? 

12. If Xl > 0 and xn+l := (2 + xn)-l for n ?: 1 ,  show that (xn) is a contractive sequence. Find the 
limit. 

13 .  If Xl := 2 and xn+l := 2 + l/xn for n ?: 1 ,  show that (xn) is a contractive sequence. What is its 
limit? 

14. The polynomial equation X3 - 5x + 1 = 0 has a root r with 0 < r < 1 .  Use an appropriate 
contractive sequence to calculate r within 10-4. 

Section 3.6 Properly Divergent Sequences 

For certain purposes it is convenient to define what is meant for a sequence (xn) of real 
numbers to "tend to ±oo". 

3.6.1 Definition Let (xn) be a sequence of real numbers. 
(i) We say that (xn) tends to +00, and write lim(xn) = +00, if for every ex E � there 

exists a natural number K (ex) such that if n 2: K (ex), then xn > ex. 
(ii) We say that (xn) tends to -00, and write lim(xn) = -00, if f�r every [3 E � there 

exists a natural number K ([3) such that if n 2: K ([3), then xn < [3. 
We say that (xn) is properly divergent in case we have either lim(xn) = +00 or 

lim(xn) = -00. 
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The reader should realize that we are using the symbols +00 and -00 purely as a con­
venient notation in the above expressions. Results that have been proved in earlier sections 
for conventional limits lim(xn) = L (for L E �) may not remain true when lim(xn) = ±oo. 

3.6.2 Examples (a) limen) = +00. 
In fact, if a E � is given, let K (a) be any natural number such that K (a) > a . 

(b) lim(n2) = +00. 
If K (a) is a natural number such that K (a) > a, and if n ::: K (a) then we have 

n2 ::: n > a. 
(c) If e > 1 ,  then lim(en) = +00. 

Let e = 1 + b, where b > O. If a E � is given, let K (a) be a natural number such that 
K (a) > a / b. If n ::: K (a) it follows from Bernoulli 's Inequality that 

en = (1 + b)n ::: 1 + nb > 1 + a > a. 
Therefore lim(en) = +00. o 

Monotone sequences are particularly simple in regard to their convergence. We have 
seen in the Monotone Convergence Theorem 3.3 .2 that a monotone sequence is convergent 
if and only if it is bounded. The next result is a reformulation of that result. 

3.6.3 Theorem A monotone sequence of real numbers is properly divergent if and only 
if it is unbounded. 

(a) If (xn) is an unbounded increasing sequence, then lim(xn) = +00. 
(b) If (xn) is an unbounded decreasing sequence, then lim(xn) = -00. 

Proof. (a) Suppose that (x ) is an increasing sequence. We know that if (x ) is bounded, , n  n 
then it is convergent. If (xn) is unbounded, then for any a E � there exists n (a) E N such 
that a < xn(a) . But since (xn) is increasing, we have a < xn for all n ::: n(a). Since a is 
arbitrary, it follows that lim(xn) = +00. 

Part (b) is proved in a similar fashion. Q.E.D. 

The following "comparison theorem" is frequently used in showing that a sequence is 
properly divergent. [In fact, we implicitly used it in Example 3.6.2(c).] 

3.6.4 Theorem Let (xn) and (Yn) be two sequences of real numbers and suppose that 

(1) for all n E N. 
(a) If lim(xn) = +00, then lim(yn) = +00. 
(b) If lim(Yn) = -00, then lim(xn) = -00. 

Proof. (a) If lim(xn) = +00, and if a E � is given, then there exists a natural number 
K(a) such that if n ::: K(a), then a < xn . In view of ( 1 ), it follows that a < Yn for all 
n ::: K (a). Since a is arbitrary, it follows that lim(yn) = +00. 

The proof of (b) is similar. Q.E.D. 

Remarks (a) Theorem 3.6.4 remains true if condition (1) is ultimately true; that is, if 
there exists m E N  such that xn S Yn for all n ::: m . 
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(b) If condition ( 1 ) of Theorem 3 .6.4 holds and if lim(yn) = +00, it does not follow 
that lim(xn) = +00. Similarly, if ( 1)  holds and if lim(xn) = -00, it does not follow that 
lim(Yn) = -00. In using Theorem 3.6.4 to show that a sequence tends to +00 [respectively, 
-00] we need to show that the terms of the sequence are ultimately greater [respectively, 
less] than or equal to the corresponding terms of a sequence that is known to tend to +qo 
[respectively, -00] . 

Since it is sometimes difficult to establish an inequality such as ( 1), the following "limit 
comparison theorem" is often more convenient to use than Theorem 3.6.4. 
3.6.5 Theorem Let (xn) and (Yn) be two sequences of positive real numbers and suppose 
that for some L E JR, L > 0, we have 

(2) 
Then lim(xn) = +00 if and only if lim(yn) = +00. 

Proof. If (2) holds, there exists K E N such that 
for all n :::: K. 

Hence we have G L) Y n < xn < n L) Y n for all n :::: K. The conclusion now follows from 
a slight modification of Theorem 3.6.4. We leave the details to the reader. Q.E.D. 

The reader can show that the conclusion need not hold if either L = 0 or L = +00. 
However, there are some partial results that can be established in these cases, as will be 
seen in the exercises. 

Exercises for Section 3.6 

1 .  Show that if (xn) is an unbounded sequence, then there exists a properly divergent subsequence. 
2. Give examples of properly divergent sequences (xn) and (Yn) with Yn =1= 0 for all n E N such 

that: 
(a) (xn/yn) is convergent, (b) (xn/yn) is properly divergent. 

3 .  Show that if xn > 0 for all n E N, then lim(xn) = 0 if and only if lim(1/xn) = +00. 

4. Establish the proper divergence of the following sequences. 
(a) (JiI), (b) (In"TI), 
(c) (v'n=!), (d) (n/v'lITI). 

5. Is the sequence (n sinn) properly divergent? 
6. Let (xn) be properly divergent and let (Yn) be such that lim(xnyn) belongs to JR. Show that (Yn) 

converges to O. 
7. Let (xn) and (Yn) be sequences of positive numbers such that lim(xn/yn) = O. 

(a) Show that if lim(xn) = +00, then lim(yn) = +00. 
(b) Show that if (Yn) is bounded, then lim(xn) = O. 

8. Investigate the convergence or the divergence of the following sequences: 
(a) (Jn2 + 2) , (b) (Jil/ (n2 + 1)) ,  

(c) (Jn2 + 1/JiI) , (d) (sin Jil). 

9. Let (xn) and (Yn) be sequences of positive numbers such that lim(xn/yn) = +00, 
(a) Show that if lim(yn) = +00, then lim(xn) = +00. 
(b) Show that if (xn) is bounded, then lim(yn) = O. to. Show that if lim(an/n) = L, where L > 0, then lim(an) = +00. 
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Section 3.7 Introduction to Infinite Series 

We will now give a brief introduction to infinite series of real numbers. This is a topic 
that will be discussed in more detail in Chapter 9, but because of its importance, we will 
establish a few results here. These results will be seen to be immediate consequences of 
theorems we have met in this chapter. 

In elementary texts, an infinite series is sometimes "defined" to be "an expression of 
the form" 

(1) 
However, this "definition" lacks clarity, since there is a priori no particular value that we 
can attach to this array of symbols, which calls for an infinite number of additions to be 
performed. 

3.7.1 Definition If X := (xn) is a sequence in �, then the infinite series (or simply the 
series) generated by X is the sequence S := (Sk) defined by 

Sj := xj 
s2 := Sj + x2 (= xj + x2) 

The numbers xn are called the terms of the series and the numbers sk are called the partial 
sums of this series. If lim S exists, we say that this series is convergent and call this limit 
the sum or the value of this series. If this limit does not exist, we say that the series S is 
divergent. 

It is convenient to use symbols such as 

(2) or or 

to denote both the infinite series S generated by the sequence X = (xn) and also to denote 
the value lim S, in case this limit exists. Thus the symbols in (2) may be regarded merely as 
a way of exhibiting an infinite series whose convergence or divergence is to be investigated. 
In practice, this double use of these notations does not lead to any confusion, provided it is 
understood that the convergence (or divergence) of the series must be established. 

Just as a sequence may be indexed such that its first element is not xj , but is xO' or Xs 
or x99' we will denote the series having these numbers as their first element by the symbols 

or or 

It should be noted that when the first term in the series is x N ' then the first partial sum is 
denoted by sN. 

Warning The reader should guard against confusing the words "sequence" and "series". 
In nonmathematical language, these words are interchangeable; however, in mathematics, 
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these words are not synonyms. Indeed, a series is a sequence S = (sk) obtained from a 
given sequence X = (xn) according to the special procedure given in Definition 3.7.1 . 

3.7.2 Examples (a) Consider the sequence X := (rn):o where r E �, which generates 
the geometric series: 

00 
(3) L rn = 1 + r + r2 + . . .  + rn + . . . . 

n=O 
We will show that if I r I < 1 , then this series converges to 1/( 1 - r) . (See also Example 

1 .2.4(f).) Indeed, if sn : =  1 + r + r2 + . . .  + rn for n ::: 0, and if we multiply sn by r and 
subtract the result from sn ' we obtain (after some simplification): 

Therefore, we have 

from which it follows that 

S ( 1 - r) = 1 - rn+l . n 

rn+1 
S - -- = - --n I - r I - r '  

I 1 I I r ln+1 
sn - l _ r ::: I I - r l ' 

Since I r ln+1 -+ 0 when I r l  < 1 ,  it follows that the geometric series (3) converges to 
I /O - r) when I r l < 1 . 
(b) Consider the series generated by (( -I)n):o; that is, the series: 

00 
(4) L(-It = (+1 ) + (-1) + (+1) + (-1) + . . . . 

n=O 
It is easily seen (by Mathematical Induction) that sn = 1 if n ::: 0 is even and sn = 0 

if n is odd; therefore, the sequence of partial sums is ( 1 ,  0, I ,  0, . . .  ) . Since this sequence is 
not convergent, the series (4) is divergent. 
(c) Consider the series 

(5) 00 1 1 I 1 � n(n + 1 ) = 
t:2 + 2 · 3  + 3 · 4  + 

. . . . 

By a stroke of insight, we note that 
1 

k(k + 1 ) 
1 1 
- - --k k + I 

Hence, on adding these terms from k = 1 to k = n and noting the telescoping that takes 
place, we obtain 

1 I 
S = - - --n 1 n + l ' 

whence it follows that sn -+ 1 . Therefore the series (5) converges to 1 . D 

We now present a very useful and simple necessary condition for the convergence of 
a series. It is far from being sufficient, however. 
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3.7.3 The nth Term Test If the series I>n converges, then lim(xn) = 0. 
Proof. By Definition 3.7. 1 ,  the convergence of I>n requires that lim(sk) exists. Since 
xn = sn - sn_i ' then lim(xn) = lim(sn) - lim(sn_l) = 0. Q.E.D. 

Since the following Cauchy Criterion is precisely a reformulation of Theorem 3.5 .5, 
we will omit its proof. 

3.7.4 Cauchy Criterion for Series The series L: xn converges if and only if for every 
e > ° there exists M(e) E N  such that ifm > n ::: M(e), then 

(6) ISm - sn l  = IXn+1 + xn+2 + . . .  + xm l < e. 
The next result, although limited in scope, is of great importance and utility. 

3.7.5 Theorem Let (xn) be a sequence of nonnegative real numbers. Then the series 
L: xn converges if and only if the sequence S = (Sk) of partial sums is bounded. In this 
case, 

00 
L Xn = lim(sk) = sUP{sk : k E N}. n=1 

Proof. Since xn > 0, the sequence S of partial sums is monotone increasing: 

By the Monotone Convergence Theorem 3.3.2, the sequence S = (sk) converges if and 
only if it is bounded, in which case its limit equals sUP{sk} ' Q.E.D. 

3.7.6 Examples (a) The geometric series (3) diverges if I r l  ::: 1 .  
This follows from the fact that the terms r n  do not approach ° when I r  I ::: 1 .  

00 1 (b) The harmonic series L - diverges. 
n=1 n 

Since the terms lin --+ 0, we cannot use the nth Term Test 3.7.3 to establish this 
divergence. However, it was seen in Examples 3.3.3(b) and 3.5.6(c) that the sequence (sn ) 
of partial sums is not bounded. Therefore, it follows from Theorem 3.7.5 that the harmonic 
series is divergent. 

00 1 
(c) The 2-series L 2 is convergent. 

n=1 n 
Since the partial sums are monotone, it suffices (why?) to show that some subsequence 

of (Sk) is bounded. If kl := 21 - 1 = 1 ,  then Sk = 1 .  If k2 := 22 - 1 = 3, then 
1 

1 ( 1 1 ) 2 1 
sk2 = "1 + 22 + 32 < 1 + 22 = 1 + 2 '  

and if k3 : =  23 - 1 = 7 ,  then we have ( 1 1 1 1 ) 4 1 1 
sk = sk + 2 + 2 + 2 + 2 < sk + 2 < 1 + -2 + 2 ' 3 2 4 5 6 7  2 4  2 

By Mathematical Induction, we find that if kj := 2j - 1 ,  then 
1 ( 1 )2 ( I ) j-I 0 < \ < 1 + 2 + 2 + . . .  + 2 . 
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Since the tenn on the right is a partial sum of a geometric series with r = ! ,  it is dominated 
by I/O - !) = 2, and Theorem 3.7.5 implies that the 2-series converges. 00 1 
(d) The p-series L p converges when p > 1 . 

n=1 n 
Since the argument is very similar to the special case considered in part (c), we will 

leave some of the details to the reader. As before, if kl : =  21 - 1 = 1 , then sk = 1 . If 
1 

k2 := 22 - 1 = 3, then since 2P < 3P, we have 
1 ( 1 1 ) 2 1 

sk2 = ]P + 2P + 3P < 1 + 2P = 1 + 2P-1 . 

Further, if k3 := 23 - 1 ,  then (how?) it is seen that 
4 1 1 

sk < sk + -P < 1 + --1 + --1 · 3 2 4 2P- 4P-
Finally, we let r : =  1 /2P-I ; since p > 1, we have 0 < r < 1 .  Using Mathematical Induc­
tion, we show that if kj := 2j - 1 , then 

2 . 1 1 0 <  Sk . < 1 + r + r + . . .  + r'- < --. 
J 1 - r 

Therefore, Theorem 3.7.5 implies that the p-series converges when p > 1 . 00 1 
(e) The p-series L p diverges when 0 < p � 1 . 

that 

n=1 n We will use the elementary inequality nP � n when n E N and 0 < p � 1 . It follows 

1 1 - < ­
n - nP for n E N. 

Since the partial sums of the harmonic series are not bounded, this inequality shows that the 
partial sums of the p-series are not bounded when 0 < p � 1 .  Hence the p-series diverges 
for these values of p. 
(0 The alternating harmonic series, given by 

00 (-It+1 1 1 1 (_ I )n+1 
(7) L = - - - + - - . . . + + . . . 

n=1 n 1 2 3 n 

is convergent. 
The reader should compare this series with the harmonic series in (b), which is 

divergent. Thus, the subtraction of some of the tenns in (7) is essential if this series is to 
converge. Since we have 

S = (� _ �) + (� _ �) + . . . + (_1 
_ _  �) 2n 1 2 3 4 2n - l  2n ' 

it is clear that the "even" subsequence (s2n) is increasing. Similarly, the "odd" subsequence 
(s2n+l )  is decreasing since 

s2n+1 = � - (� - �) - (� - �) - . . .  - (2� - 2n � 1 ) . 
Since 0 < s2n < s2n + 1 / (2n + 1 ) = s2n+1 � 1 ,  both of these subsequences are bounded 
below by 0 and above by 1 .  Therefore they are both convergent and to the same value. Thus 
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the sequence (sn) of partial sums converges, proving that the alternating harmonic series 
(7) converges. (It is far from obvious that the limit of this series is equal to In 2.) 0 

Comparison Tests 

Our first test shows that if the terms of a nonnegative series are dominated by the corre­
sponding terms of a convergent series, then the first series is convergent. 

3.7.7 Comparison Test Let X := (xn) and Y := (Yn) be real sequences and suppose that 
for some K E N  we have 

(8) for n � K. 

(a) Then the convergence of L Yn implies the convergence of L Xn . 
(b) The divergence of L xn imples the divergence of L Y n ' 
Proof. (a) Suppose that L Yn converges and, given e > 0, let M(e) E N  be such that if 
m > n � M(e), then 

Yn+l + . . . + Ym < e. 

If m > sup{K, M(e)}, then it follows that 

0 .::: xn+l + . . .  + xm .::: Yn+l + . . .  + Ym < e, 
from which the convergence of L xn follows. 
(b) This statement is the contrapositive of (a). Q.E.D. 

Since it is sometimes difficult to establish the inequalities (8), the next result is fre­
quently very useful. 

3.7.8 Limit Comparison Test Suppose that X := (xn) and Y := (Yn) are strictly positive 
sequences and suppose that the following limit exists in lR: 

(9) r := lim (�:) . 
(a) If r =I 0 then L xn is convergent if and only if L Y n is convergent. 

(b) Ifr = 0 and if L Yn is convergent, then L Xn is convergent. 

Proof. (a) It follows from (9) and Exercise 3 . 1 . 17 that there exists K E N such that 
!r .::: xn/Yn .::: 2r for n � K, whence 

for n � K. 

If we apply the Comparison Test 3.7.7 twice, we obtain the assertion in (a). 
(b) If r = 0, then there exists K E N  such that 

for n � K, 

so that Theorem 3.7.7(a) applies. Q.E.D. 

Remark The Comparison Tests 3.7.7 and 3.7.8 depend on having a stock of series that 
one knows to be convergent (or divergent). The reader will find that the p-series is often 
useful for this purpose. 
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00 1 
3.7.9 Examples (a) The series L -2-- converges. 

n=1 n + n 
It is clear that the inequality 

1 1 o < -- < - for n E N n2 + n n2 
is valid. Since the series L I1n2 is convergent (by Example 3.7.6(c» , we can apply the 
Comparison Test 3.7.7 to obtain the convergence of the given series. 

(b) 
00 I The series L 2 is convergent. 
n=1 n - n + 1 

If the inequality 
1 1 (0) < -n2 - n + 1 - n2 

were true, we could argue as in (a). However, (0) is false for all n E N. The reader can 
probably show that the inequality 

1 2 0 < < -n2 - n + 1 - n2 
is valid for all n E N, and this inequality will work just as well. However, it might take 
some experimentation to think of such an inequality and then establish it. 

Instead, if we take xn := I/(n2 - n + 1) and Yn := Iln2, then we have 
x n2 1 
-.!!. - - � 1 
Yn - n2 - n + 1 - 1 - ( lin) + 01n2) . 

Therefore, the convergence of the given series follows from the Limit Comparison Test 
3.7.8(a). 

00 1 (c) The series L In+l is divergent. 
n=1 n + 1 

This series closely resembles the series L 1 I In which is a p-series with p = � ;  by 
Example 3.7.6(e), it is divergent. If we let xn : =  I/Jn+l and Yn := II In, then we have 

1 
----r;=::::;:::;= � 1 . 
Jl + lin 

Therefore the Limit Comparison Test 3.7.8(a) applies. 
00 I 

(d) The series L - is convergent. 
n=1 n ! 

It would be possible to establish this convergence by showing (by Induction) that 
n2 < n ! for n ::: 4, whence it follows that 

1 1 0 <  - < -n ! n2 for n ::: 4. 
Alternatively, if we let x := lin ! and Yn := Iln2, then (when n ::: 4) we have 

x n2 n 1 o < --!!. = - = < -- � o. - Yn n ! 1 · 2 · · · (n - l ) n - 2 
Therefore the Limit Comparison Test 3.7.8(b) applies. (Note that this test was a bit trou­
blesome to apply since we do not presently know the convergence of any series for which 
the limit of xnlYn is really easy to determine.) 0 
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1 .  Let L an be a given series and let L bn be the series in which the terms are the same and in 
the same order as in L an except that the terms for which an = 0 have been omitted. Show that 
L an converges to A if and only if L b n converges to A. 

2. Show that the convergence of a series is not affected by changing afinite number of its terms. 
(Of course, the value of the sum may be changed.) 

3. By using partial fractions, show that 
00 1 

(a) � (n + 1 ) (n + 2) 
= 1 , 

00 1 1 (c) � n(n + 1 ) (n + 2) = 4 ' 

00 1 1 
(b) L = - > 0, if a > O. 

n=O (ex + n)(ex + n + 1) ex 

4. If L xn and L Yn are convergent, show that L(Xn + Yn)  i s  convergent. 

5. Can you give an example of a convergent series L xn and a divergent series L Yn such that 
L(xn + Yn)  is convergent? Explain. 

00 
6. (a) Show that the series L cos n is divergent. 

n=1 
00 

(b) Show that the series L (cos n) / n2 is convergent. 
n=1 00 (_ 1)

n 
7. Use an argument similar to that in Example 3.7.6(f) to show that the series � ..;n is 

convergent. 

8. If L an with an > 0 is convergent, then is L a� always convergent? Either prove it or give a 
counterexample. 

9. If L an with an > 0 is convergent, then is L ;a;.  always convergent? Either prove it or give a 
counterexample. 

10. If Lan with an > 0 is convergent, then is L Janan+ 1 always convergent? Either prove it or 
give a counterexample. 

1 1 .  If L an with an > 0 is convergent, and if bn := (al + . . . + an)/n for n E N, then show that 
L b n is always divergent. 

00 
12. Let L a(n) be such that (a(n)) is a decreasing sequence of strictly positive numbers. �f s (n) n=1 

denotes the nth partial sum, show (by grouping the terms in s (2n) in two different ways) that 

� (a(1) + 20(2) + . . . + 2na(2n
)) :s s(2n) :s (a (1) + 2a(2) + . . .  + 2n-1a(2n-I )) + a(2n ) .  

00 00 
Use these inequalities to show that La (n) converges if and only if L 2na(2n) converges. n= 1  n=1 
This result is often called the Cauchy Condensation Test; it is very powerful. 

00 
13. Use the Cauchy Condensation Test to discuss the p-series L(1/nP) for p > O. n=1 
14. Use the Cauchy Condensation Test to establish the divergence of the series: 

1 1 
(a) L -' (b) " 

1 ' n lnn  � n(lnn)( n ln n) 
1 (c) L --,,-----.,--------::­n(ln n) (ln In n) (ln In In n) . 

15. Show that if c > 1, then the following series are convergent: 
1 1 

(a) " --, (b) " . � n(lnn)C � n(ln n)(lnlnn)C 



CHAPTER 4 

LIMITS 

"Mathematical analysis" is generally understood to refer to that area of mathematics in 
which systematic use is made of various limiting concepts. In the preceding chapter we 
studied one of these basic limiting concepts: the limit of a sequence of real numbers. In this 
chapter we will encounter the notion of the limit of a function. 

The rudimentary notion of a limiting process emerged in the 1680s as Isaac Newton 
(1642-1727) and Gottfried Leibniz (1646-1716) struggled with the creation of the Cal­
culus. Though each person's work was initially unknown to the other and their creative 
insights were quite different, both realized the need to fonnulate a notion of function and the 
idea of quantities being "close to" one another. Newton used the word "fluent" to denote a 
relationship between variables, and in his major work Principia in 1687 he discussed limits 
"to which they approach nearer than by any given difference, but never go beyond, nor in 
effect attain to, till the quantities are diminished in infinitum". Leibniz introduced the tenn 
"function" to indicate a quantity that depended on a variable, and he invented "infinites­
imally small" numbers as a way of handling the concept of a limit. The tenn "function" 
soon became standard terminology, and Leibniz also introduced the tenn "calculus" for 
this new method of calculation. 

In 1748, Leonhard Euler (1707-1783) published his two-volume treatise Introductio in 
Analysin Infinitorum, in which he discussed power series, the exponential and logarithmic 
functions, the trigonometric functions, and many related topics. This was followed by Insti­
tutiones Calculi Differentialis in 1755 and the three-volume Institutiones Calculi Integralis 
in 1768-70. These works remained the standard textbooks on calculus for many years. But 
the concept of limit was very intuitive and its looseness led to a number of problems. Verbal 
descriptions of the limit concept were proposed by other mathematicians of the era, but 
none was adequate to provide the basis for rigorous proofs. 

In 1 82 1 , Augustin-Louis Cauchy ( 1789-1857) published his lectures on analysis in his 
Cours d'Analyse, which set the standard for mathematical exposition for many years. He 
was concerned with rigor and in many ways raised the level of precision in mathematical 
discourse. He fonnulated definitions and presented arguments with greater care than his 
predecessors, but the concept of limit still remained elusive. In an early chapter he gave the 
following definition: 

If the successive values attributed to the same variable approach indefinitely a 
fixed value, such that they finally differ from it by as little as one wishes, this latter 
is called the limit of all the others. 

The final steps in fonnulating a precise definition of limit were taken by Karl Weier­
strass ( 18 15-1897). He insisted on precise language and rigorous proofs, and his definition 
of limit is the one we use today. 

96 
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Gottfried Leibniz 
Gottfried Wilhelm Leibniz (1646--1716) was born in Leipzig, Germany. He 
was six years old when his father, a professor of philosophy, died and left his 
son the key to his library and a life of books and learning. Leibniz entered the 
University of Leipzig at age 15, graduated at age 17, and received a Doctor 
of Law degree from the University of Altdorf four years later. He wrote 
on legal matters, but was more interested in philosophy. He also developed 
original theories about language and the nature of the universe. In 1672, he 
went to Paris as a diplomat for four years. While there he began to study 
mathematics with the Dutch mathematician Christiaan Huygens. His travels to London to visit the 
Royal Academy further stimulated his interest in mathematics. His background in philosophy led 
him to very original, though not always rigorous, results. 

Unaware of Newtons's unpublished wo\.k, Leibniz published papers in the l680s that pre­
sented a method of finding areas that is known today as the Fundamental Theorem of Calculus. He 
coined the term "calculus" and invented the dy / dx and elongated S notations that are used today. 
Unfortunately, some followers of Newton accused Leibniz of plagiarism, resulting in a dispute 
that lasted until Leibniz's death. Their approaches to calculus were quite different and it is now 
evident that their discoveries were made independently. Leibniz is now renowned for his work in 
philosophy, but his mathematical fame rests on his creation of the calculus. 

Section 4.1 Limits of Functions 

In this section we will introduce the important notion of the limit of a function. The intuitive 
idea of the function f having a limit L at the point c is that the values f (x) are close to 
L when x is close to (but different from) c. But it is necessary to have a technical way of 
working with the idea of "close to" and this is accomplished in the 8-8 definition given 
below. 

In order for the idea of the limit of a function f at a point c to be meaningful, it is 
necessary that f be defined at points near c. It need not be defined at the point c, but it 
should be defined at enough points close to c to make the study interesting. This is the 
reason for the following definition. 

4.1.1 Definition Let A S; JR.. A point c E JR. is a cluster point of A if for every 8 > 0 
there exists at least one point x E A, x =ft c such that Ix - cl < 8. 

This definition is rephrased in the language of neighborhoods as follows: A point c is 
a cluster point of the set A if every 8-neighborhood V8 (c) = (c - 8, c + 8) of c contains at 
least one point of A distinct from c. 
Note The point c may or may not be a member of A, but even if it is in A, it is ignored 
when deciding whether it is a cluster point of A or not, since we explicitly require that there 
be points in V8 (c) n A distinct from c in order for c to be a cluster point of A. 

For example, if A := { l ,  2}, then the point 1 is not a cluster point of A, since choosing 
� := ! gives a neighborhood of 1 that contains no points of A distinct from 1 .  The same is 
true for the point 2, so we see that A has no cluster points. 

4.1.2 Theorem A number c E JR. is a cluster point of a subset A of JR. if and only if there 
exists a sequence (an) in A such that lim(an) = c and an =ft c for all n E N. 
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Proof. If c is a cluster point of A, then for any n E N the (lln)-neighborhood VI/n (c) 
contains at least one point an in A distinct from c. Then an E A, an =1= c, and Ian - c I < I I n 
implies lim(an) = c. 

Conversely, if there exists a sequence (an) in A\{c} with lim(an) = c, then for any 
8 > 0 there exists K such that if n ::: K, then an E V8 (c). Therefore the 8-neighborh<?od 
V8 (c) of c contains the points an ' for n ::: K, which belong to A and are distinct from c. 

Q.E.D. 

The next examples emphasize that a cluster point of a set may or may not belong to 
the set. 

4.1.3 Examples (a) For the open interval AI := (0, 1) , every point of the closed interval 
[0, 1 ] is a cluster point of AI .  Note that the points 0, 1 are cluster points of Ai ' but do not 
belong to AI . All the points of Al are cluster points of AI .  
(b) A finite set has no cluster points. 
(c) The infinite set N has no cluster points. 
(d) The set A4 := { l In : n E N} has only the point 0 as a cluster point. None of the points 
in A4 is a cluster point of A4. 
(e) If I := [0, 1] , then the set As := I n  Q consists of all the rational numbers in I. It 
follows from the Density Theorem 2.4.8 that every point in I is a cluster point of As . 0 

Having made this brief detour, we now return to the concept of the limit of a function 
at a cluster point of its domain. 

The Definition of the Limit ____________________ _ 

We now state the precise definition of the limit of a function I at a point c. It is important 
to note that in this definition, it is immaterial whether I is defined at c or not. In any case, 
we exclude c from consideration in the determination of the limit. 

4.1.4 Definition Let A � JR, and let c be a cluster point of A. For a function I : A -+ JR, 
a real number L is said to be a limit of I at c if, given any e > 0 there exists a 8 > 0 such 
that if x E A and 0 < Ix - c l < 8, then I /(x) - L I  < e. 

Remarks (a) Since the value of 8 usually depends on e, we will sometimes write 8(e) 
instead of 8 to emphasize this dependence. 
(b) The inequality 0 < Ix - cl is equivalent to saying x =1= c. 

If L is a limit of I at c, then we also say that I converges to L at c. We often write 
L = lim I(x) or L = lim I. 

x----+c x�c 

We also say that "/(x) approaches L as x approaches coo. (But it should be noted that the 
points do not actually move anywhere.) The symbolism 

I(x) -+ L as x -+ c  
is also used sometimes to express the fact that I has limit L at c. 

If the limit of I at c does not exist, we say that I diverges at c. 
Our first result is that the value L of the limit is uniquely determined. This uniqueness 

is not part of the definition of limit, but must be deduced. 
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4.1.5 Theorem If f : A -+ JR and if e is a cluster point of A, then f can have only one 
limit at e. 
Proof. Suppose that numbers L and L' satisfy Definition 4. 1 .4. For any s > 0, there exists 
8 (s/2) > o such that if x E A and 0 < Ix - el < 8 (s/2), then If (x) - L I  < s/2. Also there 
exists 8'(s/2) such that if x E A and 0 < Ix - e l  < 8'(s/2), then If (x) - L' I  < s/2. Now 
let 8 := inf{8 (s/2), 8'(s/2)} . Then if x E A and 0 < Ix - el < 8, the Triangle Inequality 
implies that 

I L  - L' I :::: IL  - f(x) 1  + If (x) - L' I  < s/2 + s/2 = s. 
Since s > 0 is arbitrary, we conclude that L - L' = 0, so that L = L'. Q.E.D. 

The definition of limit can be very nicely described in terms of neighborhoods. (See 
Figure 4. 1 . 1 .) We observe that because 

Vo (e) = (e - 8 , e + 8) = {x : Ix - el < 8} , 
the inequality 0 < Ix - el < 8 is equivalent to saying that x i= e and x belongs to the 8-
neighborhood Vo (e) of e. Similarly, the inequality I f (x) - LI < s is equivalent to saying 
that f(x) belongs to the s-neighborhood V, (L) of L. In this way, we obtain the following 
result. The reader should write out a detailed argument to establish the theorem. 

y 

G iven v,, (L) �+-----7f 

-------r--------���+---------� x 
c \ 

There exists Vo(c) 

Figure 4.1.1 The limit of f at c is L. 

4.1.6 Theorem Let f: A -+ JR and let e be a cluster point of A. Then the following 
statements are equivalent. 

(i) lim f(x) = L. x ..... c 
(li) Given any s-neighborhood V, (L) of L, there exists a 8-neighborhood Vo (e) of e such 
that if x i= e is any point in Vo (e) n A, then f(x) belongs V/L). 

We now give some examples that illustrate how the definition of limit is applied. 

4.1.7 Examples (a) lim b = b. x ..... c 
To be more explicit, let f(x) := b for all x E JR. We want to show that lim f(x) = b. 

x ..... c 
If s > 0 is given, we let 8 : =  1 .  (In fact, any strictly positive 8 will serve the purpose.) 
Then if 0 < Ix - el < 1, we have I f(x) - bl = Ib - bl = 0 < s. Since s > 0 is arbitrary, 
we conclude from Definition 4. 1 .4 that lim f(x) = b. x ..... c 
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(b) lim x = c. 
x-+c 
Letg(x) := x for all x E R If8 > 0, we choose 8(8) := 8 . Then if 0 < Ix - cl < 8(8), 

we have Ig (x) - c l = Ix - cl < 8. Since 8 > 0 is arbitrary, we deduce that lim g = c. 
x-+c 

(c) lim x2 = c2 . 
x-+c 

Let h(x) := x2 for all x E R We want to make the difference 
Ih(x) - c2 1 = Ix2 - c2 1 

less than a preassigned 8 > 0 by taking x sufficiently close to c. To do so, we note that 
x2 - c2 = (x + c)(x - c). Moreover, if Ix - c l  < 1 ,  then 

Ix l � le i + 1 so that Ix + c l � Ix l + le i � 2 1e 1  + 1 .  
Therefore, if I x  - c l  < 1 ,  we have 
(1 ) Ix2 - c2 1 = Ix + cl lx - c l � (2 le i + 1) Ix - c l · 
Moreover this last term will be less than 8 provided we take Ix - cl < 8/(21c l + 1) . Con­
sequently, if we choose 

8 (8) := inf { I , � } ,  
2 1c + 1 

then if 0 < Ix - cl < 8 (8) , it will follow first that Ix - c l < 1 so that ( 1) is valid, and 
therefore, since Ix - c l < 8/(21e 1 + 1 ) that 

Ix2 - c2 1 � (2 1c l + 1) Ix - c l  < 8. 

Since we have a way of choosing 8 (8) > 0 for an arbitrary choice of 8 > 0, we infer that 
lim h(x) = lim x2 = c2. 
x�c x�c 

. 1 1 . (d) hm - = - If c > O. 
x-+c X c 
Let fP(x) := l/x for x > 0 and let c > O. To show that lim fP = l/c we wish to make 

x-+c 
the difference 

less than a preassigned 8 > 0 by taking x sufficiently close to c > O. We first note that I � - � I = I�(C - X) I' = � Ix - c l x c cx cx 
for x > O. It is useful to get an upper bound for the term 1/(cx) that holds in some 
neighborhood of c. In particular, if Ix - c l < !c, then !c < x < �c (why?), so that 

1 2 0 <  - < -CX c2 
Therefore, for these values of x we have 

for Ix - c l  < !c. 

,,(2) I fP(X) - � I  � 3.. Ix - cl · c c2 

In order to make this last term less than 8 it suffices to take Ix - cl < !C28. Consequently, 
if we choose 
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then if 0 < Ix - e l < 8(e), it will follow first that Ix - e l < 4e so that (2) is valid, and 
therefore, since Ix - e l < (1e2) e, that 

I �(X) - � 1 = 1 � - � 1 < e. 
Since we have a way of choosing 8 (e) > 0 for an arbitrary choice of e > 0, we infer that 
lim � = lie. x�c 

x3 - 4 4 
(e) lim -- = -x�2 x2 + 1 5 

Let 1/I (x) := (x3 - 4)/(x2 + 1) for x E R Then a little algebraic manipulation gives 
us 

I x _ � I - 1 5x3 _ 4x2 - 241 
1/1 ( ) 5 -

5(x2 + 1) 
1 5x2 + 6x + 12 1  

= 
5 (x2 + 1 )  

. Ix - 21 . 

To get a bound on the coefficient of Ix - 2 1 ,  we restrict x by the condition 1 < x < 3 . 
For x in this interval, we have 5x2 + 6x + 12  ::: 5 . 32 + 6 . 3 + 12 = 75 and 5(x2 + 1) � 
5(1 + 1) = 10, so that 

1 4 1 75 15 1/I (x) - - < - Ix - 21 = - Ix - 21 ·  5 - 10 2 
Now for given e > 0, we choose 

8 (e) := inf { l ,  Ise } . 
Then if 0 < Ix - 21 < 8 (e), we have I 1/1 (x) - (4/5) 1 ::: ( 15/2) lx - 21 < e. Since e > 0 is 
arbitrary, the assertion is proved. 0 

Sequential Criterion for Limits __________________ _ 

The following important formulation of limit of a function is in terms of limits of sequences. 
This characterization permits the theory of Chapter 3 to be applied to the study of limits of 
functions. 

4.1.8 Theorem (Sequential Criterion) Let I: A -+ � and let e be a cluster point of A. 
Then the following are equivalent. 

(i) lim 1 =  L. x�c 
(ii) For every sequence (xn )  in A that converges to e such that xn =1= e for all n E N, the 

sequence (J (xn)) converges to L. 

Proof. (i) =? (ii). Assume I has limit L at e, and suppose (xn) is a sequence in A with 
Iim(xn) = e and xn =1= e for all n . We must prove that the sequence (J(xn)) converges to 
L. Let e > 0 be given. Then by Definition 4. 1 .4, there exists 8 > 0 such that if x E A 
satisfies 0 < Ix - e l < 8, then I(x) satisfies I/ (x) - L I  < e. We now apply the definition 
of convergent sequence for the given 8 to obtain a natural number K (8) such that if n > K (8) 
then IXn - el < 8. But for each such xn we have I /(xn) - L I  < e. Thus if n > K(8), then 
I /(xn) - L I < e. Therefore, the sequence (J(xn)) converges to L. 
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(ii) => (i). [The proof is a contrapositive argument.] If (i) is not true, then there exists 
an eo-neighborhood Ve (L) such that no matter what a-neighborhood of c we pick, there o 
will be at least one number x8 in A n V8 (c) with x8 =1= c such that !(x8) ¢ Ve (L). Hence 

o 
for every n E N, the ( l /n)-neighborhood of c contains a number xn such that 

o < IXn - c l < l /n and 

but such that 

for all n E N. 
We conclude that the sequence (xn) in A \{c} converges to c, but the sequence (f(xn)) does 
not converge to L . Therefore we have shown that if (i) is not true, then (ii) is not true. We 
conclude that (ii) implies (i). Q.E.D. 

We shall see in the next section that many of the basic limit properties of functions can 
be established by using corresponding properties for convergent sequences. For example, 
we know from our work with sequences that if (xn) is any sequence that converges to a 
number c, then (x;) converges to c2• Therefore, by the sequential criterion, we can conclude 
that the function h ex) := X2 has limit lim h ex) = c2 • 

x ..... c 

Divergence Criteria 

It is often important to be able to show (i) that a certain number is not the limit of a function 
at a point, or (ii) that the function does not have a limit at a point. The following result 
is a consequence of (the proof of) Theorem 4. 1 .8. We leave the details of its proof as an 
important exercise. 

4.1.9 Divergence Criteria Let A £ JR, let !:  A � JR and let c E JR be a cluster point 
ofA. 
(a) If L E JR, then ! does not have limit L at c if and only if there exists a sequence (xn) 
in A with xn =1= c for all n E N such that the sequence (xn) converges to c but the sequence 
(f(xn)) does not converge to L.  
(b) The function ! does not have a limit a t  c if and only if there exists a sequence (xn) 
in A with xn =1= c for all n E N  such that the sequence (xn) converges to c but the sequence 
(f(xn)) does not converge in R 

We now give some applications of this result to show how it can be used. 

4.1.10 Example (a) lim(1/x) does not exist in JR. x ..... o 
As in Example 4. 1 .7(d), let cp(x) : =  l /x for x > O. However, here we consider c = O. 

The argument given in Example 4. 1 .7(d) breaks down if c = 0 since we cannot obtain a 
bound such as that in (2) of that example. Indeed, if we take the sequence (xn) with xn := 
l/n for n E N, then lim(xn) = 0, but cp(xn) = 1/0/n) = n . As we know, the sequence 
(cp(xn») = (n) is not convergent in JR, since it is not bounded. Hence, by Theorem 4.1 .9(b), 
lim (1/ x) does not exist in R x ..... 0 
(b) lim sgn(x) does not exist. 

x ..... 0 
Let the signum function sgn be defined by { +1 

sgn(x) := 0 
- 1  

for x >  0, 
for x = 0, 
for x < O. 
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Note that sgn(x) = x/ lx l for x =f:. O. (See Figure 4.1 .2.) We shall show that sgn does not 
have a limit at x = O. We shall do this by showing that there is a sequence (xn) such that 
lim(xn) = 0, but such that (sgn(xn)) does not converge. 

1�(---------------

• 

--------------�) - 1  

Figure 4.1.2 The signum function. 

Indeed, let xn := (- It /n for n E N so that lim(xn) = O. However, since 
sgn(xn) = (_ I )n for n E N, 

it follows from Example 3.4.6(a) that (sgn(x )) does not converge. Therefore lim sgn(x) n 
x�o 

does not exist. 
(c) t lim sin(1 /x) does not exist in �. 

x->o 
Let g(x) := sin(1 /x) for x =f:. o. (See Figure 4. 1 .3.) We shall show that g does not 

have a limit at c = 0, by exhibiting two sequences (xn) and (Yn) with xn =f:. 0 and Yn =f:. 0 
for all n E N and such that lim(xn) = 0 and lim(Yn) = 0, but such that lim (g(xn)) =f:. 
lim (g(y )) . In view of Theorem 4. 1 .9 this implies that lim g cannot exist. (Explain why.) n 

x�o 

Figure 4.1.3 The function g(x) = sin(1/x) (x :j:. 0). 

Indeed, we recall from calculus that sin t = 0 if t == mf for n E Z, and that sin t = 

+1 if t = !7r + 27rn for n E Z. Now let xn := l /n7r for n E N; then lim(xn) = 0 and 
g(xn) = sinn7r = 0 for all n E N, so that lim (g(xn)) = O. On the other hand, let Yn : =  

(!7r + 27rnr1 forn E N; then lim(yn) = o and g(yn) = sin (!7r + 27rn) = l forall n E N, 
so that lim (g (y )) = 1 . We conclude that lim sinO / x) does not exist. 0 n 

x�o 

tIn order to have some interesting applications in this and later examples, we shall make use of well-known 
properties of trigonometric and exponential functions that will be established in Chapter 8. 
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Exercises for Section 4.1 

1 .  Determine a condition on Ix - 1 1  that will assure that: 
(a) Ix2 - 1 1  < � ,  (b) Ix2 - 1 1  < 1/10-3 , 
(c) Ix2 - 1 1 < l /n for a given n E N, (d) Ix3 - 1 1 < l/n for a given n E N. 

2. Determine a condition on Ix - 41 that will assure that: 
(a) IJX - 21 < � , (b) IJX - 21  < 10-2. 

3. Let e be a cluster point of A S; R and let I: A --+ R. Prove that lim I(x) = L if and only if 
x-+c 

lim I/(x) - L I = o. 
x .... c 

4, Let I :  R --+ R and let e E R. Show that lim I (x) = L if and only if lim I (x + e) = L. 
x�c x�o 

5. Let I := (0, a) where a > 0, and let g(x) := x2 for x E I.  For any points x, c E I,  show that 
Ig (x) - e2 1 ::: 2a lx - e l .  Use this inequality to prove that lim x2 = e2 for any e E I.  

x-+c 

6. Let I be an interval in R, let I : I --+ R, and let e E l. Suppose there exist constants K and L 
such that I /(x) - L I  ::: K lx - el for x E I. Show that lim I (x) = L. 

x-+c 

7. Show that lim x3 = e3 for any e E R. 
x-+c 

8 .  Show that lim JX = Jc for any e > O. 
x .... c 

9. Use either the 8-8 definition of limit or the Sequential Criterion for limits, to establish the 

10. 

1 1 . 

following limits. 
. 1 

(a) hm -- = -1 ,  
x-+2 1 - X 

x2 
(c) lim - = 0, 

x-+o Ix l  

Use the definition of limit to show that 
(a) lim (x2 + 4x) = 12, 

X"" 2 
Show that the following limits do not exist. 

(a) r 1 
1m -

x-+o x2 (x > 0), 

(c) lim(x+ sgn(x» , 
x-+o 

. x 1 (b) hm -- = - ,  
x-+ I 1 + x 2 
1. x2 - X + 1 

(d) 1m - . 
x .... I X + 1 2 

(b) 

(b) 

(d) 

. x + 5  
hm -- = 4. 

x -+ - I  2x + 3 

. 1 
hm -
x-+o JX 

(x > 0), 

lim sin(1/x2). 
x-+o 

12. Suppose the function I : R --+ R has limit L at 0, and let a > O. If g : R --+ R is defined by 
g (x) : =  I (ax) for x E R, show that lim g(x) = L .  

� x--+o 

13.  Let e E R and let I :  R --+ R be such that ETc (I (x) f = L. 
(a) Show that if L = 0, then lim I (x) = O. 

x-+c 
(b) Show by example that if L "# 0, then I may not have a limit at e. 

14. Let I : R --+ R be defined by setting I(x) := x if x is rational, and I(x) = 0 if x is irrational. 
(a) Show that I has a limit at x = O. 
(b) Use a sequential argument to show that if e "# 0, then I does not have a limit at e. 

15 . Let I : R --+ R, let I be an open interval in R, and let e E l. If II is the restriction of I to I, 
show that II has a limit at e if and only if I has a limit at e, and that the limits are equal. 

16. Let I : R --+ R, let J be a closed interval in R, and let e E J. If 12 is the restriction of I to J,  
show that if I has a limit at e then 12 has a limit at c. Show by example that i t  does not follow 
that if 12 has a limit at e, then I has a limit at e. 
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We shall now obtain results that are useful in calculating limits of functions. These results 
are parallel to the limit theorems established in Section 3.2 for sequences. In fact, in most 
cases these results can be proved by using Theorem 4. 1 .8 and results from Section 3.2. 
Alternatively, the results in this section can be proved by using 8-8 arguments that are very 
similar to the ones employed in Section 3.2. 

4.2.1 Definition Let A � JR., let f: A � JR., and let C E JR. be a cluster point of A. We say 
that f is bounded on a neighborhood of c if there exists a 8 -neighborhood V8 (c) of c and 
a constant M > 0 such that we have I f (x) 1 :::s M for all x E A n  V/c). 

4.2.2 Theorem If A � JR. and f: A � JR. has a limit at c E JR., then f is bounded on some 
neighborhood of c. 

Proof. If L := lim f, then for 8 = 1 ,  there exists 8 > 0 such that if 0 < Ix - c I < 8, then 
x ..... c 

I f(x) - L I < 1 ;  hence (by Corollary 2.2.4(a)), 
If (x) 1  - IL l  :::s If (x) - L I  < 1 .  

Therefore, if x E A n  V8 (c), x i= c ,  then I f (x) 1  :::s I L l  + 1 .  If c ¢ A ,  we take M = IL l  + 1 ,  
while if c E A we take M := sup { If (c) l ,  I L l  + IH . It follows that if x E A n  V8 (c), then 
I f(x) 1  :::s M. This shows that f is bounded on the neighborhood V8 (c) of c. Q.E.D. 

The next definition is similar to the definition for sums, differences, products, and 
quotients of sequences given in Section 3.2: 

4.2.3 Definition Let A � JR. and let f and g be functions defined on A to R We define 
the sum f + g, the difference f - g, and the product f g on A to JR. to be the functions 
given by 

(f + g)(x) := f(x) + g(x), (f - g)(x) := f(x) - g(x), 
(fg)(x) := f(x)g(x) 

for all x E A.  Further, if b E JR., we define the multiple bf to be the function given by 
(bf)(x) := bf(x) for all x E A . 

Finally, if hex) i= 0 for x E A, we define the quotient fl h to be the function given by 

(L) (x) := f (x) h h (x) for all x E A .  

4:2.4 Theorem Let A � JR.,  let f and g be functions on A to JR., and let c E JR. be a cluster 
point of A. Further, let b E R 
(a) If lim f = L and lim g = M, then: 

x�c x----+c 

lim(f + g) = L + M, 
x ..... c 

lim (fg) = LM, 
x ..... c 

lim(f - g) = L - M, 
x ..... c 
lim (bf) = bL . 
x ..... c 
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(b) Ifh :  A --+ R ifh(x) =I- 0 for all x E A, and if lim h = H =I- 0, then 
x->c 

lim (L) = 1::.. . 
x->c h H 

Proof. One proof of this theorem is exactly similar to that of Theorem 3.2.3. Alternatively, 
it can be proved by making use of Theorems 3.2.3 and 4. 1 .8. For example, let (xn )  be any 
sequence in A such that xn =I- c for n E N, and c = lim(xn) . It follows from Theorem 4. 1 .8 
that 

On the other hand, Definition 4.2.3 implies that 

for n E N. 
Therefore an application of Theorem 3.2.3 yields 

lim ((fg) (xn») = lim (J(xn)g(xn») 
= [lim (J(xn»)] [lim (g(xn »)] = LM. 

Consequently, it follows from Theorem 4. 1 .8 that 

lim(fg) = lim ((fg) (xn») = LM. 
x->c 

The other parts of this theorem are proved in a similar manner. We leave the details to 
the reader. Q.E.D. 

Remarks (1) We note that, in part (b), the additional assumption that H = lim h =I- 0 is 
made. If this assumption is not satisfied, then the limit 

1. I(x) lm -­
x->c h(x) 

x->c 

may or may not exist. But even if this limit does exist, we cannot use Theorem 4.2.4(b) to 
evaluate it. 
(2) Let A S; IR., and let 11 ' 12 , . • •  , In be functions on A to IR., and let c be a cluster point of 
A. If 

for k = 1 ,  . . .  , n , 
then it follows from Theorem 4.2.4 by an Induction argument that 

L + L + . . . + L = lim(f + f + . . .  + .t: ) , 1 2 n 
x->c 1 2 n 

and 

In particular, we deduce that if L = lim I and n E N, then 
x->c 
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4.2.5 Examples (a) Some of the limits that were established in Section 4.1 can be 
proved by using Theorem 4.2.4. For example, it follows from this result that since lim x = c, x--->c 
then lim x2 = c2, and that if c > 0, then x--->c 

1 1 1 lim - = -- = -. x--->c X lim x c x--->c 
(b) lim(x2 + 1 ) (x3 - 4) = 20. x--->2 

It follows from Theorem 4.2.4 that 

lim(x2 + 1 ) (x3 - 4) = (lim(X2 + 1 ») (lim (x3 - 4)) x--->2 x--->2 x--->2 
= 5 · 4 = 20. 

(c) �!1 (::�;) = � ' 
If we apply Theorem 4.2.4(b), we have 

3 _ 4 lim (x3 - 4) 4 lim x __ = x--->2 = _ .  H2 x2 + 1 lim (x2 + 1) 5 
X"" 2 

Note that since the limit in the denominator [i.e., lim(x2 + 1) = 5] is not equal to 0, then x .... 2 
Theorem 4.2.4(b) is applicable. 

x2 - 4 4 (d) lim = --6 = -. x--->2 3x - 3 
If we let f (x) := x2 - 4 and h (x) := 3x - 6 for x E �, then we cannot use Theorem 

4.2.4(b) to evaluate lim (f(x)/ h (x» because x .... 2 
H = lim h (x) = lim(3x - 6) x--->2 . x--->2 

= 3 lim x - 6 = 3 . 2 - 6 = 0. x--->2 
However, if x '" 2, then it follows that 

x2 - 4 (x + 2)(x - 2) 1 -- = = - (x + 2) . 3x - 6 3(x - 2) 3 
Therefore we have 

x2 - 4 1 1 ( ) 4 lim -- = lim - (x + 2) = - lim x + 2 = -3 ' x--->2 3x - 6 x--->2 3 3 x--->2 

Note that the function g(x) = (x2 - 4)/(3x - 6) has a limit at x = 2 even though it is not 
defined there. 

1 
(e) lim - does not exist in R 

x .... 0 X 
Of course lim I = 1 and H := lim x = 0. However, since H = 0, we cannot use x--->o x--->o 

Theorem 4.2.4(b) to evaluate lim ( l /x) . In fact, as was seen in Example 4. 1 . 10(a), the x--->o 
function cp(x) = l/x does not have a limit at x = 0. This conclusion also follows from 
Theorem 4.2.2 since the function cp(x) = l/x is not bounded on a neighborhood of x = o. 
(Why?) 
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(0 If p is a polynomial function, then lim p(x) = p(e) . 
x->e 

Let p be a polynomial function on � so that p(x) = anxn 
+ an_lxn-l 

+ . . .  + alx + 
ao for all x E R It follows from Theorem 4.2.4 and the fact that lim xk 

= ek , that 
x->e 

= lim (anxn) + lim (an_lx
n-l ) + . . .  + lim (alx) + lim ao 

x�c x�c x---+c x---+c 

= anen + an_le
n-l 

+ . . .  + ale + ao 
= p (c) . 

Hence lim p(x) = p(e) for any polynomial function p. 
x->e 

(g) If p and q are polynomial functions on � and if q (e) =1= 0, then 
lim p (x) 

= 
p (c) . 

x->e q (x) q (c) 
Since q (x) is a polynomial function, it follows from a theorem in algebra that there are 
at most a finite number of real numbers al ' " ' , am [the real zeroes of q (x)] such that 
q (a) = 0 and such that if x ¢. {aI ' " ' , am },  then q(x) =1= O. Hence, if x ¢. {aI ' " ' , am }' 
we can define 

p(x) r (x) := - . q (x) 
If e is not a zero of q (x), then q (e) =1= 0, and it follows from part (f) that lim q(x) = 

q (e) =1= O. Therefore we can apply Theorem 4.2.4(b) to conclude that 

lim p(x) 
= 

!� p(x) 
= 

p(e) 
He q (x) lim q (x) q (e) 

x->e 

The next result is a direct analogue of Theorem 3.2.6. 

x->e 

4.2.6 Theorem Let A S; �, let !: A -+ � fmdJet e E � be a cluster point of A. If 

a '::: !(x) .::: b 
and if lim ! exists, theIra .::: lim ! .::: b. 

x->e x->e 

for all x E A, x =1= e ,  

o 

Proof. Indeed, if L = lim !, then it follows from Theorem 4. 1 .8 that if (x ) is any 
x->e 

n 
sequence of real numbers such that e =1= xn E A for all n E N and if the sequence (xn) 
converges to e, then the sequence (J(xn)) converges to L. Since a .::: !(xn) .::: b for all 
n E N, it follows from Theorem 3.2.6 that a .::: L .::: b. Q.E.D. 

We now state an analogue of the Squeeze Theorem 3.2.7. We leave its proof to the 
reader. 

4.2.7 Squeeze Theorem Let A S; �, let !, g ,  h : A -+ �, and let e E � be a cluster point 
of A. If 

!(x) .::: g (x) .::: h (x) 
and if lim ! = L = lim h, then lim g = L. 

x---+c x---+c x---+c 

for all x E A ,  x =1= e ,  
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Let f(x) := x3/2 for x > O. Since the inequality x < xl/2 ::; 1 holds for 0 < x ::; 1 
(why?), it follows that x2 ::; f(x) = x3/2 ::; x for 0 < x ::; 1 .  Since 

lim x2 = 0 x--+o and lim x = 0, x-+o 
it follows from the Squeeze Theorem 4.2.7 that lim X3/2 = O. 

x-+o 
(b) lim sin x = O. 

x--+o 
It will be proved later (see Theorem 8.4.8), that 

-x ::; sinx ::; x for all x � O. 

Since lim(±x) = 0, it follows from the Squeeze Theorem that lim sinx = O. x--+o x-+o 
(c) lim cos x = 1 .  x--+o 

It will be proved later (see Theorem 8.4.8) that 

0) 1 - !x2 ::; cos x ::; 1 for all x E R 
Since lim (1 - !x2) = 1 ,  it follows from the Squeeze Theorem that lim cos x = 1 . x-+o x-+o 

(d) lim (cosx - 1 ) 
= O

. 

x--+o X 
We cannot use Theorem 4.2.4(b) to evaluate this limit. (Why not?) However, it follows 

from the inequality (1) in part (c) that 
- !x ::; (cos x - 1) /x ::; 0 for x > 0 

and that 
0 ::;  (cos x - l )/x ::; - !x for x < O. 

Now let f(x) := -x/2 for x � 0 and f(x) := 0 for x < 0, and let h (x) := 0 for x � 0 
and h(x) := -x/2 for x < O. Then we have 

f(x) ::; (cosx - l )/x � h (x) for x =1= o. 
Since it is readily seen that lim f = 0 = lim h, it follows from the Squeeze Theorem that x-+O x-+O 
lim(cosx - l)/x = o. x--+O 

. ( Sinx ) 
(e) hm - = 1 .  x--+O x 

Again we cannot use Theorem 4.2.4(b) to evaluate this limit. However, it will be 
proved later (see Theorem 8.4.8) that 

x - �x3 ::; sinx ::; x 
and that 

x ::; sinx ::; x - �x3 

Therefore it follows (why?) that 
1 - �x2 ::; (sinx)/x ::; 1 

for x � 0 

for x ::;  O. 

for all x =1= o. 
But since limO - �x2) = 1 - � . lim x2 

= 1 ,  we infer from the Squeeze Theorem that x--+o x-+o 
lim(sinx)/x = 1 .  x-+o 



110 CHAPTER 4 LIMITS 

(I) lim (x sin(1 /x)) = O. x-+o 
Let f (x) = x sin(1 / x) for x i= O. Since - 1  ::: sin z ::: 1 for all z E �, we have the 

inequality 
- Ix l ::: f(x) = x sin(1/x) ::: Ix l 

for all x E �, x i= O. Since lim Ix I = 0, it follows from the Squeeze Theorem that x-+o 
lim f = O. For a graph, see Figure 5 . 1 .3 or the cover of this book. 0 x-+o 

There are results that are parallel to Theorems 3.2.9 and 3.2.10; however, we will leave 
them as exercises. We conclude this section with a result that is, in some sense, a partial 
converse to Theorem 4.2.6. 

4.2.9 Theorem Let A S; �, let f: A -+ � and let c E � be a cluster point of A. If 

lim f > 0 x-+c [respectively, lim f < 0] , x-+c 
then there exists a neighborhood V� (c) of c such that f(x) > 0 [respectively, f(x) < 0] 
for all x E A n V� (c) , x i= c . .  

Proof. Let L : =  lim f and suppose that L > O. We take e = ! L > 0 in Definition 4.1 .4, x-+c 
and obtain a number 8 > 0 such that if 0 < Ix - cl < 8 and x E A, then If  (x) - L I  < !L. 
Therefore (why?) it follows that if x E A n V� (c), x i= c, then f(x) > !L > O. 

If L < 0, a similar argument applies. Q.E.D. 

Exercises for Section 4.2 

1 .  Apply Theorem 4.2.4 to determine the following limits: 

(a) lim (x + 1) (2x + 3) (x E JR) , (b) 
x2 + 2  

(x > 0), lim --
x--> !  x--> I x2 - 2 ( 1 1 ) 

(x > 0), (d) 
x + l  

(x E JR). (c) lim -- - - lim --x-->2 X + 1 2x x ... o x2 + 2 
2. Determine the following limits and state which theorems are used in each case. (You may wish 

to use Exercise 14 below.) 

(a) f!fI lim - -x-->2 X + 3 
(x > 0), 

(c) lim 
(x + 1)2 - 1 

(x > 0), x-->o X 
. ""1 + 2x - ""1 + 3x 

3. Fmd lim 2 where x > O. x-->o X + 2x 

x2 - 4 
(b) lim --

x-->2 X - 2 

(d) 
yix - l 

lim ---X-4 1 x - I  

4. Prove that lim cos(1/x) does not exist but that lim x cos(l/x) = o. X�O x�o 

(x > 0), 

(x > 0). 

5. Let f, g be defined on A � JR to JR, and let c be a cluster point of A .  Suppose that f is bounded 
on a neighborhood of c and that lim g = O. Prove that lim f g = O. x�c x�c 

6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a). 

7. Use the sequential formulation of the limit to prove Theorem 4.2.4(b). 
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8. Let n E N be such that n � 3. Derive the inequality _x2 :"': xn :"': x2 for -1 < x < 1 .  Then use 
the fact that lim x2 = 0 to show that lim xn = O. 

x�o x�o 

9. Let f, g be defined on A to JR and let c be a cluster point of A. 
(a) Show that if both lim f and lim(f + g) exist, then lim g exists. 

x--+c x--+c x--+c 

(b) If lim f and lim fg exist, does it follow that lim g exists? 
x--+c x--+c x--+c 

10. Give examples of functions f and g such that f and g do not have limits at a point c, but such 
that both f + g and fg have limits at c. 

1 1 . Determine whether the following limits exist in R 
(a) lim sin(1 !x2) (x i= 0), (b) lim x sin(1 !  x2) (x i= 0), 

x--+o x--+o 

(c) lim sgn sin(1!x) (x i= 0), (d) lim .;x sin(1!x2) (x > 0). 
x--+o x--+o 

12. Let f: JR --+  JR be such that f(x + y) = f(x) + fey) for all x ,  y in R Assume that lim f = L 
x .... 0 

exists. Prove that L = 0, and then prove that f has a limit at every point c E R [Hint: First note 
that f(2x) = f(x) + f(x) = 2f(x) for x E JR. Also note that f(x) = f(x - c) + f(c) for x, 
c in R] 

13. Let A <;; JR, let f: A --+ JR and let c E JR be a cluster point of A. If lim f exists, and if If I 
x .... c 

denotes the function defined for x E A by If I (x) := If(x) l ,  prove that lim If I = I lim f l  
x--+c x--+c 

14. Let A <;; JR, let f : A --+ JR, and let c E JR be a cluster point of A. In addition, suppose that 
f (x) � 0 for all x E A, and let IT be the function defined for x E A by (IT) (x) := 
.fT(X). If lim f exists, prove that lim IT = Jlim f· x--+c x--+c x--+c 

Section 4.3 Some Extensions of the Limit Concept t 

In this section, we shall present three types of extensions of the notion of a limit of a 
function that often occur. Since all the ideas here are closely parallel to ones we have 
already encountered, this section can be read easily. 

One-sided Limits 

There are times when a function I may not possess a limit at a point c, yet a limit does 
exist when the function is restricted to an interval on one side of the cluster point c. 

For example, the signum function considered in Example 4. 1 .  lO(b ), and illustrated 
in Figure 4. 1 .2, has no limit at c = O. However, if we restrict the signum function to the 
interviu (0, 00), the resulting function has a limit of 1 at c = 0: Similarly, if we restrict the 
signum function to the interval (-00, 0), the resulting function has a limit of - 1  at c = O. 
These are elementary examples of right-hand and left-hand limits at c = O. 

4.3.1 Definition Let A E lR and let I: A --+ R 
(i) If c E lR is a cluster point of the set A n (c, 00) = {x E A: x > c}, then we say that 

L E lR is a right-hand limit of I at c and we write 

lim / = L  
x ..... c+ or lim I(x) = L 

x ..... c+ 

tThis section can be largely omitted on a first reading of this chapter. 
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if given any e > 0 there exists a 8 = 8 (e) > 0 such that for all x E A with 0 < 
x - c < 8, then If (x) - L I  < e. 

(ii) If c E JR is a cluster point of the set A n  (-00 , c) = {x E A: x < c}, then we say that 
L E JR is a left-hand limit of f at c and we write 

lim f = L or lim f (x) = L 
x ..... c- x ..... c-

if given any e > 0 there exists a 8 > 0 such that for all x E A with 0 < c - x < 8, 
then If (x) - LI < e. 

Notes ( 1 )  The limits lim f and lim f are called one-sided limits of f at c. It is 
x-+c+ x-+c-

possible that neither one-sided limit may exist. Also, one of them may exist without the 
other existing. Similarly, as is the case for f(x) := sgn(x) at c = 0, they may both exist 
and be different. 

(2) If A is an interval with left endpoint c, then it is readily seen that f: A � JR has a 
limit at c if and only if it has a right-hand limit at c. Moreover, in this case the limit lim f 

x-+c 
and the right-hand limit lim f are equal. (A similar situation occurs for the left-hand limit 

x-+c+ 
when A is an interval with right endpoint c.) 

The reader can show that f can have only one right-hand (respectively, left-hand) 
limit at a point. There are results analogous to those established in Sections 4.1  and 4.2 for 
two-sided limits. In particular, the existence of one-sided limits can be reduced to sequential 
considerations. 

4.3.2 Theorem Let A £ JR, let f : A � JR, and let c E JR be a cluster point of A n 
(c, 00). Then the following statements are equivalent: 

(i) 

(ii) 

lim f = L. 
x-+c+ 
For every sequence (xn) that converges to c such thatxn E A andxn > c forall n E N, 
the sequence (J(xn)) converges to L .  

We leave the proof of this result (and the formulation and proof of the analogous result 
for left-hand limits) to the reader. We will not take the space to write out the formulations 
of the one-sided version of the other results in Sections 4.1  and 4.2. 

The following result relates the notion of the limit of a function to one-sided limits. 
We leave its proof as an exercise. 

4.3.3 Theorem Let A £ JR, let f: A � JR, and let c E JR be a cluster point of both of the 
sets A n (c, 00) and A n  (- 00 , c) . Then lim f = L if and only if lim f = L = lim f. 

x ..... c x---+c+ x---+c-

4.3.4 Examples (a) Let f(x) := sgn(x) .  
We have seen in  Example 4. 1 . 1 O(b) that sgn does not have a limit at O .  It i s  clear that 

lim sgn(x) = + 1 and that lim sgn(x) = - 1 .  Since these one-sided limits are different, 
x-+o+ x-+o-
it also follows from Theorem 4.3.3 that sgn(x) does not have a limit at O. 
(b) Let g(x) := e1/x for x =1= O. (See Figure 4.3 . 1 .) 
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---------�-�- - - - - - - - - - - - - -

--------------��------�--------� x 

Figure 4.3.1 Graph of g(x) = e1 /x (x i- 0). 

We first show that g does not have a finite right-hand limit at c = ° since it is not 
bounded on any right-hand neighborhood (0, 8) of 0. We shall make use of the inequality 

(1) for t > 0, 

which will be proved later (see Corollary 8.3.3). It follows from ( 1) that if x > 0, then 
o < l/x < e1/x . Hence, if we take xn = lin, then g(xn) > n for all n E N. Therefore 
lim e1/x does not exist in JR. 

x�o+ 
However, lim e1/x = O. Indeed, if x < ° and we take t = -l/x in ( 1 )  we obtain 

x�o-
0 <  -1/x < e-1/x • Since x < 0, this implies that 0 < e1/x < -x for all x < 0. It follows 
from this inequality that lim e1/x = 0. 

x�O-
(c) Let hex) := 1/(e1/x + 1 )  for x =f. 0. (See Figure 4.3.2.) 

We have seen in part (b) that ° < l/x < e1/x for x > 0, whence 

which implies that lim h = 0. 
x�o+ 

1 1 
° < 

e1/x + 1 
< 

e1/x 
< x , 

---- ------ - - - --- - - - - - - - - - -

------------------��--------------� x 

Figure 4.3.2 Graph of h(x) = 1/(e 1/x + 1) (x i- 0). 



114 CHAPTER 4 LIMITS 

Since we have seen in part (b) that lim e1/x = 0, it follows from the analogue of 
X40-

Theorem 4.2.4(b) for left-hand limits that 

lim - - -- - 1 
( 1 ) 1 1 

X40- e1/x + 1 - lim e1/x + 1 
-

0 + 1 - . 
X40-

Note that for this function, both one-sided limits exist in JR, but they are unequal. 0 

Infinite Limits _________________________ _ 

Thefunction f(x) := 1 /x2 forx =f. 0 (see Figure 4.3.3) is not bounded on a neighborhood of 
0, so it cannot have a limit in the sense of Definition 4. 1 .4. While the symbols 00 (= +00) 

and -00 do not represent real numbers, it is sometimes useful to be able to say that 
"f(x) = 1 /x2 tends to 00 as x -+ 0". This use of ±oo will not cause any difficulties, 
provided we exercise caution and never interpret 00 or -00 as being real numbers. 

=;::;:;:::::::::-+---====� x 

====�-----+----��==; x 

Figure 4.3.3 Graph of 
f(x) = 1/x2 (x "# 0) 

Figure 4.3.4 Graph of 
g(x)  = l/x (x "# 0) 

4.3.5 Definition Let A £; JR, let f: A -+ JR, and let C E JR be a cluster point of A. 

(i) We say that f tends to 00 as x -+ c, and write 

lim f = 00, 
X4C 

if for every a /E JR there exists 8 = 8 (a) > 0 such that for all x E A with 0 < Ix - cl 
< 8, then f(x) > a. 

(ii) We say that f tends to -00 as x -+ c, and write 

lim f = - 00 ,  
X4C 

iffor every f3 E JR there exists 8 = 8 (f3) > 0 such that for all x E A with 0 < Ix - c I < 

8, then f(x) < f3. 

4.3.6 Examples (a) lim( 1 /x2) = 00. 
X40 

For, if a > 0 is given, let 8 : = l /.fii. It follows that if 0 < Ix I < 8, then x2 < 1/  a so 
that l /x2 > a. 
(b) Let g (x) := l /x for x =f. o. (See Figure 4.3 .4.) 
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The function g does not tend to either 00 or -oo asx � O. For, ifa > o then g (x) < a 
for all x < 0, so that g does not tend to 00 as x � O. Similarly, if f3 < 0 then g (x) > f3 for 
all x > 0, so that g does not tend to -00 as x � O. D 

While many of the results in Sections 4. 1 and 4.2 have extensions to this limiting 
notion, not all of them do since ±oo are not real numbers. The following result is an 
analogue of the Squeeze Theorem 4.2.7. (See also Theorem 3.6.4.) 

4.3.7 Theorem Let A � JR, let I, g: A � R and let c E JR be a cluster point of A.  
Suppose that I(x) :s g(x) for all x E A, x =f. c .  
(a) If lim I = 00,  then lim g = 00. x---+c x-+c 
(b) If lim g = -00, then lim I = -00. x-+c x-+c 

Proof. (a) If lim I = 00 and a E JR is given, then there exists 8 (a) > 0 such that if x�c 
0 <  Ix - cl < 8 (a) and x E A, then /(x) > a. But since /(x) :s g (x) for all x E A,x =f. c, 
it follows that if 0 < Ix - cl < 8 (a) and x E A, then g(x) > a. Therefore lim g = 00. x�c 

The proof of (b) is similar. Q.E.D. 

The function g (x) = l /x considered in Example 4.3.6(b) suggests that it might be 
useful to consider one-sided infinite limits. We will define only right-hand infinite limits. 

4.3.8 Definition Let A � JR and let I : A � R If c E JR is a cluster point of the set 
A n  (c, 00) = {x E A:  x > c}, then we say that I tends to 00 [respectively, -00] as 
x � c+, and we write 

lim 1 = 00  [respectivelY, lim 1 =  -ooJ ' x---+c+ x-+c+ 

if for every a E JR there is 8 = 8 (a) > 0 such that for all x E A with 0 < x - c < 8, then 
I(x) > a [respectively, I(x) < a]. 

4.3.9 Examples (a) Let g (x) := l /x for x =f. O. We have noted in Example 4.3.6(b) 
that lim g does not exist. However, it is an easy exercise to show that x�o 

lim ( l /x) = 00 
X�O+ 

and lim ( l /x) = -00. x�o-

(b) It was seen in Example 4.3.4(b) that the function g (x) := e1/x for x =f. 0 is not bounded 
on any interval (0, 8), 8 > O. Hence the right-hand limit of e1/x as x � 0+ does not exist 
in the sense of Definition 4.3 . 1  (i). However, since 

l /x < e1/x for x > 0, 

it is readily seen that lim e1/x = 00 in the sense of Definition 4.3.8. 
x�o+ 

D 

Limits at Infinity ________________________ _ 

It is also desirable to define the notion of the limit of a function as x � 00. The definition 
as x � -00 is similar. 
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4.3.10 Definition Let A S; JR and let f :  A ---+ R Suppose that (a, 00) S; A for some 
a E R We say that L E JR is a limit of f as x ---+ 00, and write 

lim f = L  or lim f(x) = L ,  
x--+oo x--+oo 

if given any c > 0 there exists K = K (c) > a such that for any x > K, then 
If (x) - L I  < c. 

The reader should note the close resemblance between 4.3 . 10 and the definition of a 
limit of a sequence. 

We leave it to the reader to show that the limits of f as x ---+ ±oo are unique whenever 
they exist. We also have sequential criteria for these limits; we shall only state the criterion 
as x ---+ 00. This uses the notion of the limit of a properly divergent sequence (see Definition 
3 .6 .1) .  

4.3.11 Theorem Let A S; JR, let f : A ---+ JR, and suppose that (a , 00) S; A for some 
a E R Then the following statements are equivalent: 

(i) L = lim f·  
x--+oo 

(ii) For every sequence (xn) in A n (a, 00) such that lini(xn ) = 00, the sequence (J(xn») 
converges to L.  

We leave it to the reader tQ prove this theorem and to formulate and prove the companion 
result concerning the limit as x ---+ -00. 

4.3.12 Examples (a) Let g(x) :=  l /x for x =1= o. 
It is an elementary exercise to show that lim ( l /x) = 0 = lim ( l/x). (See Figure 

4.3.4.) 
x----+ oo x-+ - oo  

(b) Let f(x) := l/x2 for x =1= o. 
The reader may show that lim ( l /x2) = 0 = lim ( l/x2) .  (See Figure 4.3.3.) One 

X-H�) x----+ -oo 
way to do this is to show that if x :::: 1 then 0 :s 1/ x2 :s 1/ x. In view of part (a), this implies 
that lim (1/x2) = O. 0 

x --+ oo  

Just as it is convenient to be able to say that f (x) ---+ ±oo as x ---+ c for c E JR, it is 
convenient to have the corresponding notion as x ---+ ±oo. We will treat the case where 
x ---+ 00. 

4.3.13 Definition Let A S; JR and let f:  A ---+ R Suppose that (a , 00) S; A for some 
a E A. We say that f tends to 00 [respectively, -00] as x ---+ 00, and write 

lim f = oo  
x--+oo 

[respectively, lim f = - 00] 
x--+oo 

if given any a E JR there exists K = K(a) > a such that for any x >  K, then f(x) > IX 

[respectively, f(x) < a]. 

As before there is a sequential criterion for this limit. 

4.3.14 Theorem Let A E JR, let f: A ---+ JR, and suppose that (a , 00) S; A for some 
a E R Then the following statements are equivalent: 
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(i) lim f = 00 [respectively, lim f = -00]. 
x---+oo x�oo 

(ii) For every sequence (xn) in (a , (0) such that lim(xn) = 00, then lim (J(xn)) = 00 
[respectively, lim(f(xn)) = -00]. 

The next result is an analogue of Theorem 3.6.5. 

4.3.15 Theorem Let A � JR, let f, g: A � JR, and suppose that (a, (0) � A for some 
a E R Suppose further that g(x) > ° for all x > a and that for some L E JR, L :f: 0, we 
have 

lim f (x) = L .  
x---+oo g (x) 

(i) If L > 0, then lim f = 00 if and only if lim g = 00. 
x-*oo x-+-oo 

(ii) If L < 0, then lim f = -00 if and only if lim g = 00. 
x----+oo x�oo 

Proof. (i) Since L > 0, the hypothesis implies that there exists al > a such that 

° < 1. L < f (x) < l L 
2 - g(x) 2 for x >  al . 

Therefore we have (! L) g (x) < f (x) < (�L) g (x) for all x > al ' from which the conclu­
sion follows readily. 

The proof of (ii) is similar. Q.E.D. 

We leave it to the reader to formulate the analogous result as x � -00. 

4.3.16 Examples (a) lim xn = 00 for n E N. 
x---+oo 

Let g(x) := xn for x E (0, (0). Given a E JR, let K := sup{ l ,  a} . Then for all x > K, 
we have g(x) = xn :::: x > a . Since a E JR is arbitrary, it follows that lim g = 00. 

x---+oo 

(b) lim xn = 00 for n E N, n even, and lim xn = -00 for n E N, n odd. 
x�-oo x�-oo 

We will treat the case n odd, say n = 2k + 1 with k = 0, 1 ,  . .  ' . Given a E JR, let 
K := inf{a, -I } . For any x < K, then since (x2l :::: 1 ,  we have xn = (x2)kx � X < a. 
Since a E JR is arbitrary, it follows that lim xn = -00. 

x�-oo 

(c) Let p: JR � JR be the polynomial function 

Then lim p = 00 if a > 0, and lim p = -00 if an < O. 
x-+oo 

n 
x-+oo 

Indeed, let g(x) := xn and apply Theorem 4.3. 15 . Since 

p (x) ( 1 ) ( 1 ) ( 1 ) 
g (x) 

= an + an-I � + . . .  + al xn- I 
+ ao xn ' 

it follows that lim (p (x) / g (x)) = a . Since lim g = 00, the assertion follows from The-
x-+oo 

n 
x-+oo 

orem 4.3. 15. 
(d) Let p be the polynomial function in part (c). Then lim p = 00 [respectively, -00] 

x-+-oo 

if n is even [respectively, odd] and an > O. 

We leave the details to the reader. D 
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Exercises for Section 4.3 

1 .  Prove Theorem 4.3.2. 

2. Give an example of a function that has a right-hand limit but not a left-hand limit at a point. 

3. Let f (x) := Ix l-1/2 for x =I O. Show that lim f(x) = lim f (x) = +00. 
x--+o+ x---+o-

4. Let C E JR and let f be defined for x E (c, (0) and f(x) > 0 for all x E (c, (0). Show that 
lim f = 00 if and only if lim 1/ f = O. x--+c x--+c 

5. Evaluate the following limits, or show that they do not exist. 

6. 

(a) lim _
x

_ (x =I 1) ,  (b) lim _
x

_ (x =I 1), x--> 1+ x - I  x--> I x - I  
(c) lim (x + 2)/.jX (x > 0), (d) lim (x + 2)/.jX (x > 0), x-->O+ x-->oo 
(e) lim (Jx+f) /x (x > -1), (f) lim (Jx+f) / x (x > 0), x-->o x-->oo 
(g) 

.jX - 5  
(x > 0), (h) 

.jX - x  
(x > 0). lim --- lim ---x-->oo .jX + 3 x-->oo .jX + x 

Prove Theorem 4.3 . 1 1 .  

7. Suppose that f and g have limits in JR as x � 00 and that f(x) .::s g(x) for all x E (a, (0). 
Prove that lim f .::s lim g. x--+oo x-+oo 

8. Let f be defined on (0, (0) to R Prove that lim f(x) = L if and only if lim f(1/x) = L. 
x-+OO x-+o+ 

9. Show that if f: (a , (0) � JR is such that lim xf(x) = L where L E JR, then lim f(x) = O. x--+oo x--+oo 
10. Prove Theorem 4.3. 14. 

1 1 .  Suppose that lim f(x) = L where L > 0, and that lim g(x) = 00. Show that lim f(x)g(x) = x--+c x-+c x-+c 
00. If L = 0, show by example that this conclusion may fail. 

12. Find functions f and g defined on (0, 00) such that lim f = 00 and lim g = 00, and lim (f -x-+oo x--+oo x-;.oo 
g) = O. Can you find such functions, with g(x) > 0 for all x E (0, (0), such that lim f / g = O? x-->oo 

13. Let f and g be defined on (a, 00) and suppose lim f = L and lim g = 00. Prove that 
lim f o g = L. x-->oo 

x--+oo x--+oo 
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CONTINUOUS FUN CTIONS 

We now begin the study of the most important class of functions that arises in real analysis: 
the class of continuous functions. The term "continuous" has been used since the time of 
Newton to refer to the motion of bodies or to describe an unbroken curve, but it was not 
made precise until the nineteenth century. Work of Bernhard Bolzano in 1 8 17 and Augustin­
Louis Cauchy in 1821 identified continuity as a very significant property of functions and 
proposed definitions, but since the concept is tied to that of limit, it was the careful work of 
Karl Weierstrass in the 1870s that brought proper understanding to the idea of continuity. 

We will first define the notions of continuity at a point and continuity on a set, and then 
show that various combinations of continuous functions give rise to continuous functions. 
Then in Section 5.3 we establish the fundamental properties that make continuous functions 
so important. For instance, we will prove that a continuous function on a closed bounded 
interval must attain a maximum and a minimum value. We also prove that a continuous 
function must take on every value intermediate to any two values it attains. These properties 
and others are not possessed by general functions, as various examples illustrate, and thus 
they distinguish continuous functions as a very special class of functions. 

In Section 5.4 we introduce the very important notion of uniform continuity. The 
distinction between continuity and uniform continuity is somewhat subtle and was not fully 
appreciated until the work of Weierstrass and the mathematicians of his era, but it proved to 

Karl Weierstrass 
Karl Weierstrass (=WeierstraB) ( 18 15-1897) was born in Westphalia, Ger­
many. His father, a customs officer in a salt works, insisted that he study 
law and public finance at the University of Bonn, but he had more interest 
in drinking and fencing, and left Bonn without receiving a diploma. He then 
enrolled in the Academy of Munster where he studied mathematics with 
Christoph Gudermann. From 1841-1854 he taught at various gymnasia in 
Prussia. Despite the fact that he had no contact with the mathematical world 
during this time, he worked hard on mathematical research and was able 
to publish a few papers, one of which attracted considerable attention. Indeed, the University of 
Konigsberg gave him an honorary doctoral degree for this work in 1 855. The next year, he secured 
positions at the Industrial Institute of Berlin and the University of Berlin. He remained at Berlin 
until his death. 

A methodical and painstaking scholar, Weierstrass distrusted intuition and worked to put 
everything on a firm and logical foundation. He did fundamental work on the foundations of 
anthmetic and analysis, on complex analysis, the calculus of variations, and algebraic geometry. 
Due to his meticulous preparation, he was an extremely popular lecturer; it was not unusual for 
him to speak about advanced mathematical topics to audiences of more than 250. Among his 
auditors are counted Georg Cantor, Sonya Kovalevsky, Gosta Mittag-Leffler, Max Planck, Otto 
Holder, David Hilbert, and Oskar Bolza (who had many American doctoral students). Through 
his writings and his lectures, Weierstrass had a profound influence on contemporary mathematics. 
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be very significant in applications. We present one application to the idea of approximating 
continuous functions by more elementary functions (such as polynomials). 

The notion of a "gauge" is introduced in Section 5.5 and is used to provide an alter­
native method of proving the fundamental properties of continuous functions. The main 
significance of this concept, however, is in the area of integration theory where gauges are 
essential in defining the generalized Riemann integral. This will be discussed in Chapter 10. 

Monotone functions are an important class of functions with strong continuity proper­
ties and they are discussed in Section 5 .6. 

Section 5.1 Continuous Functions 

In this section, which is very similar to Section 4. 1 ,  we will define what it means to say 
that a function is continuous at a point, or on a set. This notion of continuity is one of the 
central concepts of mathematical analysis, and it will be used in almost all of the following 
material in this book. Consequently, it is essential that the reader master it. 

5.1.1 Definition Let A � lit let f : A -+ lit and let c E A. We say that f is continuous 
at c if, given any number c > 0 there exists 8 > 0 such that if x is any point of A satisfying 
Ix - c l  < 8 ,  then I f (x) - f(c) 1 < c .  

If f fails to be continuous at c ,  then we say that f i s  discontinuous at c. 

As with the definition of limit, the definition of continuity at a point can be formulated 
very nicely in terms of neighborhoods. This is done in the next result. We leave the 
verification as an important exercise for the reader. See Figure 5 . 1 . 1 .  

v6(c) 

Figure 5.1.1 Given V£ (f(c», a neighborhood Vs (c) is to be determined. 

t< 5.1.2 Theorem A function f : A -+ lR. is continuous at a point c E A if and o.nly if given 
any c -neighborhood V£ (f (c» of f (c) there exists a 8 -neighborhood V� (c) of c such that if 
x is any point of A n V� (c), then f(x) belongs to Ve (f(c» , that is, 

f(A n V8 (c» � V/f(c». 

Remark (1) If c E A is a cluster point of A, then a comparison of Definitions 4. 1 .4 and 
5 . 1 . 1  show that f is continuous at c if and only if 

( 1 )  f (c) = lim f(x) .  x---+c 
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Thus, if c is a cluster point of A, then three conditions must hold for f to be continuous 
at c: 

(i) f must be defined at c (so that f(c) makes sense), 
(ii) the limit of f at c must exist in JR (so that lim f(x) makes sense), and 
(iii) these two values must be equal. 

x--->c 

(2) If c E A is not a cluster point of A, then there exists a neighborhood V8 (c) of c such 
that A n  V/c) = {c}. Thus we conclude that a function f is automatically continuous at a 
point c E A that is not a cluster point of A. Such points are often called "isolated points" 
of A. They are of little practical interest to us, since they have no relation to a limiting 
process. Since continuity is automatic for such points, we generally test for continuity only 
at cluster points. Thus we regard condition (I)  as being characteristic for continuity at c. 

A slight modification of the proof of Theorem 4. 1 .8  for limits yields the following 
sequential version of continuity at a point. 

5.1.3 Sequential Criterion for Continuity A function f : A -+ JR is continuous at the 
point c E A if and only if for every sequence (xn) in A that converges to c, the sequence 
(J(xn») converges to f(c). 

The following Discontinuity Criterion is a consequence of the last theorem. It should 
be compared with the Divergence Criterion 4.1 .9(a) with L = f(c) . Its proof should be 
written out in detail by the reader. 

5.1.4 Discontinuity Criterion Let A s; JR, let f : A -+ JR, and let c E A. Then f is 
discontinuous at c if and only if there exists a sequence (xn) in A such that (xn) converges 
to c, but the sequence (J(xn») does not converge to f(c). 

So far we have discussed continuity at a point. To talk about the continuity of a function 
on a set, we will simply require that the function be continuous at each point of the set. We 
state this formally in the next definition. 

5.1.5 Definition Let A S; JR and let f : A -+ R If B is a subset of A, we say that f is 
continuous on the set B if f is continuous at every point of B. 

5.1.6 Examples (a) The constant function f(x) := b is continuous on R 
It was seen in Example 4.1 .7(a) that if c E JR, then lim f(x) = b. Since f(c) = b, 

x--->c 
we have lim f(x) = f(c), and thus f is continuous at every point c E R Therefore f is 

x--->c 
continuous on R 
(b) g(x) := x is continuous on R 

It was seen in Example 4.1 .7(b) that if c E JR, then we have lim g = c. Since g(c) = C, 
x--->c 

then g is continuous at every point c E R Thus g is continuous on R 
(c) h(x) := x2 is continuous on R 

It was seen in Example 4. 1 .7(c) that if c E JR, then we have lim h = c2 • Since h(c) 
x--->c 

= c2, then h is continuous at every point c E R Thus h is continuous on R 
(d) cp(x) := I/x is continuous on A := {x E JR: x > O}. 
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It was seen in Example 4.1 .7(d) that if c E A, then we have lim rp = 1/c. Since x-+c 
rp (c) = 1 I c, this shows that rp is continuous at every point c E A. Thus rp is continuous 
on A.  
(e) rp(x) := 1/x is not continuous at x = O. 

Indeed, if rp(x) = 1/x for x > 0, then rp is not defined for x = 0, so it cannot be 
continuous there. Alternatively, it was seen in Example 4. 1 . l O(a) that lim rp does not exist x-+o 
in ffi., so rp cannot be continuous at x = O. 
(f) The signum function sgn is not continuous at O. 

The signum function was defined in Example 4. 1 . 1  O(b), where it was also shown that 
lim sgn(x) does not exist in R Therefore sgn is not continuous at x = 0 (even though sgn 0 x-+o 
is defined). 

It is an exercise to show that sgn is continuous at every point c =1= o. 
(g) Let A := ffi. and let f be Dirichlet's "discontinuous function" defined by 

f(x) := g if x is rational, 
if x is irrational. 

We claim that f is not continuous at any point of R (This function was introduced in 1829 
by P. G. L. Dirichlet.) 

Indeed, if c is a rational number, let (xn) be a sequence of irrational numbers that 
converges to c. (Corollary 2,.1.9 to the Density Theorem 2.4.8 assures us that such a 
sequence does exist.) Since f(xn) = 0 for all n E N, we have lim (j(xn)) = 0, while 
f(c) = 1 .  Therefore f is not continuous at the rational number c. 

On the other hand, if b is an irrational number, let (Yn) be a sequence of rational 
numbers that converge to b. (The Density Theorem 2.4.8 assures us that such a sequence 
does exist.) Since f(Yn ) = 1 for all n E N, we have lim (j(yn)) = 1, while feb) = O. 
Therefore f is not continuous at the irrational number b. 

Since every real number is either rational or irrational, we deduce that f is not 
continuous at any point in R 
(h) Let A := {x E R x > O}. For any irrational number x > 0 we define hex) = O. For 
a rational number in A of the form min, with natural numbers m ,  n having no common 
factors except 1 ,  we define h(mln) := l in. (Sometimes we also define h(O) := 1 .) 

0.8 

0 . 6  

0 .4  -

0.2 -

o 

. . . . � 
. . . . 

0 .5  

. . . . . . , 
. . . . t! • • • 

1 . 5  
Figure 5.1.2 Thomae's function. 
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We claim that h is continuous at every irrational number in A, and is discontinuous 
at every rational number in A. (This function was introduced in 1875 by K. J. Thomae.) 

Indeed, if a > 0 is rational, let (xn) be a sequence of irrational numbers in A that 
converges to a. Then lim (h(xn») = 0, while h (a) > O. Hence h is discontinuous at a. 

On the other hand, if b is an irrational number and 8 > 0, then (by the Archimedean 
Property) there is a natural number no such that l /no < 8 . There are only a finite num­
ber of rationals with denominator less than no in the interval (b - 1 ,  b + 1 ) .  (Why?) 
Hence 8 > 0 can be chosen so small that the neighborhood (b - 8 ,  b + 8) contains no 
rational numbers with denominator less than no- It then follows that for Ix - b l < 8 ,  x E 
A, we have Ih (x) - h(b) 1  = I h (x) 1  :s: l /no < 8. Thus h is continuous at the irrational 
number b. 

Consequently, we deduce that Thomae's function h is continuous precisely at the 
irrational points in A. D 

5.1.7 Remarks (a) Sometimes a function f: A -+ IR is not continuous at a point c 
because it is not defined at this point. However, if the function f has a limit L at the point 
c and if we define F on A U {c} -+ IR by 

F(x) := (L 
f(x) 

for x = c, 
for x E A ,  

then F i s  continuous at c .  To see this, one needs to check that lim F = L, but this follows 
x-+c 

(why?), since lim f = L. 
x-+c (b) If a function g : A -+ IR does not have a limit at c, then there is no way that we can 

obtain a function G : A U {c} -+ IR that is continuous at c by defining 

G (x) := (e 
g(x) 

for x = c, 
for x E A .  

To see this, observe that if lim G exists and equals e, then lim g must also exist and 
x�c x�c 

equal e. 

5.1.8 Examples (a) The function g (x) : =  sin(1 /x) for x #- O (see Figure 4. 1 .3) does 
not have a limit at x = 0 (see Example 4. 1 . 1 O(c» . Thus there is no value that we can assign 
at x = 0 to obtain a continuous extension of g at x = o. 
(b) Let f(x) = x sin(1/x) for x #- o. (See Figure 5 . 1 .3 .) Since f is not defined at x = 0, 
the function f cannot be continuous at this point. However, it was seen in Example 4.2.8(f) 
that lim (x sin ( 1  / x») = O. Therefore it follows from Remark 5 . 1 .7 (a) that if we define 

x-+o 
F : IR -+ IR by 

F(x) := 

then F is continuous at x = O. 

(0 

x sin(1 /x) 
for x = 0, 

for x #- 0, 

D 
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y 

/ , 

Figure 5.1.3 Graph of f(x) = x sin(1/x) (x =f:. 0). 

Exercises for Section 5.1 

1. Prove the Sequential Criterion 5. 1 .3 . 
2. Establish the Discontinuity Criterion 5 . 1 .4. 

3. Let a < b < c. Suppose that f is continuous on [a , b], that g is continuous on [b, c], and that 
f(b) = g(b). Define h on [a, c] by h(x) := f(x) for x E [a, b] and h(x) := g(x) for x E (b, c]. 
Prove that h is continuous on [a, c]. 

4. If x E R, we define [x] to be the greatest integer n E Z such that n ::: x. (Thus, for exam­
ple, [8.3] = 8, [7l'] = 3, [-7l'] = -4.) The function x r+ [x] is called the greatest integer 
function. Determine the points of continuity of the following functions: 
(a) f(x) := [x] (b) g(x) := x[x], 
(c) h(x) := [sinx], (d) k(x) := [l/x] (x =f:. 0). 

5 .  Let f be defined for all x E R, x =f:. 2, by f(x) = (x2 + X - 6)/(x - 2). Can f be defined at 
x = 2 in such a way that f is continuous at this point? 

6. Let A s;:: R and let f : A � R be continuous at a point c E A. Show that for any E > 0, there 
exists a neighborhood V� (c) of c such that if x,  y E A  n V� (c), then If (x) - f(y) 1 < E.  

7. Let f : R � R be continuous at c and let f(c) > O. Show that there exists a neighborhood 
V� (c) of c such that if x E V� (c), then f(x)  > O. 

8. Let f : R � R be continuous on R and let S := {x E R : f(x) = O} be the "zero set" of f. If 
(xn ) is in S and x = lim(xn) ,  show that X E S. 

9. Let A s;:: B s;:: R, let f: B � R and let g be the restriction of f to A (that is, g(x) = f(x) for 
x E A). 
(a) If f is continuous at c E A, show that g is continuous at c. 
(b) Show by example that if g is continuous at c, it need not follow that f is continuous at c. 

10. Show that the absolute value function f(x) := Ix l is continuous at every point c E R. 
1 1 .  Let K > 0 and let f : R � R satisfy the condition If (x) - f (y) 1  ::: K lx - yl for all x , y E R. 

Show that f is continuous at every point c E R 
12. Suppose that f : R � R is continuous on R and that f(r) = 0 for every rational number r. 

Prove that f(x) = 0 for all x E R 
1 3. Define g : R � R by g(x) := 2x for x rational, and g(x) := x + 3 for x irrational. Find all 

points at which g is continuous. 
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14. Let A := (0, 00) and let k : A -+ lR be defined as follows. For x E A, x irrational, we define 
k(x) = 0; for x E A rational and of the form x = min with natural numbers m, n having no 
common factors except 1, we define k(x) := n. Prove that k is unbounded on every open interval 
in A. Conclude that k is not continuous at any point of A. (See Example 5 . 1 .6(h).) 

15. Let f : (0, 1) -+ lR be bounded but such that lim f does not exist. Show that there are two 
X ""  0 

sequences (xn) and (Yn ) in (0, 1) with lim(xn ) = 0 = lim(yn), but such that lim (J(xn)) and 
lim (f (y n )) exist but are not equal. 

Section 5.2 Combinations of Continuous Functions 

Let A � JR and let I and g be functions that are defined on A to JR and let b E R In 
Definition 4.2.3 we defined the sum, difference, product, and multiple functions denoted 
by 1 +  g, I - g, Ig, bl· In addition, if h : A -+ JR is such that hex) =1= 0 for all x E A, 
then we defined the quotient function denoted by fI h. 

The next result is  similar to Theorem 4.2.4, from which i t  follows. 

5.2.1 Theorem Let A � JR, let I and g be functions on A to JR, and let b E R Suppose 
that c E A and that I and g are continuous at c. 
(a) Then I + g, I - g, Ig, and bl are continuous at c. 
(b) If h : A -+ JR is continuous at c E A and if h (x) =1= 0 for all x E A, then the quotient 
fI h is continuous at c. 

Proof. If c E A is not a cluster point of A, then the conclusion is automatic. Hence we 
assume that c is a cluster point of A. 

(a) Since I and g are continuous at c, then 

I(c) = lim I and g(c) = lim g. 
x ..... c x--+c 

Hence it follows from Theorem 4.2.4(a) that 

(f + g)(c) = I(c) + g(c) = lim(f + g). 
x --+ c  

Therefore 1 +  g is continuous at c. The remaining assertions in part (a) are proved in a 
similar fashion. 
(b) Since c E A,  then h(c) =1= O. But since h(c) = lim h , it follows from Theorem 4.2.4(b) 
that 

x--+c 

_ (c) = -(- = x ..... c = lim _ . 
I I c) lim I ( I ) h h (c) lim h x ..... c h 

x--+c 

Therefore 1/ h is continuous at c. Q.E.D. 

The next result is an immediate consequence of Theorem 5.2. 1 ,  applied to every point 
of A. However, since it is an extremely important result, we shall state it formally. 
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5.2.2 Theorem Let A S; �, let f and g be continuous on A to �, and let b E R 

(a) The functions f + g, f - g, fg, and bf are continuous on A. 
(b) If h : A --+ � is continuous on A and h ex) '1= 0 for x E A, then the quotient fl h is 
continuous on A. 

Remark To define quotients, i t  i s  sometimes more convenient to proceed as follows. If 
cP : A --+ �, let Al := {x E A : cP (x) '1= OJ. We can define the quotient flcp on the set Al 
by 

( 1 )  (L) (x) := f (x) cp cp (x) 
If cp is continuous at a point c E AI ' it is clear that the restriction CPI of cP to Al is also 
continuous at c. Therefore it follows from Theorem S.2. 1 (b) applied to CPI that flcpl 
is continuous at c E A. Since (fjcp) (x) = (flcpl) (x) for x E Al it follows that f/cp is 
continuous at c E AI '  Similarly, if f and cP are continuous on A, then the function flcp, 
defined on Al by ( 1), is continuous on AI ' 

5.2.3 Examples (a) Polynomial functions. 
If p is a polynomial function, so that p(x) = anxn + an_Ixn-1 + . . .  + alx + ao for 

all x E �, then it follows from Example 4.2.5(f) that p(c) = lim p for any c E �. Thus 
a polynomial function is continuous on R 
(b) Rational functions. 

x-+c 

If p and q are polynomial functions on �, then there are at most a finite number 
aI ' . . .  , am of real roots of q . If x fj. {aI ' . . .  , am } then q (x) '1= 0 so that we can define the 
rational function r by 

p(x) r (x) := -­q (x) 
It was seen in Example 4.2.S(g) that if q(c) '1= 0, then 

p (c) . p (x) . r (c) = -- = hm -- = hm r (x) . q (c) x-+c q (x) x-+c 

In other words, r is continuous at c. Since c is any real number that is not a root of q, we 
infer that a rational function is continuous at every real number for which it is defined. 
(c) We shall show that the sine function sin is continuous on R 

To do so we make use of the following properties of the sine and cosine functions. 
(See Section 8.4.) For all x ,  y, z E � we have: 

I sin z l S Iz l ,  I cos z l s 1 ,  

sin x - sin y = 2 sin [! (x - y)] cos U (x + y)] . 
Hence if c E �, then we have 

I sinx - sin c l  S 2 ·  ! Ix - c l  . 1 = Ix - c l .  

Therefore sin is continuous at c .  Since c E � is arbitrary, it follows that sin is continuous 
on R 
(d) The cosine function is continuous on R 
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We make use of the following properties of the sine and cosine functions. For all 
x, y ,  z E � we have: 

I sin z I ::s Iz I ,  I sin z I ::s 1 ,  
cos x - cos y = -2 sin[! (x + y)] sin[! (x - y)]. 

Hence if C E �, then we have 

I cosx - cos c l  ::s 2 · 1 ·  ! Ic - x l  = Ix - cl · 
Therefore cos is continuous at c. Since c E � is arbitrary, it follows that cos is continuous 
on R (Alternatively, we could use the relation cos x = sin(x + 7r /2) .) 
(e) The functions tan, cot, sec, csc are continuous where they are defined. 

For example, the cotangent function is defined by 
cosx 

cotx := -.-
smx 

provided sinx i= 0 (that is, provided x i= n7r, n E Z). Since sin and cos are continuous 
on �, it follows (see the Remark before Example 5 .2.3) that the function cot is continuous 
on its domain. The other trigonometric functions are treated similarly. D 

5.2.4 Theorem Let A S; �, let I :  A -+ �, and let I I I be defined by I I I (x) := I/(x) 1  
for x E A . 
(a) If I is continuous at a point c E A, then I I I is continuous at c. 
(b) If I is continuous on A, then II I is continuous on A. 

Proof. This is an immediate consequence of Exercise 4.2. 13 . Q.E.D. 

5.2.5 Theorem Let A S; �, let I :  A -+ �, and let I (x) :::: 0 for all x E A. We let v'1 
be defined for x E A by (v'1) (x) := J I (x) .  

(a) If I is continuous at a point c E A, then v'1 is continuous at c. 
(b) If I is continuous on A, then v'1 is continuous on A. 

Proof. This is an immediate consequence of Exercise 4.2. 14. 

Composition of Continuous Functions 

Q.E.D. 

We now show that if the function I : A -+ � is continuous at a point c and if g : B -+ � 
is continuous at b = I(c), then the composition g o  I is continuous at c. In order to assure 
that g o  I is defined on all of A, we also need to assume that I(A) S; B. 

5.2.6 Theorem Let A, B S; Rand let I :  A -+ � and g: B -+ � be functions such that 
I(A) S; B. If I is continuous at a point C E A and g is continuous at b = I(c) E B, then 
the composition g 0 I : A -+ � is continuous at c. 

Proof. Let W be an e-neighborhood of g(b). Since g is continuous at b, there is a 8-
neighborhood V of b = I(c) such that if y E B n V then g(y) E W. Since I is continuous 
at c, there is a y-neighborhood U of c such that if x E A n  U,  then I(x) E V. (See 
Figure 5.2. 1 .) Since I(A) S; B, it follows that if x E A n  U, then I (x) E B n V so that 
g o  I(x) = g(f(x» E W. But since W is an arbitrary e-neighborhood of g(b), this implies 
that g o  I is continuous at c. Q.E.D. 
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u 
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v 
b = fCc) 

f g 

B 

Figure 5.2.1 The composition of I and g. 
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W 
g(b) 

5.2.7 Theorem Let A ,  B � �, let f : A ---+ � be continuous on A, and let g: B ---+ � be 
continuous on B.  If f (A) � B, then the composite function g o  f : A ---+ � is continuous 
on A.  

Proof. The theorem follows immediately from the preceding result, if  f and g are con­
tinuous at every point of A and B, respectively. Q.E.D. 

Theorems 5 .2.6 and 5 .2.7 are very useful in establishing that certain functions are 
continuous. They can be used in many situations where it would be difficult to apply the 
definition of continuity directly. 

5.2.8 Examples (a) Let g 1 (x) := Ix I for x E R It follows from the Triangle Inequality 
that 

I g1 (x) - g1 (c) 1  s Ix - c l 
for all x ,  c E R Hence g1 i s  continuous at c E R If f: A ---+ � i s  any function that is 
continuous on A, then Theorem 5.2.7 implies that g1 0 f = If  I i s  continuous on A .  This 
gives another proof of Theorem 5 .2.4. 
(b) Let g2 (x) := ,JX for x ::: O. It follows from Theorems 3.2.10 and 5 . 1 .3 that g2 is 
continuous at any number c ::: O. If f; A ---+ � is continuous on A and if f (x) ::: 0 for 
all x E A, then it follows from Theorem 5.2.7 that g2 0 f = J1 is continuous on A. This 
gives another proof of Theorem 5 .2.5. 
(c) Let g3 (X) ;= sinx for x E R We have seen in Example 5 .2.3(c) that g3 is continuous 
on R If f ; A ---+ � is continuous on A ,  then it follows from Theorem 5.2.7 that g3 0 f is 
continuous on A. 

In particular, if f (x) ; = 1/  x for x =1= 0, then the function g (x) ; = sin(l / x) is contin­
uous at every point c =1= O. [We have seen, in Example 5 . 1 .8(a), that g cannot be defined 
at 0 in order to become continuous at that point.] 0 

Exercises for Section 5.2 

1 .  Determine the points of continuity of the following functions and state which theorems are used 
in each case. 

x2 + 2x + 1 
(a) I(x) := (x E JR), (b) g(x) := Jx + Jx (x 2:: 0), 

x2 + 1 
./1 + I sin x l  � (c) h(x) := (x =I 0), (d) k(x) := cos '11 1 + x2 (x E JR). x 
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2. Show that if f : A --+ � is continuous on A � � and if n E 1'1, then the function r defined by 
rex) = (f(x)t for x E A, is continuous on A. 

3. Give an example of functions f and g that are both discontinuous at a point c in � such that 
(a) the sum f + g is continuous at c, (b) the product fg is continuous at c. 

4. Let x � [x] denote the greatest integer function (see Exercise 5 . 1 .4). Determine the points of 
continuity of the function f(x) := x - [x], X E R 

5. Let g be defined on � by g(l) := 0, and g(x) := 2 if x =1= 1, and let f(x) := x + 1 for all x E R 
Show that lim g o  f =1= (g 0 f)(0) . Why doesn't this contradict Theorem 5.2.6? 

x-->o 

6. Let f, g be defined on � and let c E R Suppose that lim f = b and that g is continuous 
x-->c 

at b. Show that lim g o  f = g(b). (Compare this result with Theorem 5.2.7 and the preceding 
x-->c 

exercise.) 

7. Give an example of a function f : [0, 1] --+ R that is discontinuous at every point of [0, 1] but 
such that I f  I i s  continuous on [0, 1 ] .  

8 .  Let f,  g be continuous from � to �, and suppose that fer) = g(r) for all rational numbers r .  
Is it true that f(x) = g(x) for all x E �? 

9. Let h :  � --+ � be continuous on � satisfying h(m/2
n
) = 0 for all m E Z, n E N. Show that 

hex) = o for all x E R 
10. Let f: � --+ � be continuous on �, and let P := {x E � : f(x) > O}. If c E P, show that there 

exists a neighborhood Vo (c) � P. 
1 1 .  If f and g are continuous on �, let S := {x E � :  f(x) 2: g(x)} .  If (sn ) � S and lim(sn ) = s, 

show that S E S. 

12. A function f : � --+ � is said to be additive if f (x + y) = f (x) + f (y) for all x, y in �. Prove 
that if f is continuous at some point xo' then it is continuous at every point of R (See Exercise 
4.2. 12.) 

13. Suppose that f is a continuous additive function on R If c := f (1) ,  show that we have 
f(x) = cx for all x E R [Hint: First show that if r is a rational number, then fer) = cr.] 

14. Let g : � --+ � satisfy the relation g(x + y) = g(x)g(y) for all x, y in R Show that if g is 
continuous at x = 0, then g is continuous at every point of R Also if we have g(a) = 0 for 
some a E �, then g(x) = 0 for all x E R 

15 .  Let f, g : � --+ � be continuous at a point c, and let hex) := sup {f(x), g(x)} for x E R 
Show that hex) = � (I (x) + g(x») + � If (x) - g(x) 1 for all x E R Use this to show that h is 
continuous at c. 

Section 5.3 Continuous Functions on Intervals 

Functions that are continuous on intervals have a number of very important properties that 
are not possessed by general continuous functions. In this section, we will establish some 
deep results that are of conside;;able importance and that will be applied later. Alternative 
proofs of these results will be given in Section 5.5. 

5.3.1 Definition A function f : A -+ lR is said to be bounded on A if there exists a 
constant M > 0 such that I f(x) 1  ::s M for all x E A. 

In other words, a function is bounded on a set if its range is a bounded set in R To 
say that a function is not bounded on a given set is to say that no particular number can 
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serve as a bound for its range. In exact language, a function I is not bounded on the set 
A if given any M > 0, there exists a point x M E A  such that I I (x M) I > M. We often say 
that I is unbounded on A in this case. 

For example, the function I defined on the interval A := (0, 00) by I(x) := l/x is 
not bounded on A because for any M > ° we can take the point xM := 1/(M + 1) in 11 
to get I (x M) = 1/  x M = M + 1 > M. This example shows that continuous functions need 
not be bounded. In the next theorem, however, we show that continuous functions on a 
certain type of interval are necessarily bounded. 

5.3.2 Boundedness Theoremt Let I := [a , b] be a closed bounded interval and let 
I: I -+ 1R. be continuous on I .  Then I is bounded on I .  

Proof. Suppose that I i s  not bounded on I .  Then, for any n E N there i s  a number xn E I 
such that I I (xn) I > n. Since I is bounded, the sequence X := (xn) is bounded. Therefore, 
the Bolzano-Weierstrass Theorem 3.4.8 implies that there is a subsequence X' = (xnr ) of X 
that converges to a number x. Since I is closed and the elements of X' belong to I, it follows 
from Theorem 3.2.6 that x E I .  Then I is continuous at x, so that (J (xn)) converges to 
I(x) . We then conclude from Theorem 3.2.2 that the convergent sequence (J(xn)) must 
be bounded. But this is a contradiction since 

for r E N. 

Therefore the supposition that the continuous function I is not bounded on the closed 
bounded interval I leads to a contradiction. Q.E.D. 

To show that each hypothesis of the Boundedness Theorem is needed, we can construct 
examples that show the conclusion fails if any one of the hypotheses is relaxed. 

(i) The interval must be bounded. The function I(x) := x for x in the unbounded, 
closed interval A := [0, 00) is continuous but not bounded on A. 

(ii) The interval must be closed. The function g(x) := l /x for x in the half-open 
interval B := (0, 1 ]  is continuous but not bounded on B. 

(iii) The function must be continuous. The function h defined on the closed interval 
C : =  [0, 1 ]  by h ex) := l/x for x E (0, 1 ]  and h(O) : =  1 is discontinuous and unbounded 
on C. 

The Maximum-Minimum Theorem 

5.3.3 Definition Let A � 1R. and let I : A -+ R We say that I has an absolute maxi­
mum on A if there is a point x* E A such that 

I(x*) � I(x) for all x E A .  

We say that I has an absolute minimum on A i f  there i s  a point x * E A such that 

for all x E A. 

We say that x* is an absolute maximum point for I on A, and that x* is an absolute 
minimum point for I on A, if they exist. 

tThis theorem, as well as 5.3.4, is true for an arbitrary closed bounded set. For these developments, see Sections 
1 1 .2 and 1 1 .3. 
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We note that a continuous function on a set A does not necessarily have an absolute 
maximum or an absolute minimum on the set. For example, f(x) := 1/x has neither an 
absolute maximum nor an absolute minimum on the set A := (0, 00). (See Figure 5 .3 . 1) . 
There can be no absolute maximum for f on A since f is not bounded above on A, and 
there is no point at which f attains the value 0 = inf {f (x) : x E A} .  The same function has 
neither an absolute maximum nor an absolute minimum when it is restricted to the set (0, 1 ) ,  
while it has both an absolute maximum and an absolute minimum when i t  i s  restricted to 
the set [ 1 ,  2] . In addition, f (x) = 1 I x has an absolute maximum but no absolute minimum 
when restricted to the set [ 1 , 00), but no absolute maximum and no absolute minimum 
when restricted to the set ( 1 ,  00). 

It is readily seen that if a function has an absolute maximum point, then this point 
is not necessarily uniquely determined. For example, the function g(x) := x2 defined for 
x E A := [- 1 ,  +1] has the two points x = ±1 giving the absolute maximum on A, and 
the single point x = 0 yielding its absolute minimum on A. (See Figure 5 .3 .2.) To pick an 
extreme example, the constant function h ex) := 1 for x E lR is such that every point of lR 
is both an absolute maximum and an absolute minimum point for h.  

--I----'-----'L...----+ x ---'-----����-----'--- x 
2 

Figure 5.3.1 The function 
f(x) = 1jx (x > 0). 

- 1 

Figure 5.3.2 The function 
g(x) = x2 ( Ix l S 1 ) .  

5.3.4 Maximum-Minimum Theorem Let I := [a , b] be a closed bounded interval and 
let f : I � lR be continuous on I .  Then f has an absolute maximum and an absolute 
minimum on I .  

Proof. Consider the nonempty set f (I) := {f (x) : x E I }  of values of f on I .  In Theorem 
5.3.2 it was established that f(l) is a bounded subset of lR. Let s* := sup f(l) and s* := 
inf f(l). We claim that there exist points x* and x* in  I such that s* = f(x*) and s* = 
f(x*) . We will establish the existence of the point x* , leaving the proof of the existence of 
x* to the reader. 

Since s* = sup f(l), if n E N, then the number s* - lin is not an upper bound of the 
set f(l). Consequently there exists a number xn E I such that 

(1) 1 s* - - < f(xn) :s s* n for all n E No 

Since I is bounded, the sequence X := (xn) is bounded. Therefore, by the Bolzano­
Weierstrass Theorem 3.4.8, there is a subsequence X' = (x ) of X that converges to some nr 
number x* . Since the elements of X' belong to I = [a, b], it follows from Theorem 3 .2.6 
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that x* E I .  Therefore f is continuous at x* so that (lim f(xn )) = f(x*). Since it follows 
from ( 1) that 

r 

1 
s* - - < f(xn ) ::::: s* n r r 

for all r E N, 

we conclude from the Squeeze Theorem 3.2.7 that lim(f(xn)) = s* .  Therefore we have 

f(x*) = lim(J(xn)) = s* = sup f (l) . 
We conclude that x* is an absolute maximum point of f on I .  Q.E.D. 

The next result is the theoretical basis for locating roots of a continuous function by 
means of sign changes of the function. The proof also provides an algorithm, known as 
the Bisection Method, for the calculation of roots to a specified degree of accuracy and 
can be readily programmed for a computer. It is a standard tool for finding solutions of 
equations of the form f (x) = 0, where f is a continuous function. An alternative proof of 
the theorem is indicated in Exercise 1 1 . 

5.3.5 Location of Roots Theorem Let I = [a , b] and let f : I -+ lR be continuous on 
I .  If f(a) < 0 < feb), or if f(a) > 0 > feb), then there exists a number c E (a , b) such 
that f(c) = o. 

Proof. We assume that f(a) < 0 < feb) . We will generate a sequence of intervals by 
successive bisections. Let Il := [ap bl ] ' where al := a ,  bl := b, and let PI be the midpoint 
PI := ! (al + bl ) '  If f(PI ) = 0, we take c := PI and we are done. If f(PI ) =1= 0, then either 
f(PI) > O or f(PI ) < O. If f(PI) > 0, then we set a2 := al , b2 := pl ' while if f(PI) < 0, 
then we set a2 := PI ' b2 := bl · In either case, we let 12 := [a2 , b2] ;  then we have 12 C II 
and f(a2) < 0, f(b2) > O. 

We continue the bisection process. Suppose that the intervals 11 ' 12 , . . .  , Ik have 
been obtained by successive bisection in the same manner. Then we have f(ak) < 0 
and f(bk) > 0, and we set Pk := ! (ak + bk) .  If f(Pk) = 0, we take c := Pk and we are 
done. If f(Pk) > 0, we set ak+1 := ak , bk+1 := Pk ' while if f(Pk) < 0, we set ak+1 := 
Pk ' bHI := bk · In either case, we let Ik+1 := [aHI , bHI ]; then IHI C Ik and f(ak+) < 0, 
f (bk+l ) > O. 

If the process terminates by locating a point P n such that f (p n) = 0, then we are done. 
If the process does not terminate, then we Qbtain a nested sequence of closed bounded 
intervals In := [an ' bn] such that for every n E N  we have 

and 

Furthermore, since the intervals are obtained by repeated bisection, the length of In is 
equal to bn - an = (b - a)/2

n-l • It follows from the Nested Intervals Property 2.5.2 that 
there exists a point c that belongs to In for all n E N. Since an ::::: c ::::: bn for all n E N, we 
have 0 < C - a < b - a = (b - a)/2

n
-l , and 0 < b - c < b - a = (b - a)/2

n-l . - n - n n - n - n n 
Hence, it follows that lim(an) = c = lim(bn) .  Since f is continuous at c, we have 

lim (J(an)) = f(c) = lim (J(bn)) . 
The fact that f(an) < 0 for all n E N  implies that f(c) = lim (J(an)) ::::: o. Also, the fact 
that f (bn) :::: 0 for all n E N  implies that f (c) = lim (J(bn)) :::: O. Thus, we conclude that 
f(c) = O. Consequently, c is a root of f.  Q.E.D. 
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The following example illustrates how the Bisection Method for finding roots is applied 
in a systematic fashion. 

5.3.6 Example The equation f(x) = xe
x - 2 = 0 has a root c in the interval [0, 1] , 

because f is continuous on this interval and f(O) = -2 < 0 and f(1) = e - 2 >  O. We 
construct the following table, where the sign of f( Pn) determines the interval at the next 
step. The far right column is an upper bound on the error when Pn is used to approximate 
the root c, because we have 

iPn - c i ::: ! (bn - an) = 1 /2n . 
We will find an approximation Pn with error less than 10-2. 

n an bn Pn f(Pn) ! (bn - an) 
1 0 .5 - 1 . 176 .5 
2 .5 1 .75 -.412 .25 
3 .75 1 . 875 +.099 . 1 25 
4 .75 .875 .8 125 - . 169 .0625 
5 .8125 . 875 .84375 -.0382 .03 125 
6 .84375 .875 . 859375 +.0296 .015625 
7 .84375 .859375 .8515625 .0078 125 

We have stopped at n = 7, obtaining c � P7 = .85 15625 with error less than .0078 125 . 
This is the first step in which the error is less than 10-2 • The decimal place values of P7 past 
the second place cannot be taken seriously, but we can conclude that . 843 < c < .860. D 

Bolzano's Theorem 

The next result is a generalization of the Location of Roots Theorem. It assures us that a 
continuous function on an interval takes on (at least once) any number that lies between 
two of its values. 

5.3.7 Bolzano's Intermediate Value Theorem Let I be an interval and let f : I -+ lR. 
be continuous on I .  If a, b E l  and if k E lR. satisfies f(a) < k < feb), then there exists a 
point c E I between a and b such that f(c) = k. 

Proof. Suppose that a < b and let g(x) := f(x) - k; then g(a) < 0 < g(b). By the 
Location of Roots Theorem 5 .3 .5 there exists a point c with a < c < b such that 0 = 
g(c) = f(c) - k. Therefore f(c) = k. 

If b < a, let hex) := k - f(x) so that h(b) < 0 < h(a). Therefore there exists a point 
c with b < c < a such that 0 = h(c) = k - f(c), whence f(c) = k. Q.E.D. 

5.3.8 Corollary Let I = [a , b] be a closed, bounded interval and let f : I -+ lR. be 
continuous on I. If k E lR. is any number satisfying 

inf f(l) ::: k ::: sup f(l), 
then there exists a number c E I such that f (c) = k. 

Proof. It follows from the Maximum-Minimum Theorem 5.3.4 that there are points c* and c* in I such that 

inf f(l) = f(c*) ::: k ::: f(c*) = sup f(l). 
The conclusion now follows from Bolzano's Theorem 5 .3 .7. Q.E.D. 
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The next theorem summarizes the main results of this section. It states that the image 
of a closed bounded interval under a continuous function is also a closed bounded interval. 
The endpoints of the image interval are the absolute minimum and absolute maximum 
values of the function, and the statement that all values between the absolute minimum 
and the absolute maximum values belong to the image is a way of describing Bolzano'os 
Intermediate Value Theorem. 

5.3.9 Theorem Let I be a closed bounded interval and let f : I ---+ � be continuous 
on I .  Then the set f (I) : = {f (x) : x E I }  is a closed bounded interval. 

Proof. If we let m := inf f(l) and M := sup f(l), then we know from the Maximum­
Minimum Theorem 5 .3.4 that m and M belong to f(l). Moreover, we have f(l) S; [m, M]. 
If k is any element of [m, M], then it follows from the preceding corollary that there exists 
a point e E l  such that k = f(c). Hence, k E f(l) and we conclude that [m, M] S; f(l). 
Therefore, f(l) is the interval [m, M]. Q.E.D. 

Warning If I := [a , b] is an interval and f : I ---+ � is continuous on I, we have proved 
that f(l) is the interval [m, M]. We have not proved (and it is not always true) that f(l) 
is the interval [f(a) , feb)] . (See Figure 5 .3.3.) 

M 

feb) 

f(a) 

m 

a x. x· b 
x 

Figure 5.3.3 1 (1) = [m, M]. 

The preceding theorem is a "preservation" theorem in the sense that it states that 
the continuous image of a closed bounded interval is a set of the same type. The next 
theorem extends this result to general intervals. However, it should be noted that although 
the continuous image of an interval is shown to be an interval, it is not true that the image 
interval necessarily has the same form as the domain interval. For example, the continuous 
image of an open interval need not be an open interval, and the continuous image of an 
unbounded closed interval need not be a closed interval. Indeed, if f(x) := 1/(x2 + 1) 
for x E �, then f is continuous on � [see Example 5 .2.3(b)]. It is easy to see that if 
II := (- 1 ,  1) , then f(ll) = G,  1 ] , which is not an open interval. Also, if 12 := [0, 00), 
then f(l2) = (0, 1 ] , which is not a closed interval. (See Figure 5.3.4.) 
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-1 

Figure 5.3.4 Graph of I(x) = I/(x2 + 1) (x E lR). 

To prove the Preservation of Intervals Theorem 5.3 .10, we will use Theorem 2.5 . 1  
characterizing intervals. 

5.3.10 Preservation of Intervals Theorem Let I be an interval and let f : I -+ � be 
continuous on I .  Then the set f (l) is an interval. 

Proof. Let a, fJ E f(l) with a < fJ ;  then there exist POiIlts a , b E l  such that a = f(a) 
and fJ = feb). Further, it follows from Bolzano's Intermediate Value Theorem 5.3.7 that 
if k E (a, fJ) then there exists a number e E l  with k = f(c) E f(l). Therefore [a, fJ] � 
f(l), showing that f(l) possesses property ( 1 ) of Theorem 2.5. 1 .  Therefore f(l) is an 
interval. Q.E.D. 

Exercises for Section 5.3 

1. Let 1 := [a, b] and let I : 1 --+ lR be a continuous function such that I (x) > 0 for each x in I .  
Prove that there exists a number ct > 0 such that I (x) 2: ct for all x E I .  

2.  Let 1 := [a ,  b] and let I : 1 --+ lR and g : 1 --+ lR be continuous functions on I.  Show that the 
set E := (x E 1 : I(x) = g(x)} has the property that if (xn) s::: E and xn --+ xo' then Xo E E. 

3. Let 1 : = [a , b] and let I : 1 --+ lR be a continuous function on 1 such that for each x in 1 there 
exists y in 1 such that I/(y) 1 � � I /(x) l .  Prove there exists a point c in 1 such that I(c) = o. 

4. Show that every polynomial of odd degree with real coefficients has at least one real root. 

5. Show that the polynomial p(x) := x4 + 7x3 - 9 has at least two real roots. Use a calculator to 
locate these roots to within two decimal places. 

6. Let I be continuous on the interval [0, 1] to lR and such that 1(0) = I ( 1 ) .  Prove that there 
exists apoint c in [0, � ]  such that /(c) = I (c + D. [Hint: Consider g(x) = I(x) - I (x + D .] 
Conclude that there are, at any time, antipodal points on the earth's equator that have the same 
temperature. 

7. Show that the equation x = cos x has a solution in the interval [0, 7l' 12]. Use the Bisection 
Method and a calculator to find an approximate solution of this equation, with error less than 
10-3 . 

8. Show that the function I(x) := 2 ln x  + .;x - 2 has root in the interval [ 1 ,  2]. Use the Bisection 
Method and a calculator to find the root with error less than 10-2 . 

9. (a) The function I(x) := (x - l ) (x - 2)(x - 3)(x - 4)(x - 5) has five roots in the interval 
[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located? 

(b) Same question for g(x) := (x - 2)(x - 3)(x - 4)(x - 5)(x - 6) on the interval [0, 7]. 
10. If the Bisection Method is used on an interval of length 1 to find Pn with error Ipn - cl  < 10-5 , 

determine the least value of n that will assure this accuracy. 



136 CHAPTER 5 CONTINUOUS FUNCTIONS 

1 1 .  Let 1 := [a, b], let f :  1 --+ R be continuous on I, and assume that f(a) < 0, f(b) > 0. Let 
W : =  {x E 1 : f(x) < OJ, and let w := sup W. Prove that f (w) = 0. (This provides an alter­
native proof of Theorem 5.3.5.) 

12. Let 1 := [0, Jr /2] and let f : 1 --+ R be defined by f (x) := sup{x2 , cos x }  for x E I. Show 
there exists an absolute minimum point Xo E 1 for f on I.  Show that Xo is a solution to tHe 
equation cos x = x2 • 

13 .  Suppose that f : R --+ R is continuous on R and that lim f = ° and lim f = 0. Prove that 
x---+ - oo  x---+oo 

f is bounded on R and attains either a maximum or minimum on R. Give an example to show 
that both a maximum and a minimum need not be attained. 

14. Let f : R --+ R be continuous on R and let {3 E R. Show that if Xo E R is such that f(xo) < {3, 
then there exists a 8-neighborhood U of Xo such that f (x) < {3 for all x E U. 

15 .  Examine which open [respectively, closed] intervals are mapped by f(x) := x2 for x E R onto 
open [respectively, closed] intervals. 

16. Examine the mapping of open [respectively, closed] intervals under the functions g(x) := 

1/(x2 + 1) and h (x) := x3 for x E R. 
17. If f : [0, 1] --+ R is continuous and has only rational [respectively, irrational] values, must f 

be constant? Prove your assertion. 

18 .  Let 1 := [a, b] and let f : 1 --+ R be a (not necessarily continuous) function with the property 
that for every x E I,  the function f is bounded on a neighborhood V8 (x) of x (in the sense of 
Definition 4.2. 1). Prove that f is bounded on I.  

x 

19.  Let J := (a, b) and let g : J --+ R be a continuous function with the property that for every 
x E J,  the function g is bounded on a neighborhood V8 (x) of x .  Show by example that g is not 
necessarily bounded on J .  x 

Section 5.4 Uniform Continuity 

Let A � JR and let I : A -+ JR. Definition 5. 1 . 1  states that the following statements are 
equivalent: 

(i) I is continuous at every point u E A; 
(ii) given s > 0 and U E A, there is a 8 (s, u) > 0 such that for all x such that x E A 

and Ix - u l  < 8 (s, u), then I /(x) - l(u) 1 < s .  

The point we wish to emphasize here is  that 8 depends, in general, on both s > 0 and 
u E A.  The fact that 8 depends on u is a reflection of the fact that the function I may change 
its values rapidly near certain points and slowly near other points. [For example, consider 
I(x) : =  sinO/x) for x > 0; see Figure 4. 1 .3 .] 

Now it often happens that the function I is such that the number 8 can be chosen to be 
independent of the point u E A and to depend only on s. For example, if I (x) := 2x for 
all x E JR, then 

I I  (x) - l(u) 1  = 2 1x - u l  , 
and so we can choose 8 (s, u) := s/2 for aIl s > 0, u E R (Why?) 

( 1 )  

On the other hand if g(x) := I /x for x E A := {x E R x > O} ,  then 

u - x g(x) - g(u) = -- . ux 
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If u E A is given and if we take 

(2) 
then if Ix - u l < 8 (e, u), we have Ix - u l  < 4u so that 4u < x < �u , whence it follows 
that 1/x < 2/u . Thus, if Ix - u l < 4u ,  the equality (1) yields the inequality 

(3) Ig(x) - g(u) 1  S (2/u2) Ix - u l . 
Consequently, if Ix - u l  < 8 (e, u), then (2) and (3) imply that 

Ig(x) - g(u) 1  < (2/u2) (4u2e) = e. 

We have seen that the selection of 8 (e, u) by the formula (2) "works" in the sense that it 
enables us to give a value of 8 that will ensure that Ig (x) - g(u) 1 < e when Ix - u l  < 8 
and x , u E A. We note that the value of 8 (e, u) given in (2) certainly depends on the point 
u E A. If we wish to consider all u E A, formula (2) does not lead to one value 8 (e) > 0 
that will "work" simultaneously for all u > 0, since inf{8 (e, u) : u > O} = O. 

An alert reader will have observed that there are other selections that can be made 
for 8. (For example we could also take 8, (e, u) := inf { �u ,  �u2e } ,  as the reader can show; 
however, we still have inf {8, (e, u): u > O} = 0.) In fact, there is no way of choosing one 
value of 8 that will "work" for all u > 0 for the function g(x) = 1/x, as we shall see. 

The situation is exhibited graphically in Figures 5.4. 1 and 5 .4.2 where, for a given 
e-neighborhood �(4) about 4 = f(2) and �(2) about 2 = f(4) , the corresponding max­
imum values of 8 are seen to be considerably different. As u tends to 0, the permissible 
values of 8 tend to O. 

1 VE�:r.�====���� 
--��------�-"�----�.x 

� 2 
1) -neighborhood 

Figure 5.4.1 g(x) = l /x (x > 0) . 

--���------------�x 

-� 1 
2 

1) - neighborhood 

Figure 5.4.2 g(x) = l /x (x > 0) . 

5.4.1 Definition Let A � IR and let f : A """"* R We say that f is uniformly continuous 
on A if for each e > 0 there is a 8 (e) > 0 such that if x ,  u E A are any numbers satisfying 
Ix - u l  < 8 (e), then I f (x) - f(u) 1 < e .  

It is  clear that if  f i s  uniformly continuous on A, then it is  continuous at every point of 
A. In general, however, the converse does not hold, as is shown by the function g (x) = 1 / x 
on the set A := {x E IR : x > O}. 

It is useful to formulate a condition equivalent to saying that f is not uniformly 
continuous on A. We give such criteria in the next result, leaving the proof to the reader as 
an exercise. 
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5.4.2 Nonuniform Continuity Criteria Let A S; lR and let I : A --+ R Then the fol­
lowing statements are equivalent: 
(i) I is not uniformly continuous on A.  
(ii) There exists an 80 > 0 such that for every 8 > 0 there are points x 8 '  U 8 in A such that 

IX8 - u8 1  < 8 and I I(x8) - l(u8 ) 1  ::: 80 , 
(iii) There exists an 80 > 0 and two sequences (xn) and (un) in A such that 

lim(xn - un) = 0 and I I(xn) - l(un) 1  ::: 80 for all n E N. 
We can apply this result to show that g(x) := 1/x is not uniformly continuous on A := 

{x E lR : x > OJ. For, if xn := lin and un := 1/ (n + 1),  then we have lim(xn - un) = 0, 
but Ig (xn) - g(un) 1  = I for all n E N. 

We now present an important result that assures that a continuous function on a closed 
bounded interval I is uniformly continuous on I .  Other proofs of this theorem are given in 
Sections 5.5 and 1 1 .3 .  

5.4.3 Uniform Continuity Theorem Let I be a closed bounded interval and let I : I --+ 
lR be continuous on I .  Then I is uniformly continuous on I .  

Proof. If I i s  not uniformly continuous on I then, by the preceding result, there exists 
80 > 0 and two sequences (xn) and (un) in I such that IXn - un l < lin and I I(xn) -
l(un) 1  ::: 80 for all n E N. Since I is bounded, the sequence (xn) is bounded; by the 
Bolzano-Weierstrass Theorem 3.4.8 there is a subsequence (x ) of (x ) that converges to nk n 
an element z. Since I is closed, the limit z belongs to I, by Theorem 3.2.6. It is clear that 
the corresponding subsequence (u ) also converges to z, since nk 

Now if I is continuous at the point z, then both of the sequences (J (xnk ) ) and (J (unk ») 
must converge to I(z) . But this is not possible since 

for all n E N. Thus the hypothesis that I is not uniformly continuous on the closed bounded 
interval I implies that I is not continuous at some point z E I .  Consequently, if I is 
continuous at every point of I, then I is uniformly continuous on I .  Q.E.D. 

Lipschitz Functions 

If a uniformly continuous function is given on a set that is not a closed bounded interval, 
then it is sometimes difficult to establish its uniform continuity. However, there is a condi­
tion that frequently occurs that is sufficient to guarantee uniform continuity. 

5.4.4 Definition Let A S; lR and let I : A --+ R If there exists a constant K > 0 such 
that 

(4) II (x) - l(u) 1 .::: K Ix - u l  
for all x ,  u E A ,  then I is said to be a Lipschitz function (or to satisfy a Lipschitz 
condition) on A.  
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The condition (4) that a function f : I --+ lR. on an interval I is a Lipschitz function 
can be interpreted geometrically as follows. If we write the condition as 

I f(x) - f(u) I � K, x - u x , u E I, x ::j:. u, 
then the quantity inside the absolute values is the slope of a line segment joining the points 
(x , f (x)) and (u , f (u) ) . Thus a function f satisfies a Lipschitz condition if and only if the 
slopes of all 1ine segments joining two points on the graph of y = f (x) over I are bounded 
by some number K. 
5.4.5 Theorem If f : A --+ lR. is a Lipschitz function, then f is uniformly continuous 
on A. 

Proof. If condition (4) is satisfied, then given 8 > 0, we can take 8 := 8j K. If x , u E A 
satisfy Ix - u I < 8, then 

8 I f (x) - f(u) 1 < K · K = 8. 

Therefore f is uniformly continuous on A. 

5.4.6 Examples (a) If f(x) := x2 on A := [0, b], where b > 0, then 

I f(x) - f(u) 1 = Ix + u l lx - u l  � 2b lx - u l  

Q.E.D. 

for all x, u in [0, b]. Thus f satisfies (4) with K := 2b on A, and therefore f is uniformly 
continuous on A. Of course, since f is continuous and A is a closed bounded interval, this 
can also be deduced from the Uniform Continuity Theorem. (Note that f does not satisfy 
a Lipschitz condition on the interval [0, 00).) 
(b) Not every uniformly continuous function is a Lipschitz function. 

Let g(x) := ,JX for x in the closed bounded interval I := [0, 2]. Since g is continuous 
on I , it follows from the Uniform Continuity Theorem 5.4.3 that g is uniformly continuous 
on I. However, there is no number K > ° such that Ig(x) 1  � K lx l  for all x E I . (Why 
not?) Therefore, g is not a Lipschitz function on I .  
(c) The Uniform Continuity Theorem and Theorem 5.4.5 can sometimes be combined to 
establish the uniform continuity of a function on a set. 

We consider g(x) := ,JX on the set A := [0, 00). The uniform continuity of g on 
the interval I := [0, 2] follows from the Uniform Continuity Theorem as noted in (b). If 
J : = [ 1 ,  00), then if both x, u are in J, we have 

Ig (x) - g(u) 1 = IJX - JUI = ; -� � � Ix - u l · x +  u 
Thus g is a Lipschitz function on J with constant K = � ,  and hence by Theorem 5.4.5, 
g is uniformly continuous on [ 1 , 00) . Since A = I U J, it follows [by taking 8 (8) := 
inf { 1, 8[ (8), 8 J (8) }] that g is uniformly continuous on A. We leave the details to the 
reader. 0 

The Continuous Extension Theorem 

We have seen examples of functions that are continuous but not uniformly continuous on 
open intervals; for example, the function f(x) = Ijx on the interval (0, 1) . On the other 
hand, by the Uniform Continuity Theorem, a function that is continuous on a closed bounded 
interval is always uniformly continuous. So the question arises: Under what conditions is a 
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function unifonnly continuous on a bounded open interval? The answer reveals the strength 
of uniform continuity, for it will be shown that a function on (a , b) is uniformly continuous 
if and only if it can be defined at the endpoints to produce a function that is continuous on 
the closed interval. We first establish a result that is of interest in itself. 

5.4.7 Theorem If I : A --* lR is uniformly continuous on a subset A of lR and if (xn) is 
a Cauchy sequence in A, then (J (xn») is a Cauchy sequence in lR. 

Proof. Let (xn) be a Cauchy sequence in A, and let e > 0 be given. First choose 8 > 0 
such that if x, U in A satisfy Ix - u l  < 8, then I/ (x) - l(u) 1 < e. Since (xn) is a Cauchy 
sequence, there exists H(8) such that IXn - xm I < 8 for all n , m > H (8).  By the choice of 
8, this implies that for n, m > H (8), we have I/ (xn) - l(xm) 1 < e. Therefore the sequence 
(f(xn» is a Cauchy sequence. Q.E.D. 

The preceding result gives us an alternative way of seeing that I(x) := 1 1x is not 
uniformly continuous on (0, 1 ) .  We note that the sequence given by Xn := lin in (0, 1 )  is 
a Cauchy sequence, but the image sequence, where I (xn) = n, is not a Cauchy sequence. 

5.4.8 Continuous Extension Theorem A function I is uniformly continuous on the 
interval (a, b) if and only if it can be defined at the endpoints a and b such that the ex­
tended function is continuous on [a , b] . 

Proof. ( {:::) This direction is trivial. 
(=}) Suppose I is uniformly continuous on (a , b). We shall show how to extend I 

to a; the argument for b is similar. This is done by showing that lim I (x) = L exists, and 
x ..... c 

this is accomplished by using the sequential criterion for limits. If (xn) is a sequence in 
(a ,  b) with lim(xn) = a, then it is a Cauchy sequence, and by the preceding theorem, the 
sequence (J(xn») is also a Cauchy sequence, and so is convergent by Theorem 3.5.5. Thus 
the limit lim(J(xn») = L exists. If (un) is any other sequence in (a , b) that converges to a, 
then lim(un - xn) = a - a = 0, so by the uniform continuity of I we have 

lim(J(un ») = lim(J(un) - I(xn») + lim(J(xn») 
= O + L  = L .  

Since we get the same value L for every sequence converging to a, we infer from the 
sequential criterion for limits that I has limit L at a. If we define I(a) := L, then I is 
continuous at a. The same argument applies to b, so we conclude that I has a continuous 
extension to the interval [a , b]. Q.E.D. 

Since the limit of I (x) := sin(l lx) at 0 does not exist, we infer from the Continuous 
Extension Theorem that the function is not uniformly continuous on (0, b] for any b > O. 
On the other hand, since lim x sin(l Ix) = 0 exists, the function g(x) := x sin(l I x) is 

X"'" 0 
unifonnly continuous on (0, b] for all b > O. 

Approximation t 

In many applications it is important to be able to approximate continuous functions by 
functions of an elementary nature. Although there are a variety of definitions that can be 
used to make the word "approximate" more precise, one of the most natural (as well as one of 

tTbe rest of this section can be omitted on a first reading of this chapter. 
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the most important) is to require that, at every point of the given domain, the approximating 
function shall not differ from the given function by more than the preassigned error. 

5.4.9 Definition Let I S; lR be an interval and let s : I -+ R Then s is called a step 
function if it has only a finite number of distinct values, each value being assumed on one 
or more intervals in I .  

For example, the function s : [-2, 4] -+ lR defined by 

0, -2 .::: x < - 1 ,  
1 ,  - 1 .::: x .::: 0, 
1 0 <  X < ! ,  

s ex) := 2 '  
3, ! .::: x < l , 

-2, 1 .::: x .::: 3, 
2, 3 < x .::: 4, 

is a step function. (See Figure 5 .4.3 .) 

y 

H 

____ � __ �--�--L-�---L--J---- x 

Figure 5.4.3 Graph of y = sex). 

We will now show that a continuous function on a closed bounded interval I can be 
approximated arbitrarily closely by step functions. 

5.4.10 Theorem Let I be a closed bounded interval and let I : I -+ lR be continuous on 
I .  If £ > 0, then there exists a step function s e : I -+ lR such that I I (x) - s /x) I < £ for 
all x E I.  

Proof. Since (by the Uniform Continuity Theorem 5 .4.3) the function I is uniformly 
continuous, it follows that given £ > 0 there is a number 8 (£) > 0 such that if x ,  y E I 
and Ix - y l < 8 (£), then II(x) - l(y) 1 < £. Let I := [a , b] and let m E N  be sufficiently 
large so that h := (b - a)/m < 8 (£). We now divide I = [a , b] into m disjoint intervals 
of length h; namely, II := [a , a + h], and Ik := (a + (k - l )h, a + kh] for k = 2, . . .  , m. 
Since the length of each subinterval Ik is h < 8 (£), the difference between any two values 
of I in Ik is less than £. We now define 

(5) se (x) := I(a + kh) for x E lk ' k = 1 ,  . . .  , m, 
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so that S8 is constant on each interval Ik . (In fact the value of S8 on Ik is the value of f at 
the right endpoint of Ik . See Figure 5 .4.4.) Consequently if x E lk ' then 

I f (x) - s8 (x) 1 = If(x) - I(a + kh) 1 < 8. 
Therefore we have I f(x) - s/x) 1 < 8 for all x E I .  

Figure 5.4.4 Approximation by step functions. 

Q.E.D. 

Note that the proof of the preceding theorem establishes somewhat more than was 
announced in the statement of the theorem. In fact, we have proved the following, more 
precise, assertion. 

5.4.11 Corollary Let I := [a , b] be a closed bounded interval and let I : I --+ lR be 
continuous on I .  If 8 > 0, there exists a natural number m such that if we divide I into 
m disjoint intervals Ik having length h := (b - a)/m, then the step function S8 defined in 
equation (5) satisfies I f (x) - s s (x) I < 8 for all x E I .  

Step functions are extremely elementary in character, but they are not continuous 
(except in trivial cases). Since it is often desirable to approximate continuous functions by 
elementary continuous functions, we now shall show that we can approximate continuous 
functions by continuous piecewise linear functions. 

5.4.12 Definition Let I := [a , b] be an interval. Then a function g : I --+ lR is said to be 
piecewise linear on I if I is the union of a finite number of disjoint intervals II ' . . .  , 1m ' 
such that the restriction of g to each interval Ik is a linear function. 

Remark It is evident that in order for a piecewise linear function g to be continuous 
on I , the line segments that form the graph of g must meet at the endpoints of adjacent 
subintervals Ik , Ik+1 (k = 1 ,  . . .  , m - 1) . 

5.4.13 Theorem Let I be a closed bounded interval and let f : I --+ lR be continuous on 
I .  If 8 > 0, then there exists a continuous piecewise linear function g s : I --+ lR such that 
I f (x) - g8 (x) 1 < 8 for all x E I . 
Proof. Since f is uniformly continuous on I := [a , b], there is a number 8 (8) > 0 such 
that if x ,  y E I and Ix - y l  < 8 (8), then I / (x) - l (y) 1 < 8. Let m E N  be sufficiently 
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large so that h := (b - a)/m < 8 (8). Divide I = [a , b] into m disjoint intervals of length 
h; namely let II = [a, a + h], and let Ik = (a + (k - l)h, a + kh] for k = 2, . . .  , m. On 
each interval Ik we define g, to be the linear function joining the points 

(a + (k - l)h, I(a + (k - l)h)) and (a + kh, I(a + kh)) . 
Then g, is a continuous piecewise linear function on I .  Since, for x E Ik the value I (x) is 
within 8 of I(a + (k - l)h) and I(a + kh), it is an exercise to show that I I (x) - g, (x) 1  < 
8 for all x E Ik ; therefore this inequality holds for all x E I . (See Figure 5.4.5.) Q.E.D . 

.., y = fix) + E 
,/ y = fix) 

) ' 
.... , I Y = g,(x ,' _ ,  

' - -
,1 y = fix) - E 

" " " : I ""' _ ... .... I 
, I I '  I I '  I r - - - ' .... : 

I I I I I I I I I I 

Figure 5.4.5 Approximation by piecewise linear function. 

We shall close this section by stating the important theorem of Weierstrass concerning 
the approximation of continuous functions by polynomial functions. As would be expected, 
in order to obtain an approximation within an arbitrarily preassigned 8 > 0, we must be 
prepared to use polynomials of arbitrarily high degree. 

5.4.14 Weierstrass Approximation Theorem Let I = [a , b] and let I : I -+ JR be a 
continuous function. If 8 > ° is given, then there exists a polynomial function p e such 
that I I (x) - p e Cx) I < 8 for all x E I .  

There are a number of proofs of this result. Unfortunately, all of them are rather 
intricate, or employ results that are not yet at our disposal. One of the most elementary 
proofs is based on the following theorem, due to Serge BernsteIn, for continuous functions 
on [0, 1 ] . Given I :  [0, 1 ]  -+ JR, BernsteIn defined the sequence of polynomials: 

(6) 
'
The polynomial function B n is called the nth Bernstein polynomial for I; it is a polynomial 
of degree at most n and its coefficients depend on the values of the function I at the n + 1 
equally spaced points 0, l in, 21n, . . .  , kin, . . .  , 1 ,  and on the binomial coefficients (n) = n !  

= 
n(n - 1) . . .  (n - k + 1) . k k! (n - k) 1 · 2 . .  · k 
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5.4.15 BernsteIn's Approximation Theorem Let f : [0, 1 ] -+ JR be continuous and let 
e > 0. There exists an n, E N such that ifn ::: nt '  then we have If (x) - Bn (x) 1  < e for all 
x E [0, 1 ] . 

The proof of Bernstein's Approximation Theorem is given in [ERA, pp. 169-172] . 
The Weierstrass Approximation Theorem 5.4. 14 can be derived from the Bernstein 

Approximation Theorem 5.4. 15 by a change of variable. Specifically, we replace 
f :  [a , b] -+ JR by a function F : [0, 1 ] -+ JR, defined by 

F(t) := f (a + (b - a)t) for t E [0, 1 ] . 
The function F can be approximated by Bernstein polynomials for F on the interval [0, 1] , 
which can then yield polynomials on [a , b] that approximate f. 

Exercises for Section 5.4 

1 .  Show that the function f(x) := l /x i s  uniformly continuous on the set A := [a, (0), where a 
is a positive constant. 

2. Show that the function f(x) := l /x2 is uniformly continuous on A := [ 1 ,  (0), but that it is not 
unifonnly continuous on B := (0, (0). 

3.  Use the Nonunifonn Continuity Criterion 5.4.2 to show that the following functions are not 
uniformly continuous on the given sets. 
(a) f(x) := x2 , A := [0, (0). 
(b) g(x) := sin(1/x),  B := (0, (0). 

4. Show that the function f(x) := 1/(1  + x2) for x E JR is uniformly continuous on JR. 
5.  Show that if f and g are uniformly continuous on a subset A of R, then f + g is unifonnly 

continuous on A. 

6. Show that if f and g are uniformly continuous on A � JR and if they are both bounded on A, 
then their product fg is uniformly continuous on A. 

7. If f(x) := x and g(x) := sinx, show that both f and g are uniformly continuous on JR, but that 
their product f g is not unifonnly continuous on R. 

8. Prove that if f and g are each unifonnly continuous on JR, then the composite function f o g is 
unifonnly continuous on R. 

9. If f is uniformly continuous on A � JR, and I f(x) 1  � k > ° for all x E A, show that l /f is 
uniformly continuous on A.  

10 .  Prove that if f is unifonnly continuous on a bounded subset A of JR, then f is  bounded on A.  

1 1 .  Ifg(x) := JX forx E [0, 1] , show that there does not exist aconstant K such that lg(x ) l ::: Klx l 
for all x E [0, 1] .  Conclude that the unifonnly continuous g is not a Lipschitz function on [0, 1 ] .  

12 .  Show that if f is continuous on [0, (0) and unifonnly continuous on [a, (0) for some positive 
constant a, then f is uniformly continuous on [0, (0). 

13. Let A � JR and suppose that f : A --+ JR has the following property: for each e > ° there exists 
a function gE : A --+ JR such that gE is uniformly continuous on A and If(x) - gE (x) 1 < e for 
all x E A. Prove that f is unifonnly continuous on A.  

14 .  A function f: JR --+ R is  said to be periodic on JR if  there exists a number p > ° such that 
f (x + p) = f (x) for all x E R. Prove that a continuous periodic function on JR is bounded and 
uniformly continuous on R. 
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15. If lo(x) := 1 for x E [0, 1], calculate the first few BernsteIn polynomials for 10• Show that they 
coincide with Ia- [Hint: The Binomial Theorem asserts that 

(a + b)n = t (n)akbn-k .] 
k=O k 

16. If II (x) := x for x E [0, 1] , calculate the first few BernsteIn polynomials for II . Show that they 
coincide with II . 

17. If 12(x) := x2 for x E [0, 1], calculate the first few BernsteIn polynomials for 12. Show that 
Bn(x) = (1 - l /n)x2 + ( l/n)x. 

Section 5.5 Continuity and Gauges 

We will now introduce some concepts that will be used later--especially in Chapters 7 
and 10 on integration theory. However, we wish to introduce the notion of a "gauge" now 
because of its connection with the study of continuous functions. We first define the notion 
of a tagged partition of an interval. 

5.5.1 Definition A partition ofan interval l := [a , b] is a collection P = {Ii ' . . .  , In } of 
non-overlapping closed intervals whose union is [a , b] . We ordinarily denote the intervals 
by Ii := [Xi-I ' Xi ] ' where 

a = Xo < . . .  < Xi-I < Xi < . . . < Xn = b. 
The points Xi (i = 0, . . . , n) are called the partition points of P. If a point ti has been 
chosen from each interval Ii ' for i = 1 ,  . . .  , n, then the points ti are called the tags and the 
set of ordered pairs 

p = { (I" tl ) , . • •  , (In ' tn) } 
is called a tagged partition of I. (The dot signifies that the partition is tagged.) 

The "fineness" of a partition P refers to the lengths of the subintervals in P. Instead of 
requiring that all subintervals have length less than some specific quantity, it is often useful 
to allow varying degrees of fineness for different subintervals Ii in P. This is accomplished 
by the use of a "gauge", which we now define. 

5.5.2 Definition A gauge on I is a strictly positive function defined on I .  If a is a gauge 
on I, then a (tagged) partition P is said to be a-fine if 

(1) for i = 1 ,  . . .  , n . 

We note that the notion of a-fineness requires that the partition be tagged, so we do not 
need to say "tagged partition" in this case. 

Ii 

Xi ! 

Figure 5.5.1 Inclusion (1). 
A gauge a on an interval I assigns an interval [t - a (t), t + a (t)] to each point t E l . 

The a-fineness of a partition P requires that each subinterval ( of P is contained in the 
interval determined by the gauge a and the tag ti for that subinterval. This is indicated 
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by the inclusions in ( I ); see Figure 5.5 . 1 . Note that the length of the subintervals is also 
controlled by the gauge and the tags; the next lemma reflects that control. 

5.5:3 Lemma If a partition P of! : = [a , b] is 8 -fine and x E I, then there exists a tag tj 
in P such that Ix - tj I :::: 8 (t) . 

Proof. If x E I, there exists a subinterval [xi-I ' Xi] from P that contains x. Since P is 
8-fine, then 

(2) 
whence it follows that Ix - ti I :::: 8 (t) . Q.E.D. 

In the theory of Riemann integration, we will use gauges 8 that are constant functions 
to control the fineness of the partition; in the theory of the generalized Riemann integral, 
the use of nonconstant gauges is essential. But nonconstant gauge functions arise quite 
naturally in connection with continuous functions. For, let I : I -+ lR. be continuous on 
I and let c > 0 be given. Then, for each point t E l  there exists 8, (t) > 0 such that 
if Ix - t l  < 8, (t) and x E I ,  then I/(x) - l(t) 1 < c. Since 8, is defined and is strictly 
positive on I ,  the function 8, is a gauge on I .  Later in this section, we will use the relations 
between gauges and continuity to give alternative proofs of the fundamental properties of 
continuous functions discussed in Sections 5.3 and 5.4. 
5.5.4 Examples (a) If 8 and y are gauges on I := [a , b] and if 0 < 8(x) :::: y (x) for all 
x E I ,  then every partition P that is 8-fine is also y-fine. This follows immediately from 
the inequalities 

ti - y et) :::: ti - 8 (t) 

which imply that 

and 

ti E [ti - 8(t) , ti + 8 (t)] S; [tj - y et) , tj + y et)] for i = I , · · · , n . 
(b) If 81 and 82 are gauges on I := [a , b] and if 

8 (x) := min{81 (x),  82 (x) }  for all x E I, 
then 8 is also a gauge on I .  Moreover, since 8 (x) :::: 8 1 (x), then every 8-fine partition is 
81 -fine. Similarly, every 8-fine partition is also 82-fine. 
(c) Suppose that 8 is defined on I := [0, I ]  by { to if x = 0, 

8 (x) := 
�x if 0 < x :::: 1 .  

Then 8 is a gauge on [0, 1 ] .  If 0 < t :::: 1 ,  then [ t  - 8 (t) ,  t + 8 (t)] = [� t, � t] , which does 
not contain the point O. Thus, if P is a 8-fine partition of I, then the only subinterval in P 
that contains 0 must have the point 0 as its tag. 
(d) Let y be defined on I := [0, 1 ]  by 

{ to if x = 0 or x = I ,  
y (x) := �x if 0 < x :::: � ,  

� ( 1 - x) if � < x < 1 . 
Then y is a gauge on I ,  and it is an exercise to show that the subintervals in any y-fine 
partition that contain the points 0 or 1 must have these points as tags. 0 
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Existence of 8-Fine Partitions ___________________ _ 

In view of the above examples, it is not obvious that an arbitrary gauge 8 admits a 8-fine 
partition. We now use the Supremum Property of JR to establish the existence of 8-fine 
partitions. In the Exercises, we will sketch a proof based on the Nested Intervals Theorem 
2.5.2. 

5.5.5 Theorem If 8 is a gauge defined on the interval [a , b] , then there exists a 8-fine 
partition of [a, b] . 

Proof. Let E denote the set of all points x E [a , blsuch that there exists a 8-fine partition 
of the subinterval [a , x]. The set E is not empty, since the pair ([a , x] , a) is a 8-fine partition 
of the interval [a, x] when x E [a , a + 8(a)] and x :s b. Since E S; [a , b], the set E is also 
bounded. Let u := sup E so that a < u :s b. We will show that u E E and that u = b. 

We claim that u E E. Since u - 8 (u) < u = sup E, there exists v E E  such that u -
8(u) < v < u. Let PI be a 8-fine partition of [a, v] and let 1'2 := PI U ([v, u] , u) . Then 
l' 2 is a 8-fine partition of [a , u], so that u E E. 

If u < b, let W E [a , b] be such that u < W < u + 8 (u) . If QI is a 8-fine partition 
of [a, u], we let Q2 := QI U ([u , w], u) . Then Q2 is a 8-fine partition of [a , w], whence 
w E E. But this contradicts the supposition that u is an upper bound of E. Therefore u = b. 

Q.E.D. 

Some Applications _______________________ _ 

Following R. A. Gordon (see his Monthly article), we will now show that some of the major 
theorems in the two preceding sections can be proved by using gauges. 

Alternate Proof of Theorem 5.3.2: Boundedness Theorem. Since I is continuous on 
/ ,  then for each t E / there exists 8 (t) > 0 such that if x E / and Ix - t l  :s 8 Ct), then 
I /(x) - 1(0 1 :s 1 .  Thus 8 is a gauge on / .  Let {(Ii ' ti ) }7=1 be a 8-fine partition of / and 
let K := max{ I/Cti ) 1  : i = 1 ,  " ' , n} . By Lemma 5 .5.3, given any x E / there exists i with 
Ix - ti I :s 8Ct), whence 

I/ (x) l :s I/(x) - ICti ) 1  + I/(t) 1  :s 1 +  K. 
Since x E / is arbitrary, then I is bounded by I + K on / .  Q.E.D. 

Alternate Proof of Theorem 5.3.4: Maximum-Minimum Theorem. We will prove the 
existence of x* . Let M := sup{f(x) : x E I} and suppose that I(x) < M for all x E / .  
Since I i s  continuous on /, for each t E / there exists 8(t) > 0 such that if  x E / and 
Ix - t l  :s 8 Ct) , then I(x) < ! (M + I(t)) . Thus 8 is a gauge on / ,  and if {(Ii ' ti) }7=1 is a 
8-fine partition of /, we let 

- I M := 2 max{M + ICtI ) ,  . . .  , M + ICtn) } ' 
By Lemma 5.5.3, given any x E /, there exists i with Ix - ti I :s 8(t), whence 

I(x) < 4 (M + I(ti )) :s M. 

5ince x E / is arbitrary, then M « M) is an upper bound for I on /, contrary to the 
definition of M as the supremum of I. Q.E.D. 

Alternate Proof of Theorem 5.3.5: Location of Roots Theorem. We assume that I (t) =1= 0 
for all t E /. Since I is continuous at t, Exercise 5 . 1 .7 implies that there exists 8(t) > 0 
such that if x E / and Ix - t l  :s 8 (t), then I(x) < 0 if I(t) < 0, and I(x) > 0 if I(t) > O. 
Then 8 is a gauge on / and we let {(Ii ' ti )}7=1 be a 8-fine partition. Note that for each i , 
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either f(x) < 0 for all x E [Xi_ \ , Xi ] or f(x) > 0 for all such x .  Since f(xo) = f(a) < 0, 
this implies that f(x,) < 0, which in tum implies that f(x2) < O. Continuing in this way, 
we have feb) = f(xn) < 0, contrary to the hypothesis that feb) > O. Q.E.D. 

Alternate Proof of Theorem 5.4.3: Uniform Continuity Theorem. Let 8 > 0 be given. 
Since f is continuous at t E J , there exists 8 (t) > 0 such that if X E J and Ix - t l  ::: 28 (t), 
then I f (x) - f(t) 1 ::: !e. Thus 8 is a gauge on J. If {(Ii ' t)}7=, is a 8-fine partition of J, 
let 8, := min{8 (t, ) , . . .  , 8 (tn) } .  Now suppose that x ,  u E J and Ix - u l  ::: 8" and choose i 
with Ix - ti I ::: 8 (t) . Since 

l u  - ti l ::: lu - x l  + Ix - ti l ::: 8, + 8 (ti ) ::: 28(ti ) '  
then it follows that 

I f(x) - f(u) 1 ::: If(x) - f(t) 1  + If(ti ) - f(u) 1  ::: !e + !e = e. 
Therefore, f is uniformly continuous on J . 

Exercises for Section 5.5 

1 .  Let 0 be the gauge on [0, 1 ]  defined by 0 (0) := � and o Ct) := � t  for t E (0, 1 ] .  
(a) Show that p] := { ([O, � ] ,  0) , ([� , � ] ,  D ,  ( [ � ,  1 ] ,  n}  is o-fine. 

(b) Show that P2 := WO, � ] ,  0) , ([ � ,  � ] ,  D ,  ([ � ,  1 ] ,  D}  is not o-fine. 

Q.E.D. 

2. Suppose that 0] is the gauge defined by 0] (0) := � , 0] (t) := �t for t E (0, 1 ] .  Are the partitions 
given in Exercise 1 oJ -fine? Note that o Ct) :s 0] (t) for all t E [0, 1 ] .  

3 .  Suppose that O2 i s  the gauge defined by 0/0) := -k and 02(t) := -i5t for t E (0, 1] .  Are the 
partitions given in Exercise 1 02-fine? 

4. Let y be the gauge in Example 5.5.4(d). 
(a) 1f t E (0, �] show that [t - yet) , t + y et)] = [� t, � t] s; (0, � ] .  
(b) If  t E (� , 1 )  show that [ t  - yet) ,  t + yet)] S; ( � , 1 ) .  

5. Let a < c < b and let 0 be  a gauge on [a , b ] .  If pi i s  a o-fine partition of [a, c ]  and if  p" i s  a 
o-fine partition of [c, b], show that pi U p" is o-fine partition of [a , b] having c as a partition 
point. 

6. Let a < c < b and let 0' and Oil be gauges on [a, c] and [c, b], respectively. If 0 is defined on 
[a, b] by 1 01(t) if t E [a , c) , 

o (t) := min{o'(c) , o" (c)} if t = c, 
O" (t) if t E (c, b], 

then 0 is a gauge on [a , b]. Moreover, if pi is a o'-fine partition of [a, c] and p" is a oil-fine 
partition of [c, b], then pi U P" 

is a tagged partition of [a , b] having c as a partition point. Explain 
why pi U p" may not be o-fine. Give an example. 

7. Let 0' and Oil be as in the preceding exercise and let 0* be defined by 

I
min{OI(t) , � (c - t)} if t E [a, c) , 

o* (t) := min{o'(c) , o" (c) } if t = c, 
min{o"(t) , � (t - c) } if t E (c, bl 

Show that 0* is a gauge on [a , b] and that every 0* -fine partition P of [a, b] having c as a partition 
point gives rise to a o'-fine partition pi of [a, c] and a oil-fine partition P" 

of [c, b] such that 
p = p' U P" .  



5.6 MONOTONE AND INVERSE FUNCTIONS 149 

8. Let a be a gauge on I := [a, b] and suppose that I does not have a a-fine partition. 
(a) Let e := ! (a + b). Show that at least one of the intervals [a, e] and [e, b] does not have a 

a-fine partition. 
(b) Construct a nested sequence (In) of subintervals with the length of In equal to (b - a)/2n 

such that In does not have a a-fine partition. 
(c) Let � E n�l In and let p E N  be such that (b - a)/2P < a (�).  Show that Ip � [� - a (�) ,  � + a (�)],  so the pair (lp , �) is a a-fine partition of Ip ' 

9. Let I := [a, b] and let f : I -+ R be a (not necessarily continuous) function. We say that f is 
"locally bounded" at e E l  if there exists a (e) > 0 such that f is bounded on I n  [e - a (e), e + 
a (e)]. Prove that if f is locally bounded at every point of I, then f is bounded on I. 

10 .  Let I := [a ,  b] and f : I -+ R We say that f is "locally increasing" at e E l  if  there ex­
ists a(e) > 0 such that f is increasing on I n  [e - a(e) , e + a Ce)] .  Prove that if f is locally 
increasing at every point of I, then f is increasing on I .  

Section 5.6 Monotone and Inverse Functions 

Recall that if A S; JR, then a function f : A -+ JR is said to be increasing on A if whenever 
xl ' x2 E A and Xl ::::: X2' then f (Xl ) ::::: f (x2) .  The function f is said to be strictly increasing 
on A if whenever xl ' X2 E A and Xl < x2' then f(xl ) < f(x2) .  Similarly, g : A -+ JR is 
said to be decreasing on A if whenever xl ' x2 E A and Xl ::::: x2 then g(xl ) 2: g(x2) .  The 
function g is said to be strictly decreasing on A if whenever xl ' x2 E A and Xl < x2 then 
g(xl ) > g(x2) · 

If a function is either increasing or decreasing on A, we say that it is monotone on A. If 
f is either strictly increasing or strictly decreasing on A, we say that f is strictly monotone 
on A. 

We note that if f : A -+ JR is increasing on A then g := -f is decreasing on A; 
similarly if cp : A -+ JR is decreasing on A then 1/1 : =  -cp is increasing on A. 

In this section, we will be concerned with monotone functions that are defined on an 
interval J S; R We will discuss increasing functions explicitly, but it is clear that there are 
corresponding results for decreasing functions. These results can either be obtained directly 
from the results for increasing functions or proved by similar arguments. 

Monotone functions are not necessarily continuous. For example, if f (x) := 0 for 
X E [0, 1 ]  and f(x) := 1 for X E ( 1 , 2], then f is increasing on [0, 2], but fails to be 
continuous at X = 1 . However, the next result shows that a monotone function always has 
both one-sided limits (see Definition 4.3. 1 ) in JR at every point that is not an endpoint of its 
domain. 

5.6.1 Theorem Let J S; JR be an interval and let f : J -+ JR be increasing on J. Suppose 
that c E J is not an endpoint of J .  Then 
(i) 

(ii) 

lim f = sup{f(x) : X E J, X < c}, 
x-+c-

lim f = inf{f(x) : X E J, X > c}. 
x ..... c+ 

Proof. (i) First note that if X E J and X < c, then f(x) ::::: f (c) . Hence the set {f(x) : 
X E J, X < c}, which is nonvoid since c is not an endpoint of J, is bounded above by f (c). 
Thus the indicated supremum exists; we denote it by L. If e > 0 is given, then L - e is not 
an upper bound of this set. Hence there exists Ye E J, Ye < C such that L - e < f (Ye) ::::: L. 
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Since I is increasing, we deduce that ifoe := e - ye and ifO < e - Y < 0e , then Ye < Y < e 
so that 

L - e < I(ye) ::: I (y) ::: L .  
Therefore I I (y) - L I < e when 0 < e - Y < ° e ' Since e > 0 i s  arbitrary we infer that (.i) 
holds. 

The proof of (ii) is similar. Q.E.D. 

The next result gives criteria for the continuity of an increasing function I at a point e 
that is not an endpoint of the interval on which I is defined. 

5.6.2 Corollary Let I � lR be an interval and let I : I -+ lR be increasing on I .  Suppose 
that e E l  is not an endpoint of I .  Then the following statements are equivalent. 
(a) I is continuous at e. 
(b) lim 1 =  I (e) = lim I· 

X4C- X4C+ 

(c) sup{f(x) : x E I, x < e} = I(e) = inf{f (x) : x E I, x > e}. 

This follows easily from Theorems 5 .6. 1 and 4.3.3. We leave the details to the reader. 
Let I be an interval and let I : I -+ lR be an increasing function. If a is the left 

endpoint of I,  it is an exercise to show that I is continuous at a if and only if 

I(a) = inf {f(x) : x E I, a < x} 

or if and only if I(a) = lim I. Similar conditions apply at a right endpoint, and for 
x "'*a + 

decreasing functions. 
If I : I -+ lR is increasing on I and if e is not an endpoint of I, we define the jump of 

I at e to be lI(e) := lim I - lim I. (See Figure 5.6. 1 .) It follows from Theorem 5 .5 . 1 
x-+c+ x-+c-

that 

lI(e) = inf{f(x) : x E I, x > e} - sup{f(x) : x E I, x < e} 

for an increasing function. If the left endpoint a of I belongs to I ,  we define the jump of 
I at a to be II (a) : = lim I - I (a) .  If the right endpoint b of I belongs to I,  we define 

x",*a+ 

the jump of I at b to be lI (b) := I(b) - lim I·  
x",*b-

c 

Figure 5.6.1 The jump of f at c. 

5.6.3 Theorem Let I � lR be an interval and let I : I -+ lR be increasing on I .  If e E l, 
then I is continuous at e ifand only if lI (e) = O. 



5.6 MONOTONE AND INVERSE FUNCTIONS 151 

Proof. If c is not an endpoint, this follows immediately from Corollary 5 .6.2. If e E l  is 
the left endpoint of I, then ! is continuous at c if and only if ! (c) = lim !, which is 

x---+c+ 
equivalent to jf (c) = O. Similar remarks apply to the case of a right endpoint. Q.E.D. 

We now show that there can be at most a countable set of points at which a monotone 
function is discontinuous. 

5.6.4 Theorem Let I £ IR be an interval and let ! : I -+ IR be monotone on I. Then the 
set of points D £ I at which ! is discontinuous is a countable set. 

Proof. We shall suppose that ! is increasing on I .  It follows from Theorem 5 .6.3 that 
D = {x E I : jf (x) =1= O}. We shall consider the case that I := [a, b] is a closed bounded 
interval, leaving the case of an arbitrary interval to the reader. 

We first note that since ! is increasing, then jf (c) 2: 0 for all e E l . Moreover, if 
a ::::: Xl < . . .  < Xn ::::: b, then (why?) we have 

(1) 
whence it follows that 

jf (xl) + . . . + j/xn) ::::: !(b) - !(a). 

(See Figure 5 .6.2.) Consequently there can be at most k points in I = [a , b] where j/x) 2: 
(f(b) - !(a»/ k. We conclude that there is at most one point X E I where jf (x) = 

!(b) - !(a); there are at most two points in I where jf (x) 2: (f(b) - !(a» /2; at most 
three points in I where jf (x) 2: (f(b) - !(a» /3, and so on. Therefore there is at most a 
countable set of points X where j f (x) > O. But since every point in D must be included in 
this set, we deduce that D is a countable set. Q.E.D. 
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Theorem 5 .6.4 has some useful applications. For example, it was seen in Exercise 
5 .2. 12 that if h : ffi. � ffi. satisfies the identity 

(2) h ex + y) = hex) + hey) for all x , y E R 

and if h is continuous at a single point xo' then h is continuous at every point of R ThuS, 
if h is a monotone function satisfying (2), then h must be continuous on R [It follows 
from this that hex) = Cx for all x E ffi., where C : =  h(1 ) .] 

Inverse Functions ________________________ _ 

We shall now consider the existence of inverses for functions that are continuous on an 
interval I S; R We recall (see Section 1 . 1 )  that a function I :  I � ffi. has an inverse 
function if and only if I is injective (= one-one); that is, x ,  y E I and x =f:. y imply that 
I(x) =f:. I(y). We note that a strictly monotone function is injective and so has an inverse. 
In the next theorem, we show that if I : I � ffi. is a strictly monotone continuous function, 
then I has an inverse function g on J := 1(1) that is strictly monotone and continuous 
on J. In particular, if I is strictly increasing then so is g, and if I is strictly decreasing 
then so is g. 

5.6.5 Continuous Inverse Theorem Let I S; ffi. be an interval and let I : I � ffi. be 
strictly monotone and continuous on I . Then the function g inverse to I is strictly monotone 
and continuous on J : =  1(1). 

Proof. We consider the case that I is strictly increasing, leaving the case that I is strictly 
decreasing to the reader. 

Since I is continuous and I is an interval, it follows from the Preservation of Intervals 
Theorem 5 .3 . 10 that J := l(l) is an interval. Moreover, since I is strictly increasing on 
I , it is injective on I;  therefore the function g : J � ffi. inverse to I exists. We claim 
that g is strictly increasing. Indeed, if Yt ' Y2 E J with Yt < Y2' then Yt = I(xt) and Y2 = 

l(x2) for some xl ' x2 E I. We must have xt < x2 ; otherwise xt � x2' which implies that 
Yt = I(xt )  � l(x2) = Y2' contrary to the hypothesis that Yt < Y2 ' Therefore we have 
g(Yt ) = xt < x2 = g(Y2) ' Since Yt and Y2 are arbitrary elements of J with Yt < Y2' we 
conclude that g is strictly increasing on J. 

It remains to show that g is continuous on J. However, this is a consequence of the fact 
that g(J) = I is an interval. Indeed, if g is discontinuous at a point c E J, then the jump 
of g at c is nonzero so that lim g < lim g. If we choose any number x =f:. g(c) satisfying 

y->c- y->c+ 
lim g < x < lim g, then x has the property that x =f:. g(y) for any Y E J. (See Figure 

x�c- x-+c+ 5.6.3 .) Hence x � I, which contradicts the fact that I is an interval. Therefore we conclude 
that g is continuous on J.  Q.E.D. 

The nth Root Function 

We will apply the Continuous Inverse Theorem 5 .6.5 to the nth power function. We need 
to distinguish two cases: (i) n even, and (ii) n odd. 

(i) n even. In order to obtain a function that is strictly monotone, we restrict our 
attention to the interval l := [0, 00). Thus, let I(x) := xn for x E I . (See Figure 5.6.4.) We 
have seen (in Exercise 2. 1 .23) that if ° � x < Y, then I (x) = xn < yn = I (y); therefore I 
is strictly increasing on I .  Moreover, it follows from Example 5 .2.3( a) that I is continuous 
on I .  Therefore, by the Preservation of Intervals Theorem 5 .3 . 10, J := l(l) is an interval. 
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x �----------�L-� 

Figure 5.6.3 g (y) i= x for y E J. 

We will show that J = [0, (0). Let y � 0 be arbitrary; by the Archimedean Property, there 
exists k E N  such that 0 � y < k. Since 

f(O) = 0 � y < k � kn = f(k) , 
it follows from Bolzano's Intermediate Value Theorem 5.3.7 that y E J. Since y � 0 is 
arbitrary, we deduce that J = [0, (0). 

We conclude from the Continuous Inverse Theorem 5 .6.5 that the function g that is 
inverse to f(x) = xn on 1 =  [0, (0) is strictly increasing and continuous on J = [0, (0). 
We usually write 

g(x) = x l/n or g(x) = Vi 
for x � 0 (n even), and call x l/n = Vi the nth root of x � 0 (n even). The function g is 
called the nth root function (n even). (See Figure 5.6.5.) 

Since g is inverse to f we have 

g(J(x») = x and f (g(x») = x  for all X E [O, OO) . 
We can write these equations in the following form: 

( n) 
l/n X = x 

for all x E [0, (0) and n even. 

y 

��------------�X 

Figure 5.6.4 Graph of 
j(x) = xn 

(x � 0, n even). 

and 

y 

��----------__ x 

Figure 5.6.5 Graph of 
g(x) = x l/n (x � 0, n even). 
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(ii) n odd. In this case we let F(x) := xn for all x E �; by 5.2.3(a), F is continuous 
on R We leave it to the reader to show that F is strictly increasing on � and that F(�) = 

R (See Figure 5.6.6.) 
It follows from the Continuous Inverse Theorem 5 .6.5 that the function G that is inverse 

to F(x) = xn for x E �, is strictly increasing and continuous on R We usually write 

G(x) = x l/n or G(x) = Vi for x E �, n odd, 

and call x l/n the nth root of x E R The function G is called the nth root function (n odd). 
(See Figure 5 .6.7 .) Here we have 

for all x E � and n odd. 

y 

( n) l/n X = X 

----���----�x 

Figure 5.6.6 Graph of 
F(x) = xn (x E JR, n odd). 

Rational Powers 

and 

y 

-------+------� x 

Figure 5.6.7 Graph of 
G(x) = x l/n (x E JR, n odd). 

Now that the nth root functions have been defined for n E N, it is easy to define rational 
powers. 

5.6.6 Definition (i) If m, n E N  and x � 0, we define xm/n := (x l/n)m . 

(ii) If m, n E N  and x > 0, we define x-min := (x l/n)-m . 

Hence we have defined xr when r is a rational number and x > O. The graphs of x 1--* xr 
depend on whether r > 1 ,  r = 1 , 0 < r < 1 ,  r = 0, or r < O. (See Figure 5.6.8.) Since a 
rational number r E Q can be written in the form r = m / n with m E Z, n E N, in many 
ways, it should be shown that Definition 5.6.6 is not ambiguous. That is if r = m / n = p / q 
with m , p E Z and n , q E N and ifx > O, then (x l/n)m = (xl/q)P . We leave it as an exercise 
to the reader to establish this relation. 

5.6.7 Theorem lfm E Z, n E N, and x > 0, then xm/n = (xm) l/n . 

Proof. If x > 0 and m, n E Z, then (xmt = xmn = (xn)m .  Now let y := xm/n = 
(x l/n)m > 0 so that yn = ( x l/n)mr = ( x l/n)nr = xm .  Therefore it follows that y = 
(xm )l/n . Q.E.D. 

The reader should also show, as an exercise, that if x > 0 and r, S E Q, then 

xr Xs = xr+s = Xs xr and (xr)s = xrs = (xs), . 
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0 <  r <1  

r---------�MF----------------- r= O 

�----------�-------------------- x 

Figure 5.6.8 Graphs of x -+ xr (x 2: 0). 

Exercises for Section 5.6 

1. If I := [a, b] is an interval and I : I -+ JR is an increasing function, then the point a [respectively, 
b] is an absolute minimum [respectively, maximum] point for I on I.  If I is strictly increasing, 
then a is the only absolute minimum point for I on I.  

2. If I and g are increasing functions on an interval I s:; JR, show that I + g is an increasing 
function on I. If I is also strictly increasing on I, then I + g is strictly increasing on I .  

3. Show that both I(x) := x and g(x) := x - I are strictly increasing on I := [0, 1] , but that their 
product I g is not increasing on I.  

4. Show that if I and g are positive increasing functions on an interval I,  then their product I g is 
increasing on I.  

5. Show that if I := [a , b] and I : I -+ JR is  increasing on I ,  then I is  continuous at a if  and only 
if I(a) = inf{f(x) : x E (a, b]) . 

6. Let I s:; JR be an interval and let I : I -+ JR be increasing on I.  Suppose that e E l  is not an 
endpoint of I.  Show that I is continuous at c if and only if there exists a sequence (xn) in I 
such that xn < c for n = I, 3, 5, . . . ; xn > c for n = 2, 4, 6, . . . ; and such that c = lim(xn) and 
I(c) = lim (J(xn»). 

7. Let I s:; JR be an interval and let I : I -+ JR be increasing on I.  If c is not an endpoint of I,  show 
• that the jump jf (c) of I at c is given by inf{f(y) - I(x) : x < c < y, x, y E l}. 

8. Let I, g be increasing on an interval I s:; JR and let I(x) > g(x) for all x E I .  If Y E l(l) n g (l) ,  
show that I- I (y) < g-I (y). [Hint: First interpret this statement geometrically.] 

9. Let I := [0, 1] and let I : I -+ JR be defined by I(x) := x for x rational, and I(x) : =  1 - x for 
x irrational. Show that I is injective on I and that I (f (x» = x for all x E I .  (Hence I is its 
own inverse function!) Show that I is continuous only at the point x = � .  



156 CHAPTER 5 CONTINUOUS FUNCTIONS 

10. Let I := [a, b] and let I : I --+ R be continuous on I .  If I has an absolute maximum [respec­
tively, minimum] at an interior point c of I ,  show that I is not injective on I .  

1 1 .  Let I(x) := x for x E [0, 1 ] ,  and I(x) := 1 + x for x E ( 1 , 2]. Show that I and rl are strictly 
increasing. Are I and 1- 1 continuous at every point? 

12. Let I : [0, 1] --+ R be a continuous function that does not take on any of its values twice and 
with 1(0) < 1(1) .  Show that I is strictly increasing on [0, 1 ] .  

13 .  Let h : [0, 1 ]  --+ R be a function that takes on each of its values exactly twice. Show that h 
cannot be continuous at every point. [Hint: If c 1 < c2 are the points where h attains its supremum, 
show that c1 = 0, c2 = 1 .  Now examine the points where h attains its infimum.] 

14. Let x E R, x > 0. Show that if m, p E Z, n, q E N, and mq = np, then (x l/n)m = (x 1/q )p . 
15. If x E R, x > 0, and if r, S E Q, show that xr Xs = xrH = XS xr and (xr)s = xrs = (xs)' . 
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DIFFERENTIATION 

Prior to the seventeenth century, a curve was generally described as a locus of points 
satisfying some geometric condition, and tangent lines were obtained through geometric 
construction. This viewpoint changed dramatically with the creation of analytic geometry 
in the 1630s by Rene Descartes ( 1596-1650) and Pierre de Fermat ( 1601-1665). In this 
new setting geometric problems were recast in terms of algebraic expressions, and new 
classes of curves were defined by algebraic rather than geometric conditions. The concept 
of derivative evolved in this new context. The problem of finding tangent lines and the 
seemingly unrelated problem of finding maximum or minimum values were first seen to 
have a connection by Fermat in the 1630s. And the relation between tangent lines to curves 
and the velocity of a moving particle was discovered in the late 1660s by Isaac Newton. 
Newton's theory of "fluxions", which was based on an intuitive idea of limit, would be 
familiar to any modem student of differential calculus once some changes in terminology 
and notation were made. But the vital observation, made by Newton and, independently, by 
Gottfried Leibniz in the 1680s, was that areas under curves could be calculated by reversing 
the differentiation process. This exciting technique, one that solved previously difficult area 
problems with ease, sparked enormous interest among the mathematicians of the era and 
led to a coherent theory that became known as the differential and integral calculus. 

Isaac Newton 
Isaac Newton (1642-1727) was born in Woolsthorpe, in Lincolnshire, Eng­
land, on Christmas Day; his father, a farmer, had died three months earlier. 
His mother remarried when he was three years old and he was sent to live 
with his grandmother. He returned to his mother at age eleven, only to be 
sent to boarding school in Grantham the next year. Fortunately, a perceptive 
teacher noticed his mathematical talent and, in 1661 , Newton entered Trinity 
College at Cambridge University, where he studied with Isaac Barrow. 

When the bubonic plague struck in 1665-1666, leaving dead nearly 
70,000 persons in London, the university closed and Newton spent two years back in Woolsthorpe. 
It was during this period that he formulated his basic ideas concerning optics, gravitation, and his 
method of "fluxions", later called "calculus". He returned to Cambridge in 1667 and was appointed 
Lucasian Professor in 1669. His theories of universal gravitation and planetary motion were 
published to world acclaim in 1687 under the title Philosophite Naturalis Principia Mathematica. 
,However, he neglected to publish his method of inverse tangents for finding areas and other work 
in calculus, and this led to a controversy over priority with Leibniz. 

Following an illness, he retired from Cambridge University and in 1696 was appointed War­
den of the British mint. However, he maintained contact with advances in science and mathematics 
and served as President of the Royal Society from 1703 until his death in 1727. At his funeral, 
Newton was eulogized as "the greatest genius that ever existed". His place of burial in Westminster 
Abbey is a popular tourist site. 
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In this chapter we will develop the theory of differentiation. Integration theory, includ­
ing the fundamental theorem that relates differentiation and integration, 'will be the subject 
of the next chapter. We will assume that the reader is already familiar with the geometrical 
and physical interpretations of the derivative of a function as described in introductory 
calculus courses. Consequently, we will concentrate on the mathematical aspects of the 
derivative and not go into its applications in geometry, physics, economics, and so on. 

The first section is devoted to a presentation of the basic results concerning the dif­
ferentiation of functions. In Section 6.2 we discuss the fundamental Mean Value Theorem 
and some of its applications. In Section 6.3 the important L'Hospital Rules are presented 
for the calculation of certain types of "indeterminate" limits. 

In Section 6.4 we give a brief discussion of Taylor's Theorem and a few of its 
applications-for example, to convex functions and to Newton's Method for the location 
of roots. 

Section 6.1 The Derivative 

In this section we will present some of the elementary properties of the derivative. We begin 
with the definition of the derivative of a function. 

6.1.1 Definition Let I � � be an interval, let f : I -+ �, and let e E l . We say that a 
real number L is the derivative of f at c if given any e > 0 there exists 8 (e) > 0 such that 
if x E I satisfies 0 < Ix - cl < 8 (e), then 

( 1 ) [ f(X) - f(c) _ L [ < e. x - c 
In this case we say that f is differentiable at c, and we write f' (c) for L. 

(2) 
In other words, the derivative of f at c is given by the limit f'(c) = lim 

f(x) - f(c) 
x-+c X - C 

provided this limit exists. (We allow the possibility that c may be the endpoint of the 
interval.) 

Note It is possible to define the derivative of a function having a domain more general 
than an interval (since the point c need only be an element of the domain and also a cluster 
point of the domain) but the significance of the concept is most naturally apparent for 
functions defined on intervals. Consequently we shall limit our attention to such functions. 

Whenever the derivative of f : I -+ � exists at a point e E l, its value is denoted by f' (c). In this way we obtain a function f' whose domain is a subset of the domain of f. 
In working with the function f', it is convenient to regard it also as a function of x. For 
example, if f(x) := x2 for x E �, then at any c in � we have , f(x) - f(c) x2 - c2 f (c) = lim = lim --- = lim (x + c) = 2c . 

x-+c x - c x-+c X - C x-+c 
Thus, in this case, the function f' is defined on all of � and f' (x) = 2x for x E R 
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We now show that continuity of f at a point c is a necessary (but not sufficient) 
condition for the existence of the derivative at c. 

6.1.2 Theorem If f: I -+ JR has a derivative at c E I, then f is continuous at c. 

Proof. For all x E I, x =1= c, we have 

f(x) - f(c) = (f(X) - f(C» ) (x - c). x - c  
Since f' (c) exists, we may apply Theorem 4.2.4 conceming the limit of a product to 
conclude that 

. . (f(X) - f(C» ) ( . ) hm(f(x) - f(c» = hm hm(x - c) 
x-+c x--+c X - C x--+c 

= f'(c) · O = o. 
Therefore, lim f(x) = f(c) so that f is continuous at c. 

x-->c 
Q.E.D. 

The continuity of f: I -+ JR at a point does not assure the existence of the derivative 
at that point. For example, if f (x) := Ix I for x E JR, then for x =1= 0 we have (f (x) -
f (0» I (x - 0) = Ix II x which is equal to 1 if x > 0, and equal to - 1  if x < O. Thus the limit 
at 0 does not exist [see Example 4. 1 .  lO(b)] , and therefore the function is not differentiable 
at O. Hence, continuity at a point c is not a sufficient condition for the derivative to exist 
at c. 

Remark By taking simple algebraic combinations of functions of the form x t-+ Ix - c l , 
it i s  not difficult to construct continuous functions that do not have a derivative at a finite (or 
even a countable) number of points. In 1872, Karl Weierstrass astounded the mathematical 
world by giving an example of a function that is continuous at every point but whose 
derivative does not exist anywhere. Such a function defied geometric intuition about curves 
and tangent lines, and consequently spurred much deeper investigations into the concepts 
of real analysis. It can be shown that the function f defined by the series 

00 1 f(x) := L 2n cos(3nx) 
n=O 

has the stated property. A very interesting historical discussion of this and other examples of 
continu�)Us, nondifferentiable functions is given in Kline, p. 955-966, and also in Hawkins, 
p. 44-46. A detailed proof for a slightly different example can be found in Appendix E. 

There are a number of basic properties of the derivative that are very useful in the 
calculation of the derivatives of various combinations of functions. We now provide the 
justification of some of these properties, which will be familiar to the reader from earlier 
courses. 

6.1.3 Theorem Let I S; JR be an interval, let c E I, and let f : I -+ JR and g: I -+ JR 
be functions that are differentiable at c. Then: 
(a) If a E JR, then the function af is differentiable at c, and 

(3) (a!)' (c) = af'(c). 
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(b) The function f + g is differentiable at c, and 

(4) (f + g)'(c) = f'(c) + g'(c) . 

(c) (Product Rule) The function fg is differentiable at c, and 
(5) (fg)'(c) = f'(c)g(c) + f(c)g'(c). 

(d) (Quotient Rule) 

(6) 

If g(c) i= 0, then the function fig is differentiable at c, and (L)' (c) = 
f'(c)g(c) - f

2
(c)g'(C) . g (g(c») 

Proof. We shall prove (c) and (d), leaving (a) and (b) as exercises for the reader. 
(c) Let p : =  fg;  then for x E I, x i= c, we have 

p(x) - p(c) f (x)g(x) - f(c)g(c) 
= x - c  x - c 

f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c) 
x - c 

= 
f(x) - f(c) . g(x) + f(c) . 

g(x) - g(c) . 
x - c x - c 

Since g is continuous at c, by Theorem 6. 1 .2, then lim g(x) = g(c). Since f and g are 
x-.-+c 

differentiable at c, we deduce from Theorem 4.2.4 on properties of limits that 

lim 
p(x) - p(c) 

= f'(c)g(c) + f(c)g'(c) . 
x-.-+c x - C 

Hence p := f g is differentiable at c and (5) holds. 
(d) Let q := fig. Since g is differentiable at c, it is continuous at that point (by 

Theorem 6.1 .2). Therefore, since g(c) i= 0, we know from Theorem 4.2.9 that there exists 
an interval J S; I with c E J such that g(x) i= ° for all x E J.  For x E J, x i= c, we have 

q (x) - q(c) f(x)/g(x) - f(c)/g(c) f (x)g(c) - f(c)g(x) 
= = 

x - c x - c g(x)g(c)(x - c) 
f(x)g(c) - f(c)g(c) + f(c)g(c) - f(c)g(x) 

g(x)g(c)(x - c) 

= 
1 [f(X) - f(c) . g(c) _ f(c) . 

g(x) - g(C) ] . 
g(x)g(c) x - c x - c 

Using the continuity of g at c and the differentiability of f and g at c, we get 

q'(c) = lim q (x) - q (c) 
= 

f'(c)g(c) - f(c)g'(c) 
x-.-+c x - C (g(c»)2 

Thus, q = fig is differentiable at c and equation (6) holds. Q.E.D. 

Mathematical Induction may be used to obtain the following extensions of the differ­
entiation rules. 

6.1.4 Corollary If fl , f2 ' .
. .  , fn are functions on an interval I to lR that are differentiable 

at c E I ,  then: 

(a) The function fl + f2 
+ 

. . .  + fn is differentiable at c and 
(7) (fl + f2 + . . .  + fn)'(c) = f{(c) + f;(c) + . . .  + f�(c) . 
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(b) The function fd2 ' . .  fn is differentiable at c, and 
(8) (fd2 ' " fn)'(c) = f{(c)f2(c) " , fn (c) + fl (c)f�(c) · · ·  fn (c) + . . .  + fl (c)f2 (c) . . .  f� (c) . 

An important special case of the extended product rule (8) occurs if the functions are 
equal, that is, fl = f2 = . . .  = fn = f. Then (8) becomes 

(9) (r)'(c) = n(f(c»n-I f'(c) . 
In particular, if we take f(x) := x , then we find the derivative of g(x) := xn to be g' (x) = 
nxn-I , n E N. The formula is extended to include negative integers by applying the Quotient 
Rule 6 .1 .3(d). 

Notation If I S; JR is an interval and f : I --+ JR, we have introduced the notation f' to 
denote the function whose domain is a subset of I and whose value at a point c is the 
derivative f'(c) of f at c. There are other notations that are sometimes used for f'; for 
example, one sometimes writes Df for f'. Thus one can write formulas (4) and (5) in the 
form: 

D(f + g) = Df + Dg, D(fg) = (Df) . g + f ·  (Dg) . 
When x is the "independent variable", it is common practice in elementary courses to write 
df/dx for f'. Thus formula (5) is sometimes written in the form 

d (df ) (dg ) 
dx (J(x)g(x») = dx (x) g(x) + f(x) dx (x) . 

This last notation, due to Leibniz, has certain advantages. However, it also has certain 
disadvantages and must be used with some care. 

The Chain Rule _______________________ _ 

We now tum to the theorem on the differentiation of composite functions known as the 
"Chain Rule". It provides a formula for finding the derivative of a composite function g o  f 
in terms of the derivatives of g and f. 

We first establish the following theorem concerning the derivative of a function at a 
point that gives us a very nice method for proving the Chain Rule. It will also be used to 
derive the formula for differentiating inverse functions. 

6.1.5 Caratheodory's Theorem Let f be defined on an interval I containing the point c. 
Then f is differentiable at c if and only if there exists a function cp on I that is continuous 
at c and satisfies 
(10) f(x) - f(c) = cp(x)(x - c) for x E I. 
In this case, we have cp(c) = f'(c). 
�roof. (::::}) If f'(c) exists, we can define cp by { f(x) - f(c) 

cp(x) := x - c 
f'(c) 

for x =1= c, x E I, 
for x = c. 

The continuity of cp follows from the fact that lim cp (x) = f' (c). If x = c, then both sides 
x->-c 

of (10) equal 0, while if x =1= c, then multiplication of cp(x) by x - c gives (10) for all other 
x E I .  
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(�) Now assume that a function ep that is continuous at e and satisfying (10) exists. If 
we divide ( 10) by x - e =1= 0, then the continuity of ep implies that 

. . f (x) - fee) ep(e) = 11m ep(x) = 11m -'------'--
x�c x�c X - e 

exists. Therefore f is differentiable at e and f'ee) = ep(e) . Q.E.D. 

To illustrate Caratheodory's Theorem, we consider the function f defined by f(x) := 

x3 for x E R For e E JR, we see from the factorization 

x3 - e3 = (x2 + ex + e2) (x - c) 
that ep(x) := x2 + ex + e2 satisfies the conditions of the theorem. Therefore, we conclude 
that f is differentiable at e E JR and that f'ee) = ep(e) = 3e2 • 

We will now establish the Chain Rule. If f is differentiable at e and g is differentiable 
at fee), then the Chain Rule states that the derivative of the composite function g 0 f at e 
is the product (g 0 f)'(e) = g'(f(e» . f' ee) . Note this can be written 

(g 0 f)' = (g' 0 f) . f' . 

One approach to the Chain Rule is the observation that the difference quotient can be 
written, when f(x) =1= fee), as the product 

g(J(x») - g(J(e») g (J(x») - g(/(e») f(x) - fee) 
�--�--�--� = �--�--�--� 

x - e f(x) - fee) x - e 
This suggests the correct limiting value. Unfortunately, the first factor in the product on 
the right is undefined if the denominator f (x) - f (c) equals 0 for values of x near e, and 
this presents a problem. However, the use 'of Caratheodory's Theorem neatly avoids this 
difficulty. 

6.1.6 Chain Rule Let J , I be intervals in JR, let g : J --+ JR and f : I --+ JR be functions 
such that f(I) � J, and let e E l. If f is differentiable at e and if g is differentiable at 
f (c), then the composite function g 0 f is differentiable at e and 

( 1 1 )  (g 0 f)'(e) = g'(f(e» . f'ee) . 

Proof. Since f'ee) exists, Caratheodory's Theorem 6. 1 .5 implies that there exists a func­
tion ep on I such that ep is continuous at e and f(x) - fee) = ep(x) (x - c) for x E I, 
and where ep(e) = f'ee) . Also, since gl(J(e») exists, there is a function 1/1 defined on J 
such that 1/1 is continuous at d := fee) and g(y) - g(d) = 1/I (y)(y - d) for y E J, where 
1{! (d) = g'(d). Substitution of y = f(x) and d = fee) then produces 

g(J(x») - g(J(e») = 1{!(J(x») (f(x) - fee») = [ (1/1 0 f(x») . ep(x)](x - c) 

for all x E I such that f (x) E J . Since the function (1/1 0 f) . ep is continuous at e and its 
value at e is g'(f(e» . f' ee), Caratheodory's Theorem gives ( 1 1). Q.E.D. 

If g is differentiable on J, if f is differentiable on I and if f(I) � J, then it follows 
from the Chain Rule that (g 0 f)' = (g' 0 f) . f' which can also be written in the fonn 
D(g 0 f) = (Dg 0 f) . Df · 
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6.1.7 Examples (a) If f : I -+ � is differentiable on I and g(y) := yn for y E � and 
n E N, then since g' (y) = nyn-l , it follows from the Chain Rule 6. 1 .6 that 

(g 0 f)' (x) = g' (J (x») . f' (x) for x E I. 
Therefore we have (r)'ex) = n (J (x) r-1 f' (x) for all x E I as was seen in (9). 
(b) Suppose that f : I -+ � is differentiable on I and that f (x) =j:. ° and f' (x) =j:. ° for 
x E I . If hey) := I/y for y =j:. 0, then it is an exercise to show that h' (y) = - Ill for 
y E �, Y =j:. 0. Therefore we have 

(�)'(X) = (h 0 f)'(x) = h'(J(x»)f'(x) :::;: - f'(x) 
2 f (J(x») 

for x E I. 

(c) The absolute value function g(x) := Ix l is differentiable at all x =j:. ° and has derivative 
g' (x) = sgn(x) for x =j:. 0. (The signum function is defined in Example 4. I . 1O(b).) Though 
sgn is defined everywhere, it is not equal to g' at x = ° since g' (0) does not exist. 

Now if f is a differentiable function, then the Chain Rule implies that the function 
g 0 f = I f I is also differentiable at all points x where f (x) =j:. 0, and its derivative is given 
by 

I f l ' (x) = sgn (f(x» . f'(x) = { �'j��X) if f(x) > 0, 
if f(x) < 0. 

If f is differentiable at a point c with f (c) = 0, then it is an exercise to show that I f I is 
differentiable at c if and only if f' (c) = 0. (See Exercise 7.) 

For example, if f(x) := x2 - 1 for x E �, then the derivative of its absolute value 
If l (x) = Ix2 - 1 1  is equaI to I f I' (x) = sgn(x2 - 1)  . (2x) for x =j:. 1 ,  - 1 .  See Figure 6. 1 . 1  
for a graph of I f I · 

y 

-2 -1 2 

Figure 6.1.1 The function If l (x) = Ix2 - 1 1 . 

(el) It will be proved later that if Sex) := sinx and C(x) := cos x for all x E �, then 
S'(x) = cos x = C(x) and C'(x) = - sinx = -Sex) 

for all x E R If we use these facts together with the definitions 
sin x tanx := -- , cos x 

1 sec x := --, cos x 
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for x i= (2k + l)n /2, k E Z, and apply the Quotient Rule 6.1 .3(d), we obtain 
(cos x) (cos x) - (sinx)( - sinx) 2 D tanx = 2 = (sec x) , 

(cos x) 
o - 1 ( - sin x) sin x D sec x = 2 = 2 = (sec x) (tanx) 

(cos x) (cos x) 
for x i= (2k + l )n /2, k E Z. 

Similarly, since 
cos x cotx := -.-,  
smx 

for x i= kn, k E Z, then we obtain 

D cotx = -(CSC X)2 and 

for x i= kn, k E Z. 
(e) Suppose that f is defined by { x2 sin( 1/x) f (x) := 0 

1 csc x := -.­smx 

D csc x = -(csc x)(cotx) 

for x i= 0, 
for x = o. 

If we use the fact that D sin x = cos x for all x E lR. and apply the Product Rule 6.1 .3(c) 
and the Chain Rule 6.1 .6, we obtain (why?) 

f' (x) = 2x sin(1 /x) - cos(1/x) for x i= O. 

If x = 0, none of the calculational rules may be applied. (Why?) Consequently, the deriva­
tive of f at x = 0 must be found by applying the definition of derivative. We find that 

f(x) - f(O) x2 sin ( 1/x) . . f' (O) = lim = lim = hm x sm(l /x) = O. x-->o X - 0 x-->O X x-->O 

Hence, the derivative f' of f exists at all x E R However, the function f' does not have a 
limit at x = 0 (why?), and consequently f' is discontinuous at x = O. Thus, a function f 
that is differentiable at every point of lR. need not have a continuous derivative f'. D 

Inverse Functions 

We will now relate the derivative of a function to the derivative of its inverse function, 
when this inverse function exists. We will limit our attention to a continuous strictly 
monotone function and use the Continuous Inverse Theorem 5.6.5 to ensure the existence 
of a continuous inverse function. 

If f is a continuous strictly monotone function on an interval I, then its inverse function 
g = f-1 is defined on the interval J := f(l) and satisfies the relation 

g(f(x») = x for x E I . 
If e E l  and d := f(c), and if we knew that both f'(c) and g'(d) exist, then we could 
differentiate both sides of the equation and apply the Chain Rule to the left side to get 
g' (f(c») . f' (c) = 1 .  Thus, if f' (c) i= 0, we would obtain 

, 1 
g (d) = 

f'(c) ' 
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However, it is necessary to deduce the differentiability of the inverse function g from the 
assumed differentiability of f before such a calculation can be performed. This is nicely 
accomplished by using Caratheodory's Theorem. 

6.1.8 Theorem Let I be an interval in JR and let f : I -+ JR be strictly monotone and 
continuous on I .  Let J : =  f(l) and let g : J -+ JR be the strictly monotone and continuous 
function inverse to f. If f is differentiable at e E l  and f' (e) =j:. 0, then g is differentiable 
at d := fee) and 

(12) I I 1 g (d) = f'ee) = f'(g(d» ' 

Proof. Given e E JR, we obtain from Caratbeodory's Theorem 6. 1 .5 a function q; on I 
with properties that q; is continuous at e, f(x) - fee) = q;(x)(x - e) for x E I, and q;(e) = 
f'ee) . Since q;(e) =j:. 0 by hypothesis, there exists a neighborhood V := (e - 8 ,  e + 8) such 
that q;(x) =j:. 0 for all x E V n I .  (See Theorem 4.2.9.) If U := f(V n I) , then the inverse 
function g satisfies f (g (y ») = y for all y E U,  so that 

y - d = f(g(y») - fee) = q;(g(y») . (g(y) - g(d») . 
Since q;(g(y» =j:. 0 for y E U,  we can divide to get 

1 g(y) - g(d) = q;(g(y») 
. (y - d). 

Since the function I / (q; 0 g) is continuous at d, we apply Theorem 6. 1 .5 to conclude that 
g'(d) exists and g'(d) = I/q;(g(d») = I /q;(e) = Ilf'(e). Q.E.D. 

Note The hypothesis, made in Theorem 6.1 .8, that f'ee) =j:. 0 is essential. In fact, if 
f'ee) = 0, then the inverse function g is never differentiable atd = fee), since the assumed 
existence of g'(d) would lead to 1 = f'(e)g' (d) = 0, which is impossible. The function 
f(x) := x3 with e = 0 is such an example. 

6.1.9 Theorem Let I be an interval and let f : I -+ JR be strictly monotone on I .  Let 
J := f(l) and let g : J -+ JR be the function inverse to f. Iff is differentiable on I and 
!' (x) =j:. 0 for x E I, then g is differentiable on J and 

(13) I 1 g = f' o g ' 

Proof. If f is differentiable on I, then Theorem 6. 1 .2 implies that f is continuous on I , 
and by the Continuous Inverse Theorem 5 .6.5, the inverse function g i s  continuous on J. 
Equation ( 13) now follows from Theorem 6. 1 .8 . Q.E.D. 

�emark If f and g are the functions of Theorem 6.1 .9, and if x E I and y E J are related 
by y = f(x) and x = g(y), then equation ( 13) can be written in the form 

I 1 I 1 g (y) = (f' O g)(y) , y E J, or (g 0 f)(x) = f'(X) , x E I. 

It can also be written in the form g' (y) = 1 I f' (x), provided that it is kept in mind that x 
and y are related by y = f(x) and x = g(y). 
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6.1.10 Examples (a) The function f : JR -+ JR defined by f(x) := x5 + 4x + 3 is con­
tinuous and strictly monotone increasing (since it is the sum of two strictly increasing func­
tions). Moreover, f' (x) = 5x4 + 4 is never zero. Therefore, by Theorem 6.1 .8, the inverse 
function g = f-l is differentiable at every point. If we take c = 1 ,  then since f(1) = 8, 
we obtain g'(8) = g'(f(1» = I /f'(1) = 1 /9. 
(b) Let n E N  be even, let I := [0, 00), and let f(x) := xn for x E I. It was seen at the 
end of Section 5.6 that f is strictly increasing and continuous on I , so that its inverse 
function g(y) :=  yl/n for y E I := [0, 00) is also strictly increasing and continuous on 1 .  
Moreover, we have f' (x) = nxn-l for all x E I .  Hence it follows that if y > 0 , then g '  (y) 
exists and 

1 , 1 
g (y) = f'(g(y») n (g(y) r-l - ny<n-l)/n ' 

Hence we deduce that 
g'(y) = 

�y(1jn)-l n for y > O. 
However, g is not differentiable at O. (For a graph of f and g, see Figures 5.6.4 and 5.6.5.) 
(c) Let n E N, n =P 1, be odd, let F(x) := xn for x E JR, and let G(y) := yl/n be its inverse 
function defined for all y E R As in part (b) we find that G is differentiable for y =P 0 
and that G'(y) = ( I/n)y(1/n)-l for y =P O. However, G is not differentiable at 0, even 
though G is differentiable for all y =P O. (For a graph of F and G, see Figures 5.6.6 and 
5 .6.7.) 
(d) Let r := min be a positive rational number, let I := [0, 00), and let R(x) := xr for 
x E I .  (Recall Definition 5 .6.6.) Then R is the composition of the functions f(x) := xm 
and g(x) := x l/n , x E I .  That is, R(x) = f(g(x» for x E I .  If we apply the Chain Rule 
6. 1 .6 and the results of (b) [or (c), depending on whether n is even or odd], then we obtain 

1 
R'(x) = f' (g(x»)g'(x) = m(x l/n )m-l . _x(l/n)-l n m 

= _x(m/n)-l = rxr-l n 
for all x > O. If r > 1 ,  then it is an exercise to show that the derivative also exists at x = 0 
and R' (0) = O. (For a graph of R see Figure 5 .6.8.) 
(e) The sine function is strictly increasing on the interval I := [-Jr /2, Jr /2] ; therefore 
its inverse function, which we will denote by Arcsin, exists on I : = [- 1 ,  1 ] .  That is, if 
x E [-Jr /2, Jr /2] and y E [-1 , 1 ]  then y = sin x if and only if Arcsin y = x . 1t was asserted 
(without proof) in Example 6.1 .7(d) that sin is differentiable on I and that D sinx = 

cos x for x E I. Since cos x =P 0 for x in (-Jr /2, Jr /2) it follows from Theorem 6. 1 .8 that 
- 1 1 D Arcsin y = --- = --D sin x cos x 

1 1 = = ---=== 
JI - (sinx)2 11="7 

for all y E (-I} 1 ) .  The derivative of Arcsin does not exist at the points - 1  and 1 .  0 

Exercises for Section 6.1 

1 .  Use the definition to find the derivative of each of the following functions: 
(a) f(x) := x3 for x E JR, (b) g (x) := l /x for x E JR, x i= 0, 
(c) h (x) := y'x for x > 0, (d) k(x) := l/y'x for x > O. 
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2. Show that f (x) := x 1j3 , x E JR, is not differentiable at x = O. 

3. Prove Theorem 6. 1 .3(a), (b). 

4. Let f : JR --+ JR be defined by f(x) := x2 for x rational, f (x) := 0 for x irrational. Show that 
f is differentiable at x = 0, and find f' (0). 

5. Differentiate and simplify: 
x 

(b) g(x) := J5 - 2x + x2, (a) f(x) := --2 ' l + x 
(c) h (x) := (sin xk)m for m, k E N, (d) k (x) := tan(x2) for Ix l  < J7r/2. 

6. Let n E N and let f : JR --+ JR be defined by f(x) := xn for x 2: 0 and f(x) := 0 for x < O. For 
which values of n is f' continuous at O? For which values of n is f' differentiable at O? 

7. Suppose that f : JR --+ JR is differentiable at e and that f(e) = O. Show that g(x) := If(x) 1  is 
differentiable at e if and only if f' (e) = O. 

8. Determine where each of the following functions from JR to JR is differentiable and find the 
derivative: 
(a) f(x) := Ix l  + Ix + l I . 
(c) h (x) := x lx l ,  

(b) g (x) := 2x + lx i , 
(d) k (x) := I sin x l , 

9. Prove that if f : JR --+ JR is an even function [that is, f(-x) = f(x) for all x E JR] and has a 
derivative at every point, then the derivative f' is an odd function [that is, f'(-x) = -f'(X) 
for all x E JR]. Also prove that if g : JR --+ JR is a differentiable odd function, then g' is an even 
function. 

10. Let g : JR --+ JR be defined by g(x) := x2 sin(1/x2) for x =j:. 0, and g (O) := O. Show that g is 
differentiable for all x E R Also show that the derivative g' is not bounded on the interval 
[- 1 , 1] . 

1 1 . Assume that there exists a function L : (0, (0) --+ JR such that L' (x) = 1/ x for x > O. Calculate 
the derivatives of the following functions: 
(a) f(x) := L(2x + 3) for x > 0, 

(c) h (x) := L(ax) for a > 0, x > 0, 

(b) g(x) := (L(X2» 3 for x > 0, 

(d) k(x) := L(L(x» when L (x) > 0, x > O. 

12. If r > 0 is a rational number, let f : JR --+ JR be defined by f(x) := xr sin(1/x) for x =j:. 0, and 
f (0) := O. Determine those values of r for which f' (0) exists. 

l3 .  If f : JR --+ JR is differentiable at e E JR, show that 

f'(e) = lim (n{f(e + l /n) - f(e)} ) . 

However, show by example that the existence of the limit of this sequence does not imply the 
existence of f'(e) .  

14. Given that the function h (x) := x3 + 2x + 1 for x E JR has an inverse h-I on JR, find the value 
of (h- I )' (y) at the points corresponding to x = 0, 1 ,  - 1 .  

15. Given that the restriction of the cosine function cos to 1 := [0, 7r] is strictly decreasing and 
that cos O = 1 ,  COS 7r = - 1 ,  let J := [-1 ,  1] ,  and let Arccos: J --+ JR be the function inverse 
to the restriction of cos to I .  Show that Arccos is differentiable on (-1 ,  1 )  and D Arccos y = 
(- 1)/(1 _ /) 1/2 for y E (- 1,  1 ) .  Show that Arccos is not differentiable at - 1  and 1 . 

. 

16. Given that the restriction of the tangent function tan to 1 := (-7r /2, 7r /2) is strictly increasing 
and that tan(I) = JR, let Arctan: JR --+ JR be the function inverse to the restriction of tan to I .  
Show that Arctan is differentiable on JR and that DArctan(y) = (1  + y2)- 1 for y E R 

17. Let f : 1 --+ JR be differentiable at e E l . Establish the Straddle Lemma: Given s > 0 there 
exists 8 (s) > 0 such that if u ,  V E l  satisfy e - 8 (s) < u ::::: e ::::: v < e + 8 (s), then we have 
If (v) - f(u) - (v - u)j' (e) 1 ::::: s(v - u). [Hint: The 8 (s) is given by Definition 6. 1 . 1 .  Sub­
tract and add the term f(e) - ef' (e) on the left side and use the Triangle Inequality.] 

.' 
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Section 6.2 The Mean Value Theorem 

The Mean Value Theorem, which relates the values of a function to values of its derivative, 
is one of the most useful results in real analysis. In this section we will establish this 
important theorem and sample some of its many consequences. 

We begin by looking at the relationship between the relative extrema of a function 
and the values of its derivative. Recall that the function f : I -+ lR is said to have a 
relative maximum [respectively, relative minimum] at e E l  if there exists a neighborhood 
V : =  Vo (e) of e such that f(x) :s fee) [respectively, fee) :s f(x)] for all x in V n I .  We 
say that f has a relative extremum at e E l  if it has either a relative maximum or a relative 
minimum at e. 

The next result provides the theoretical justification for the familiar process of finding 
points at which f has relative extrema by examining the zeros of the derivative. However, 
it must be realized that this procedure applies only to interior points of the interval. For 
example, if f(x) := x on the interval l := [0, 1 ] ,  then the endpoint x = 0 yields the unique 
relative minimum and the endpoint x = 1 yields the unique maximum of f on I ,  but neither 
point is a zero of the derivative of f. 
6.2.1 Interior Extremum Theorem Let e be an interior point of the interval I at which 
f: I -+ lR has a relative extremum. If the derivative of f at e exists, then !, (c) = O. 
Proof. We will prove the result only for the case that f has a relative maximum at e; the 
proof for the case of a relative minimum is similar. 

If f' (c) > 0, then by Theorem 4.2.9 there exists a neighborhood V S; I of e such that 
f(x) - fee) 

> 0 x - e 
If x E V and x > e, then we have 

for x E V, x =1= e. 

f(x) - fee) = (x - c) . f(x) - fee) 
> O. 

x - e 
But this contradicts the hypothesis that f has a relative maximum at e. Thus we cannot 
have f'(e) > O. Similarly (how?), we cannot have f'(e) < O. Therefore we must have 
f'(e) = O. Q.E.D. 

6.2.2 Corollary Let f: I -+ lR be continuous on an interval I and suppose that f has a 
relative extremum at an interior point e of I. Then either the derivative of f at e does not 
exist, or it is equal to zero. 

We note that if f(x) := I x l  on r := [- 1 ,  1 ] ,  then f has an interior minimum at x = 0; 
however, the derivative of f fails to exist at x = o. 

6.2.3 Rolle's Theorem Suppose that f is continuous on a closed interval I := [a, b), that 
the derivative f' exists at every point of the open interval (a, b), and that f(a) = feb) = O. 
Then there exists at least one point e in (a , b) such that f'(e) = O. 
Proof. If f vanishes identically on I, then any e in (a , b) will satisfy the conclusion of 
the theorem. Hence we suppose that f does not vanish identically; replacing f by -f 
if necessary, we may suppose that f assumes some positive values. By the Maximum­
Minimum Theorem 5 .3.4, the function f attains the value sup{f(x) : x E I }  > 0 at some 
point e in I .  Since f(a) = feb) = 0, the point e must lie in (a, b); therefore f'(e) exists. 
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Figure 6.2.1 Rolle's Theorem 

Since f has a relative maximum at e, we conclude from the Interior Extremum Theorem 
6.2. 1 that f'(e) = O. (See Figure 6.2. 1 .) Q.E.D. 

As a consequence of Rolle's Theorem, we obtain the fundamental Mean Value 
Theorem. 

6.2.4 Mean Value Theorem Suppose that f is continuous on a closed interval I := 
[a, b] , and that f has a derivative in the open interval (a, b). Then there exists at least one 
point e in (a , b) such that 

feb) - f(a) = f'(e)(b - a). 

Proof. Consider the function ({J defined on I by 

((J(x) := f(x) - f(a) - feb) - f(a) (x - a). b - a 
[The function ({J is simply the difference of f and the function whose graph is the line 
segment joining the points (a, f(a)) and (b, f eb)); see Figure 6.2.2.] The hypotheses of 

a x c b 

Figure 6.2.2 The Mean Value Theorem 



170 CHAPTER 6 DIFFERENTIATION 

Rolle's Theorem are satisfied by cp since cp is continuous on [a , b], differentiable on (a, b), 
and cp(a) = q;(b) = O. Therefore, there exists a point c in (a, b) such that 

0 =  q;'(C) = f'(C) _ feb) - f(a) . b - a 
Hence, feb) - f(a) = f'(C)(b - a). Q.E.D. 

Remark The geometric view of the Mean Value Theorem is that there is some point on 
the curve y = f (x) at which the tangent line is parallel to the line segment through the 
points (a , f(a)) and (b, feb)) . Thus it is easy to remember the statement of the Mean 
Value Theorem by drawing appropriate diagrams. While this should not be discouraged, 
it tends to suggest that its importance is geometrical in nature, which is quite misleading. 
In fact the Mean Value Theorem is a wolf in sheep's clothing and is the Fundamental 
Theorem of Differential Calculus. In the remainder of this section, we will present some of 
the consequences of this result. Other applications will be given later. 

The Mean Value Theorem permits one to draw conclusions about the nature of a 
function f from information about its derivative f'. The following results are obtained in 
this manner. 

6.2.5 Theorem Suppose that f is continuous on the closed interval [ := [a, b], that f 
is differentiable on the open interval (a , b), and that f'ex) = 0 for x E (a, b). Then f is 
constant on [ .  

Proof. We will show that f(x) = f(a) for all x E [ .  Indeed, if x E [, x > a, is given, 
we apply the Mean Value Theorem to f on the closed interval [a , x]. We obtain a point c 
(depending onx) between a and x such that f(x) - f(a) = f' (c) (x - a). Since f' (c) = 0 
(by hypothesis), we deduce that f(x) - f(a) = O. Hence, f(x) = f(a) for any x E [ .  

Q.E.D. 

6.2.6 Corollary Suppose that f and g are continuous on [ := [a, b], that they are dif­
ferentiable on (a, b), and that f' (x) = g

' (x) for all x E (a, b). Then there exists a constant 
C such that f = g + C on [ .  

Recall that a function f : [ --+ lR. i s  said to be increasing on the interval [ if whenever 
x I ' x2 in [ satisfy x I < x2' then f (x I ) :s f (x2) .  Also recall that f is decreasing on [ if the 
function -f is increasing on [ .  

6.2.7 Theorem Let f: [ --+ lR. be differentiable on the interval [ .  Then: 
(a) f is increasing on [ if and only if f' (x) :::: 0 for all x E [ .  
(b) f is decreasing on [ if and only if f' (x) :s 0 for all x E [ .  

Proof. (a) Suppose that f'ex) :::: 0 for all x E [ .  If xl ' x2 in [ satisfy Xl < x2' then we 
apply the Mean Value Theorem to f on the closed interval J := [Xl ' X2] to obtain a point 
c in (xl ' x2) such that 
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Since f'ee) ::: 0 and x2 - xI > 0, it follows that f (x2) - f(xl ) ::: o. (Why?) Hence, 
f(xl ) ::::: f (x2) and, since xI < x2 are arbitrary points in I, we conclude that f is in­
creasing on I .  

For the converse assertion, we suppose that f i s  differentiable and increasing on I .  
Thus, for any point x i= e in  I, we have (J (x) - f (c) ) / (x - c) ::: o. (Why?) Hence, by 
Theorem 4.2.6 we conclude that 

f'ee) = lim 
f (x) - fee) ::: o. 

x-+c x - e 
(b) The proof of part (b) is similar and will be omitted. Q.E.D. 

A function f is said to be strictly increasing on an interval I if for any points x I ' x2 in 
I such that xI < x2' we have f (xl ) < f(x2) .  An argument along the same lines of the proof 
of Theorem 6.2.7 can be made to show that a function having a strictly positive derivative on 
an interval is strictly increasing there. (See Exercise 1 3.) However, the converse assertion 
is not true, since a strictly increasing differentiable function may have a derivative that 
vanishes at certain points. For example, the function f : JR -+ JR defined by f(x) := x3 is 
strictly increasing on JR, but f' (0) = O. The situation for strictly decreasing functions is 
similar. 

Remark It is reasonable to define a function to be increasing at a point if there is a 
neighborhood of the point on which the function is increasing. One might suppose that, 
if the derivative is strictly positive at a point, then the function is increasing at this point. 
However, this supposition is false; indeed, the differentiable function defined by 

g(x) := { Xo + 2x2 sin(1/x) if x i= 0, 
if x = 0, 

is such that g' (0) = 1, yet it can be shown that g is not increasing in any neighborhood of 
x = O. (See Exercise 10.) 

We next obtain a sufficient condition for a function to have a relative extremum at an 
interior point of an interval. 

6.2.8 First Derivative Test for Extrema Let f be continuous on the interval I :=  [a , b] 
and let e be an interiorpoint of I. Assume that f is differentiable on (a, c) and (e, b) . Then: 

(a) If there is a neighborhood (e - 8 ,  e + 8) � I such that f'ex) ::: 0 for e - 8 < x < e 
and f' (x) ::::: 0 for e < x < c + 8, then f has a relative maximum at e. 
(b) If there is a neighborhood (e - 8 ,  e + 8) � I such that f' (x) :s 0 for e - 8 < x < e 
and f' (x) ::: 0 for e < x < e + 8, then f has a relative minimum at e. 

Proof. (a) If x E (e - 8 ,  c) , then it follows from the Mean Value Theorem that there 
exists a point ex E (x , c) such that fee) - f(x) = (e - x)f'(ex) '  Since f'(ex) ::: 0 we 
infer that f(x) ::::: fee) for x E (e - 8, c) . Similarly, it follows (how?) that f (x) ::::: fee) 
for x E (e, e + 8).  Therefore f(x) ::::: fee) for all x E (e - 8, e + 8) so that f has a relative 
maximum at e. 

(b) The proof is similar. Q.E.D. 

Remark The converse of the First Derivative Test 6.2.8 is not true. For example, there 
exists a differentiable function f : JR -+ JR with absolute minimum at x = 0 but such that 
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I' takes on both positive and negative values on both sides of (and arbitrarily close to) 
x = O. (See Exercise 9.) 

Further Applications of the Mean Value Theorem ____________ _ 

We will continue giving other types of applications of the Mean Value Theorem; in doing 
so we will draw more freely than before on the past experience of the reader and his or her 
knowledge concerning the derivatives of certain well-known functions. 

6.2.9 Examples (a) Rolle's Theorem can be used for the location of roots of a function. 
For, if a function g can be identified as the derivative of a function I, then between any two 
roots of I there is at least one root of g .  For example, let g(x) := cos x, then g is known to 
be the derivative of I(x) := sinx .  Hence, between any two roots of sinx there is at least 
one root of cos x .  On the other hand, g

' (x) = - sin x = -I (x), so another application of 
Rolle's Theorem tells us that between any two roots of cos there is at least one root of sin. 
Therefore, we conclude that the roots of sin and cos interlace each other. This conclusion 
is probably not news to the reader; however, the same type of argument can be applied to 
the Bessel functions In of order n = 0, 1 ,  2, . . .  by using the relations 

[xn In (x)]' = xn In-1 (x) ,  [xn-1 In (x)]' = _x-n In+1 (x) 

The details of this argument should be supplied by the reader. 

for x > O. 

(b) We can apply the Mean Value Theorem for approximate calculations and to obtain 
error estimates. For example, suppose it is desired to evaluate JT05. We employ the Mean 
Value Theorem with I(x) := y'x, a = 100, b = 105, to obtain 

for some number c with 100 < c < 105 . Since 10 < JC < JT05 < .JI2I = 1 1 , we can 
assert that 

5 5 
-- < .JI05 - 10 < --2(1 1) 2(10) , 

whence it follows that 10.2272 < ,JI05 < 10.2500. This estimate may not be as sharp as 
desired. It is clear that the estimate JC < .J 1 05 < .JI2I was wasteful and can be improved 
by making use of our conclusion that JT05 < 10.2500. Thus, JC < 10.2500 and we easily 
determine that 

5 0.2439 < 2(10.2500) < .JiOs - 10. 

Our improved estimate is 10.2439 < ,J105 < 10.2500. o 

Inequalities 

One very important use of the Mean Value Theorem is to obtain certain inequalities. 
Whenever information concerning the range of the derivative of a function is available, this 
information can be used to deduce certain properties of the function itself. The following 
examples illustrate the valuable role that the Mean Value Theorem plays in this respect. 
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6.2.10 Examples (a) The exponential function I (x) := eX has the derivative I' (x) = 
eX for all x E R Thus I' (x) > 1 for x > 0, and I' (x) < 1 for x < 0. From these relation­
ships, we will derive the inequality 

(1) for x E R 

with equality occurring if and only if x = 0. 
If x = 0, we have equality with both sides equal to 1 .  If x > 0, we apply the Mean 

Value Theorem to the function I on the interval [0, x] .  Then for some c with 0 <  c < x 
we have 

eX - eO = eC (x - 0) . 

Since eO = 1 and eC > 1 ,  this becomes eX - 1 > x so that we have eX > 1 + x for x > O. 
A similar argument establishes the same strict inequality for x < O. Thus the inequality ( 1 )  
holds for all x ,  and equality occurs only if x = O. 
(b) The function g (x) : = sin x has the derivative g' (x) = cos x for all x E R On the basis 
of the fact that - 1  :s cos x :s 1 for all x E JR, we will show that 

(2) -x :s sinx :s x for all x :::: o. 

Indeed, if we apply the Mean Value Theorem to g on the interval [0, x], where x > 0, we 
obtain 

sinx - sin O = (cos c)(x - 0) 

for some c between 0 and x . Since sin 0 = 0 and - 1  :s cos c :s 1 ,  we have -x :s sin x :s x. 
Since equality holds at x = 0, the inequality (2) is  established. 
(c) (Bernoulli's inequality) If a > 1 ,  then 

(3) (1 + x)'" :::: 1 + ax 

with equality if and only if x = O. 

for all x > - 1 ,  

This inequality was established earlier, in Example 2. 1 . 13(c), for positive integer 
values of a by using Mathematical Induction. We now derive the more general version by 
employing the Mean Value Theorem. 

If h ex) := ( 1  + x)'" then h'(x) = a( I  + x)",-l for all x > -1 .  [For rational a this 
derivative was established in Example 6. 1 . 10(c). The extension to irrational will be dis­
cussed in Section 8.3.] If x > 0, we infer from the Mean Value Theorem applied to h on 
the interval [0, x] that there exists c with ° < c < x such that h (x) - h (0) = h' (c) (x - 0). 
Thus, we have 

( 1  + x)'" - 1 = a( I  + c)",-lx .  

Since c > 0 and a - I >  0 ,  it follows that ( 1  + c)",-l > 1 and hence that ( 1  + x)'" > 

1 + ax . If - 1  < x < 0, a similar use of the Mean Value Theorem on the interval [x , 0] 
leads to the same strict inequality. Since the case x = 0 results in equality, we conclude 
that (3) is valid for all x > - 1  with equality if and only if x = O. 
(d) Let a be a real number satisfying 0 < a < 1 and let g(x) = ax - x'" for x :::: o. 
Then g'(x) = a( l  - X",-l) , so that g'(x) < 0 for 0 < x < 1 and g' (x) > 0 for x > 1 .  
Consequently, if x ::: 0, then g(x) :::: g ( I )  and g(x) = g(I) if and only if x = 1 .  Therefore, 
if x :::: 0 and 0 < a < 1 ,  then we have 

x'" :s ax + ( 1  - a). 
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If a > 0 and b > O.and if we let x = a / b and multiply by b, we obtain the inequality 

aCtb1-Ct :s aa + ( 1  - a)b, 
where equality holds if and only if a = b. D 

The Intermediate Value Property of Derivatives ____________ _ 

We conclude this section with an interesting result, often referred to as Darboux's Theorem. 
It states that if a function f is differentiable at every point of an interval I ,  then the function 
f' has the Intermediate Value Property. This means that if f' takes on values A and B, then 
it also takes on all values between A and B. The reader will recognize this property as one of 
the important consequences of continuity as established in Theorem 5.3 .7. It is remarkable 
that derivatives, which need not be continuous functions, also possess this property. 

6.2.11 Lemma Let I � JR. be an interval, let f : I ---* JR., let c E I, and assume that f 
has a derivative at c. Then: 
(a) If f' (c) > 0, then there is a number 8 > 0 such that f(x) > f(c) for x E I such that 
c < x < c + 8.  
(b) If f'(c) < 0 ,  then there is a number 8 > 0 such that f(x) > f(c) for x E I such that 
c - 8 < x < c. 

Proof. (a) Since 

1· f(x) - f(c) 
f'( ) 0 1m = c > , 

x-->c X - C 
it follows from Theorem 4.2.9 that there is a number 8 > 0 such that if x E I and 0 < 
Ix - c l  < 8, then 

f(x) - f(c) 
----- > 0. 

x - c  

If x E I also satisfies x > c, then we have 

f(x) - f(c) = (x - c) . 
f(x) - f(c) 

> 
o. 

x - c  

Hence, if x E I and c < x < c + 8, then f(x) > f(c). 
The proof of (b) is similar. Q.E.D. 

6.2.12 Darboux's Theorem If f is differentiable on I = [a , b] and if k is a number 
between f' (a) and f' (b), then there is at least one point c in (a , b) such that f' (C) = k. 

Proof. Suppose that f'ea) < k < f'(b). We define g on I by g(x) := kx - f(x) for 
x E I .  Since g is continuous, it attains a maximum value on I .  Since g' (a) = k - f' (a) > 0, 
it follows from Lemma 6.2. 1 1 (a) that the maximum of g does not occur at x = a. Similarly, 
since g' (b) = k - f' (b) < 0, it follows from Lemma 6.2. 1 1 (b) that the maximum does not 
occur at x = b. Therefore, g attains its maximum at some c in (a , b). Then from Theorem 
6.2. 1 we have 0 = g'(C) = k - f'(C) . Hence, f'(C) = k. Q.E.D. 

6.2.13 Example The function g :  [-1 ,  1 ] ---* JR. defined by { I  for 0 < x :s 1 ,  
g (x) :=  0 for x = 0, 

- 1  for - 1 :s x < 0, 
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(which is a restriction of the signum function) clearly fails to satisfy the intermediate value 
property on the interval [- 1 ,  1 ] .  Therefore, by Darboux' s Theorem, there does not exist a 
function f such that f'(x) = g(x) for all x E [- 1 ,  1 ] .  In other words, g is not the derivative 
on [ - 1 ,  1 ]  of any function. 0 

Exercises for Section 6.2 

1. For each of the following functions on JR to JR, find points of relative extrema, the intervals on 
which the function is increasing, and those on which "it is decreasing: 
(a) I(x) := xZ - 3x + 5, (b) g(x) := 3x - 4xz, 
(c) h(x) := x3 - 3x - 4, (d) k(x) := X4 + 2xz - 4. 

2. Find the points of relative extrema, the intervals on which the following functions are increasing, 
and those on which they are decreasing: 
(a) I(x) := x + l /x for x i= 0, 
(c) h(x) := Jx - 2Jx + 2 for x > 0, 

(b) g (x) := x/(xz + 1) for x E JR, 
(d) k(x) := 2x + l /xz for x i= o. 

3. Find the points of relative extrema of the following functions on the specified domain: 
(a) I(x) := Ixz - 1 1  for -4 :::: x :::: 4, (b) g(x) := 1 - (x - l )z/3 for 0 :::: x :::: 2, 
(c) h(x) := x lxz - 121 for -2 :::: x :::: 3, (d) k(x) := x(x - 8) 1/3 for 0 :::: x :::: 9.  

4. Let ai ' az ' " ' , an be real numbers and let I be defined on JR by 
n 

I(x) := �)ai - x)z for x E lR. 
i=1 

Find the unique point of relative minimum for I. 
(5 .  Let a > b > 0 and let n E N satisfy n � 2. Prove that a l/n - bl/n < (a - b) l/n . [Hint: Show 

that I(x) := x l/n - (x - 1) I/
n 

is decreasing for x � 1 ,  and evaluate I at 1 and a/b.] 
6. Use the Mean Value Theorem to prove that I sinx - sin y l  :::: Ix - yl for all x, y in lR. 

7. Use the Mean Value Theorem to prove that (x - 1)/x < lnx < x - I  for x > 1 .  [Hint: Use the 
fact that D lnx = l /x for x > 0.] 

8. Let I: [a, b] --+ JR be continuous on [a, b] and differentiable in (a, b) . Show that if lim I' (x) = 
x_a 

A, then I'(a) exists and equals A. [Hint: Use the definition of I'(a) and the Mean Value 
Theorem.] 

9. Let I :  JR --+ JR be defined by I(x) := 2X4 + x4 sin(1/x) for x i= 0 and 1(0) := O. Show that 
I has an absolute minimum at x = 0, but that its derivative has both positive and negative values 
in every neighborhood of O. 

10. Let g : JR --+ JR be defined by g(x) := x + 2xz sin(1/x) for x i= 0 and g(O) := O. Show that 
g' (0) = 1 ,  but in every neighborhood of 0 the derivative g' (x) takes on both positive and 
negative values. Thus g is not monotonic in any neighborhood of O. 

1 1 .  Give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1) but 
whose derivative is not bounded on (0, 1) . 

12. If h(x) := 0 for x < 0 and h (x) := 1 for x � 0, prove there does not exist a function I : JR --+ JR 
such that I' (x) = h (x ) for all x E lR. Give examples of two functions, not differing by a constant, 
whose derivatives equal h(x) for all x i= O. 

13. Let I be an interval and let I : I --+ JR be differentiable on I. Show that if I' is positive on I, 
then I is strictly increasing on I .  

14. Let I be an interval and let I : I --+ JR be differentiable on I .  Show that if the derivative I '  is 
never 0 on I, then either I' (x) > 0 for all x E I or I' (x) < 0 for all x E I .  
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15 . Let I be an interval. Prove that if f is differentiable on I and if the derivative f' is bounded on 
I, then f satisfies a Lipschitz condition on I .  (See Definition 5.4.4.) 

16. Let f: [0, 00) --+ lR be differentiable on (0, 00) and assume that f' ex) --+ b as x --+ 00. 
(a) Show that for any h > 0, we have lim (f(x + h) - f(x»)1 h = b. 

x-+oo 
(b) Show that if f (x) --+ a as x --+ 00, then b = O. 
(c) Show that lim (f(x)lx) = b. 

x-+oo 

17. Let f, g be differentiable on lR and suppose that f(O) = g(O) and f' ex) � g'(X) for all x :::: O. 
Show that f(x) � g(x) for all x :::: O. 

18 .  Let I := [a , b] and let f : I --+ lR be differentiable at c E I. Show that for every e > 0 there 
exists 8 >  0 such that if 0 < Ix - y l < 8 and a � x � c � y � b, then 

I f(x) - fey) - f'(c) 1 < e .  x - y  
19. A differentiable function f : I --+ lR is said to be uniformly differentiable on I := [a, b] if for 

every e > 0 there exists 8 > 0 such that if 0 < Ix - y I < 8 and x, y E I, then 

I f(x) - fey) - f'(x ) 1 < e. x - y  
Show that if f is uniformly differentiable on I, then f' is continuous on I .  

20. Suppose that f : [0, 2] --+ lR is continuous on [0, 2] and differentiable on (0, 2), and that 
f(O) = 0, f(l) = 1 ,  f(2) = 1 .  
(a) Show that there exists cl E (0, 1 )  such that f'(Cl ) = 1 .  
(b) Show that there exists c2 E ( 1 , 2) such that f'(C2) = o. 
(c) Show that there exists c E (0, 2) such that f' (c) = 1 /3. 

Section 6.3 L'Hospital's Rules 

The Marquis Guillame Fran�ois L'Hospital ( 1661-1704) was the author of the first calculus 
book, L'Analyse des injiniment petits, published in 1696. He studied the then new differential 
calculus from Joharm Bernoulli ( 1667-1748), first when Bernoulli visited L'Hospital's 
country estate and subsequentty through a series of letters. The book was the result of 
L'Hospital's studies. The limit theorem that became known as L'Hospital's Rule first 
appeared in this book, though in fact it was discovered by Bernoulli. 

The initial theorem was refined and ext.ended, and the various results are collectively 
referred to as L'Hospital's (or L'Hopita1's) Rules. In this section we establish the most basic 
of these results and indicate how others can be derived. 

Indeterminate Forms 

In the preceding chapters we have often been concerned with methods of evaluating limits. 
It was shown in Theorem 4.2.4(b) that if A := lim f(x) and B := lim g(x), and if B i= 0, 
then 

x�c x-+c 

lim f(x) = �. 
x-+c g(x) B 

However, if B = 0, then no conclusion was deduced. It will be seen in Exercise 2 that if 
B = ° and A i= 0, then the limit is infinite (when it exists). 

The case A = 0, B = ° has not been covered previously. In this case, the limit of the 
quotient fig is said to be "indeterminate". We will see that in this case the limit may 
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not exist or may be any real value, depending on the particular functions f and g. The 
symbolism % is used to refer to this situation. For example, if a is any real number, and 
if we define f(x) : =  ax and g(x) : =  x, then 

. f(x) . ax . 11m -- = lim - = lIm a = a. x--+o g(x) x--+O X x--+O 
Thus the indeterminate form % can lead to any real number a as a limit. 

Other indeterminate forms are represented by the symbols 00 / 00, 0 . 00, 00, 1 00 ,  000 , 
and 00 - 00. These notations correspond to the indicated limiting behavior and juxtaposi­
tion of the functions f and g. Our attention will be focused on the indeterminate forms 0/0 
and 00/00. The other indeterminate cases are usually reduced to the form % or 00/00 by 
taking logarithms, exponentials, or algebraic manipulations. 

A Preliminary Result 

To show that the use of differentiation in this context is a natural and not surprising 
development, we first establish an elementary result that is based simply on the definition 
of the derivative. 

6.3.1 Theorem Let f and g be defined on [a , b] , let f(a) = g(a) = 0, and let g(x) ::j:. 0 
for a < x < b. If f and g are differentiable at a and if g' (a) ::j:. 0, then the limit of fig at 
a exists and is equal to f' (a)/ g' (a) . Thus -

lim f(x) 
= 

f'(a) . x--+a+ g(x) g'(a) 
Proof. Since f(a) = g(a) = 0, we can write the quotient f(x)/g(x) for a < x < b as 
follows: 

f(x) - f(a) 
f(x) f(x) - f(a) x - a 

= g(x) g(x) - g(a) g(x) - g(a) . 
x - a 

Applying Theorem 4.2.4(b), we obtain 

lim f(x) - f(a) 
lim _f_(x_) = 

_x--+_a+_-,--:,x'-----=ca'-,-,.- f' (a) 
x--+a+ g(x) lim g(x) - g(a) - g'(a) · 

x--+a+ X - a 
Q.E.D. 

Warning The hypothesis that f(a) = g(a) = 0 is essential here. For example, if f(x) := 

x + 17 and g(x) := 2x + 3 for x E JR, then 
f'(O) 1 

= -lim f(x) 
= 

1 7 , 
x--+O g(x) 3 while g'(O) 2 

The preceding result enables us to deal with limits such as 

lim x
2 + x = 2 . 0 + 1 

x--+O sin 2x 2 cos 0 
1 

-

2 
To handle limits where f and g are not differentiable at the point a, we need a more general 
version of the Mean Value Theorem due to Cauchy. 
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6.3.2 Cauchy Mean Value Theorem Let f and g be continuous on [a , b] and differen­
tiable on (a , b), and assume that g'(x) =1= 0 for all x in (a, b) . Then there exists e in (a, b) 
such that 

feb) - f(a) f'(e) = -,-. g(b) - g(a) g (e) 

Proof. As in the proof of the Mean Value Theorem, we introduce a function to which 
Rolle's Theorem will apply. First we note that since g'(x) =1= 0 for all x in (a , b), it follows 
from Rolle's Theorem that g(a) =1= g(b) . For x in [a , b] , we now define 

feb) -I(a) h (x) := g(b) _ g(a) (g(x) - g(a») - (I(x) - f(a») .  
Then h is continuous on [a , b], differentiable on (a , b) , and h(a) = h(b) = O .  Therefore, 
it follows from Rolle's Theorem 6.2.3 that there exists a point e in (a , b) such that 

0 =  h'(e) = feb) - f(a) g'(e) - f'(e) . g(b) - g(a) 
Since g' (e) =1= 0, we obtain the desired result by dividing by g' (e). Q.E.D. 

Remarks The preceding theorem has a geometric interpretation that is similar to that of 
the Mean Value Theorem 6.2.4. The functions f and g can be viewed as determining a curve 
in the plane by means of the parametric equations x = f(t) , Y = get) where a ::: t ::: b. 
Then the conclusion of the theorem is that there exists a point (f(e), g(e» on the curve for 
some e in (a , b) such that the slope g'(e)/f'(e) of the line tangent to the curve at that point 
is equal to the slope of the line segment joining the endpoints of the curve. 

Note that if g(x) = x ,  then the Cauchy Mean Value Theorem reduces to the Mean 
Value Theorem 6.2.4. 

L'Hospital's Rule, I 

We will now establish the first of L'Hospital's Rules. For convenience, we will consider 
right-hand limits at a point a ; left-hand limits, and two-sided limits are treated in exactly the 
same way. In fact, the theorem even allows the possibility that a = -00. The reader should 
observe that, in contrast with Theorem 6.3. 1 ,  the following result does not assume the 
differentiability of the functions at the point a . The result asserts that the limiting behavior 
of f(x)/ g(x) as x � a+ is the same as the limiting behavior of f'(x)/ g'(x) as x � a+, 
including the case where this limit is infinite. An important hypothesis here is that both f 
and g approach 0 as x � a+. 

6.3.3 L'Hospital's Rule, I Let -00 ::: a < b ::: 00 and let f, g be differentiable on (a, b) 
such that g'(x) =1= 0 for all x E (a , b). Suppose that 

( 1) lim f(x) = 0 = lim g(x) . 
x-+a+ x-+a+ 

. f'(x) . f(x) 
(a) If hm -,- = L E JR, then hm -- = L .  

x-+a+ g (x) x-+a+ g (x) 
. f'(x) . f(x) 

(b) If hm -,- = L E {-oo, oo}, then hm -( - = L. 
x-+a+ g (x) x ..... a+ g x) 
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Proof. If a < a < fJ < b, then Rolle's Theorem implies that g(fJ) =1= g(a) . Further, by 
the Cauchy Mean Value Theorem 6.3.2, there exists u E (a, fJ) such that 

(2) 

Case (a): 

f(fJ) - f(a) f'(u) 
g(fJ) - g(a) = g'(u) · 

If L E � and if e > 0 is given, there exists c E (a , b) such that 

f'(u) L - e < -- < L + e for u E (a , c), g'(u) 
whence it follows from (2) that 

(3) L - e < 
f(fJ) - f(a) 

< L + e g(fJ) - g(a) for a < a < fJ .:s c. 

If we take the limit in (3) as a � a+, we have 

L - e < f(fJ) 
< L + e - g(fJ) - for fJ E (a , c] . 

Since e > 0 is arbitrary, the assertion follows. 
Case (b): If L = +00 and if M > 0 is given, there exists c E (a , b) such that 

f'(u) 
-- > M g'(u) 

for u E (a , c) , 
whence it follows from (2) that 

(4) f(fJ) - f(a) 
> M g(fJ) - g(a) for a < a < fJ < c. 

If we take the limit in (4) as a � a +, we have 

f(fJ) 
> M for fJ E (a , c). g(fJ) -

Since M > 0 is arbitrary, the assertion follows. 
If L = -00, the argument is similar. 

6.3.4 Examples (a) We have 

hm -- = hm = hm 2Jxcosx = o. . sin x . [ COS x ] . 
x-+o+ .jX x-+o+ 1 / (2.jX) x-+o+ 

Q.E.D. 

Observe that the denominator is not differentiable at x = 0 so that Theorem 6.3 . 1  
cannot be applied. However f (x) := sinx and g(x) := .jX are differentiable on (0, (0) 
and both approach 0 as x � 0+. Moreover, g'(x) =1= 0 on (0, (0), so that 6.3 .3 is applicable. . [ 1 - cos x ] . sin x 
(b) We have hm 2 = hm --. 

x-+o x x---.o 2x 
We need to consider both left and right hand limits here. The quotient in the second 

limit is again indeterminate in the form 0/0. However, the hypotheses of 6.3.3 are again 
satisfied so that a second application of L'Hospital's Rule is permissible. Hence, we obtain 

1· [ 1 - cos x ] 1. sin x 1. cos x 1 1m = 1m -- =  1m -- = - . 
x-+o x2 x---.o 2x x---.o 2 2 
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eX - I  eX 
(c) We have lim -- = lim - = 1 .  

x-->o X x-->o I 
Again, both left- and right-hand limits need to be considered. Similarly, we have 

lim = lim -- = lim - = - .  
[eX - I - X ]  eX - I  eX I 

x-->o x2 x-->o 2x x-->o 2 2 

(d) We have lim 
[ lnx ] 

= lim Cl /x) 
= 1 .  

x --> !  X - I x-->! I 
o 

VHospital's Rule, II _____________________ _ 

This Rule is very similar to the first one, except that it treats the case where the denominator 
becomes infinite as X -+ a+. Again we will consider only right-hand limits, but it is possible 
that a = -00. Left-hand limits and two-sided limits are handled similarly. 

6.3.5 VHospital's Rule, II Let -00 � a < b � 00 and let f, g be differentiable on 
(a , b) such that g' (x) =f. 0 for all x E (a , b) . Suppose that 

(5) lim g(x) = ±oo. 
x-->a+ 

. f' (x) . f(x) 
(a) If hm -,- = L E JR, then hm -- = L. 

x-->a+ g (x) x-->a+ g (x) 
. f' (x) . f (x) 

(b) If hm -,- = L E {-oo, oo}, then hm -- = L. 
x-->a+ g (x) x-->a+ g (x) 

Proof. We will suppose that (5) holds with limit 00. 

As before, we have g(fJ) =f. g(a) for a, fJ E (a , b), a < fJ. Further, equation (2) in the 
proof of 6.3 .3 holds for some u E (a, fJ). 

Case (a): If L E JR with L > 0 and e > 0 is given, there is e E (a , b) such that (3) in 
the proof of 6.3 .3 holds when a < a < fJ � e. Since g(x) -+ 00, we may also assume that 
gee) > O. Taking fJ = e in (3), we have 

(6) L - e < fee) - f(a) < L + e for a E (a , c). gee) - g(a) 
Since g(e)/g(a) -+ 0 as a -+ a+, we may assume that 0 < g(e)/g(a) < I for all a E 
(a , c), whence it follows that 

g(a) - gee) 
= I _ 

gee) 
> 0 g(a) g(a) 

for a E (a , c) . 
If we multiply (6) by (g(a) - g(e»/ g(a) > 0, we have 

(7) (L - e) (1 _ 
g(e» ) < f(a) 

_ 
fee) < (L + e) (1 _ 

g(e» ) . g(a) g(a) g(a) g(a) 
Now, since g(e)/g(a) -+ O and f(e)/g(a) -+ O as a  -+ a+, then for any 8 with O < 8 < 1 
there exists d E (a , c) such that 0 < g(e)/g(a) < 8 and I f(e) l /g(a) < 8 for all a E (a , d), 
whence (7) gives 

(8) f(a) 
(L - e)(1 - 8) - 8  < -- < (L + e) + 8. g(a) 

If we take 8 : = min { 1, e, e / ( I  L I + I)}, it is an exercise to show that 
f (a) 

L - 2e < -- < L + 2e. - g(a) -
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Since £ > ° is arbitrary, this yields the assertion. The cases L = ° and L < ° are handled 
similarly. 

Case (b): If L = +00, let M > I be given andc E (a , b) be such that f'(U)1 g' (u) > M 
for all u E (a , c). Then it follows as before that 

(9) f(fJ) - f(a) 
> M g(fJ) - g(a) for a < a < fJ ::s c. 

Since g(x) -+ 00 as x -+ a+, we may suppose that c also satisfies g(c) > 0, that 
If(c) l/g(a) < 4 ,  and that 0 <  g(c)lg(a) < 4 for all a E (a , c). If we take fJ = c in 
(9) and multiply by I - g(c)1 g(a) > 4 , we get 

so that 

f(a) - f(c) 
> M (1 _ g(C» ) > !M, g�) g�) 2 

f(a) 
> !M + f(c) 

> ! (M - I) g(a) 2 g(a) 2 for a E (a, c) . 

Since M > 1 is arbitrary, it follows that lim f(a)/g(a) = 00. 
a ..... a+ 

If L = -00, the argument is similar. 

Inx 
6.3.6 Examples (a) We consider lim -. 

x ..... oo x 

Q.E.D. 

Here f(x) := Inx and g(x) := x on the interval (0, 00) . If we apply the left-hand 
. . . Inx . l /x verSIOn of 6.3 .5, we obtam hm - = hm - = 0. 

x ..... oo X x ..... oo 1 
(b) We consider lim e-xx2• X"'" 00 

Here we take f(x) := x2 and g(x) : =  eX on R We obtain 

x2 . 2x 2 lim - = hm - = lim - = 0. 
x ..... oo eX x ..... oo eX x ..... oo eX 

In sin x 
(c) We consider lim 

x ..... o+ Inx 
Here we take f(x) := In sin x and g(x) := Inx on (0, :rr) .  If we apply 6.3.5, we obtain 

I. In sin x cos x I sin x [ x ] 1m -- = lim = lim -- . [cosx] . 
x ..... o+ In x X ..... 0+ 1 Ix x ..... o+ sin x 

Since lim [xl sinx] = 1 and lim cos x = 1 ,  we conclude that the limit under considera-X"'" 0+ x ..... o+ 
tion equals I . D 

Other Indeterminate Forms 

Indeterminate forms such as 00 - 00, ° . 00, 100, 00, 000 can be reduced to the previously 
considered cases by algebraic manipulations and the use of the logarithmic and exponential 
functions. Instead of formulating these variations as theorems, we illustrate the pertinent 
techniques by means of examples. 

6.3.7 Examples (a) Let I : =  (0, :rr 12) and consider 

lim - - --
( 1 1 ) 

x ..... o+ x sinx ' 
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which has the indeterminate form 00 - 00. We have 

11m - - -- = 1m = 1m . ( 1 1 ) 1. sin x - x 1. cos x - I  
x->O+ X sin x x->O+ X sin x X->O+ sin x + x cos x 

- sin x 0 
= lim - - 0 

X->O+ 2 cos x - x sin x - 2: - . 
(b) Let ! := (0, 00) and consider lim x Inx ,  which has the indeterminate form 0 . (-00). 

X->O+ 
We have 

. Inx I /x . lim x lnx  = 11m - = lim --2 = 11m (-x) = o. 
x->o+ X->O+ 1 /  X X->O+ -1/  X X->O+ 

(c) Let I := (0, 00) and consider lim xx , which has the indeterminate form 0°. 
X->O+ 

We recall from calculus (see also Section 8.3) that XX = ex 1nx . 1t follows from part (b) 
and the continuity of the function y t-+ eY at y = 0 that lim XX = eO = 1 .  

X->O+ 
(d) Let ! := (1 , 00) and consider lim (1 + I /x)X, which has the indeterminate form 100. x->oo 

We note that 

(10) (1 + I /x)X = ex 1n( 1+1/x) . 

Moreover, we have 
In( I  + I /x) lim x In(1 + I /x) = lim -----'--x->oo x->oo I /x 

= lim 
( 1  + I/x)-1 (-x-2) = lim 1 

= 1 .  x->oo _x-2 x->oo 1 + I/x 
Since y t-+ eY is continuous at y = 1 ,  we infer that lim ( 1  + I/x)X = e. x->oo 
(e) Let ! := (0, 00) and consider lim ( 1  + I/x)X , which has the indeterminate form 00°. 

X->O+ 
In view of formula ( 10), we consider 

. . In(l + l /x) . 1 
11m x ln(l + l /x) = 11m = 11m = o. 

x->o+ X->o+ 1 /  X X->O+ 1 + 1/ x 

Therefore we have lim (1 + 1 /  x r = eO = 1 .  x->o+ 

Exercises for Section 6.3 

o 

1 .  Suppose that f and g are continuous on [a, b], differentiable o n  (a, b), that C E [a, b] and that 
g(x) i= 0 for x E [a, b], x i= c. Let A := lim f and B := lim g. If B = 0, and if lim f(x)/g(x) 

x---.c x�c x�c 
exists in JR, show that we must have A = O. [Hint: f(x) = U(x)/ g (x)}g(x).] 

2. In addition to the suppositions of the preceding exercise, let g(x) > 0 for x E [a, b] , x i= c. 

If A > 0 and B = 0, prove that we must have lim f(x)/ g (x) = 00. If A < 0 and B = 0, prove 
x�c 

that we must have lim f(x)/g(x) = -00. 
x�c 

3. Let f(x) := x2 sin(1/x) for 0 < x ::::: 1 and f(O) : =  0, and let g(x) := x2 for x E [0, 1]. Then 
both f and g are differentiable on [0, 1 ]  and g(x) > 0 for x i= O. Show that lim f(x) = 0 = 

x�o 
lim g(x) and that lim f(x)/g(x) does not exist. 
x�o x-+o 
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4. Let f(x) := x2 for x rational, let f(x) := 0 for x irrational, and let g(x) := sin x for x E lR. 
Use Theorem 6.3.1 to show that lim f (x)/g(x) = O. Explain why Theorem 6.3.3 cannot be 

x-+o 
used. 

5. Let f(x) := x2 sin(1/x) for x i= 0, let f(O) := 0, and let g(x) := sinx for x E lR. Show that 
lim f (x) / g (x) = 0 but that lim f' (x) / g' (x) does not exist. 
x�o x�o 

6. Evaluate the following limits, where the domain of the quotient is as indicated. 

7. 

8. 

9. 

10. 

I
. In(x + 1) . tan x 

(a) 1m . (0, rr/2), (b) hm - (0, rr/2), 
x-+o+ smx x-+o+ X 

In cos x tan x - x 
(c) lim -- (0, rr/2), (d) lim (0, rr/2). 

x-+o+ X x-+o+ x3 

Evaluate the following limits: 
Arctanx 

(a) lim --- (-00, 00), 
x-+o x 

(c) lim x3 1n x 
x-+o+ 

(0, 00), 

Evaluate the following limits: 

(a) 
In x 

lim -
x--+oo x2 (0, 00), 

(c) lim x In sinx (0, rr), 
x-+o 

Evaluate the following limits: 
(a) lim x2x 

x--+o+ 
(0, 00) , 

(c) lim (1 + 3/xr (0, 00), 
x-+oo 

Evaluate the following limits: 
(a) lim x lix (0, 00), 

x-+oo 

(b) 

(d) 

(b) 

(d) 

(b) 

(d) 

(b) 

. 1 
hm ---
x-+o x (In x)2 

(0, 1) ,  

x3 
lim - (0, 00). 

x--+oo eX 

Inx 
lim - (0, 00), 

x--+oo ,JX 
x + ln x  

lim ---
x-+oo x In x 

lim ( l  + 3/x)X 
x-+o 

(0, 00). 

(0, 00), 

C 1 ) lim - -
x-+o+ X Arctan x 

lim (sinx)X 
x--+o+ 

(0, rr), 

(0, 00). 

(c) lim xsin x (0, 00), (d) lim (sec x - tanx) (0, rr/2). 
x-+o+ x-+rr/2-

1 1 .  Let f be differentiable on (0, 00) and suppose that lim (f (x) + f' (x») = L. Show that 
x-+oo 

lim f(x) = L and lim f'(x) = O. [Hint: f(x) = eX f(x)/ex .] 
x--+oo x--+oo 

12. Try to use L'Hospital's Rule to find the limit of 
tan x 

as x --+ (rr/2)- .  Then evaluate directly 
by changing to sines and cosines. 

sec x 

Section 6.4 Taylor's Theorem 

A very useful technique in the analysis of real functions is the approximation of functions 
by polynomials. In this section we will prove a fundamental theorem in this area which 
goes back to Brook Taylor (1685-173 1), although the remainder term was not provided 
until much later by Joseph-Louis Lagrange ( 1736-1813). Taylor's Theorem is a powerful 
result that has many applications. We will illustrate the versatility of Taylor's Theorem by 
briefly discussing some of its applications to numerical estimation, inequalities, extreme 
values of a function, and convex functions. 

Taylor's Theorem can be regarded as an extension of the Mean Value Theorem to 
"higher order" derivatives. Whereas the Mean Value Theorem relates the values of a 
function and its first derivative, Taylor's Theorem provides a relation between the values 
of a function and its higher order derivatives. 
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Derivatives of order greater than one are obtained by a natural extension of the dif­
ferentiation process. If the derivative I' (x) of a function I exists at every point x in an 
interval I containing a point e, then we can consider the existence of the derivative of the 
function I' at the point e. In case I' has a derivative at the point e, we refer to the resulting 
number as the second derivative of I at e, and we denote this number by I"(e) or by 
1(2\e) . In similar fashion we define the third derivative I"'(e) = 1(3) (e) , " ' , and the nth 
derivative I(n) (c), whenever these derivatives exist. It is noted that the existence of the nth 
derivative at e presumes the existence of the (n - 1 )st derivative in an interval containing e, 
but we do allow the possibility that e might be an endpoint of such an interval. 

If a function I has an nth derivative at a point xO' it is not difficult to construct 
an nth degree polynomial Pn such that Pn (xo) = I (xo) and p�k) (xo) = I(k) (xo) for k = 

1 , 2, . . .  , n. In fact, the polynomial 
• I I" (xo) 2 ( 1 )  Pn (x) .= I(xo) + I (xo) (x - xo) + 2!(x - xo) 

I(n) (x ) + . . .  + 0 (x - x t n ! 0 

has the property that it and its derivatives up to order n agree with the function I and its 
derivatives up to order n, at the specified point Xo- This polynomial Pn is called the nth 
Taylor polynomial for I at xO' It is natural to expect this polynomial to provide a reasonable 
approximation to I for points near xO' but to gauge the quality of the approximation, it 
is necessary to have information concerning the remainder Rn := I - Pn ' The following 
fundamental result provides such information. 

6.4.1 Taylor's Theorem Let n E N, let I := [a , b), and let I : I -+ lR. be such that I 
and its derivatives !" I", . . .  , I(n) are continuous on I and that I(n+l) exists on (a , b). If 
Xo E I, then lor any x in I there exists a point e between x and Xo such that 

(2) I I" (xo) 2 I(x) = I(xo) + I (xo) (x - xo) + -2-! -(x - xo) 

+ . . .  + I(n) (xo) ( _ )n + I(n+l) (e) ( _ )n+l 
, X Xo ( 1 ) ' x Xo . n . n + . 

Proof. Let Xo and x be given and let J denote the closed interval with endpoints Xo and x. 
We define the function F on J by 

(x t)n F(t) := I(x) - I(t) - (x - t)/'(t) - . . .  - - I(n) (t) n !  
for t E J .  Then an easy calculation shows that we have 

If we define G on J by 

(X t)n F'(t) = - - I(n+l) (t). n ! 

G(t) :=  F(t) _ ( x - t ) n+l 
F(xo) x - xo 

for t E J, then G(xo) = G(x) = O. An application of Rolle's Theorem 6.2.3 yields a point 
e between x and Xo such that 

(x - et 
0 =  G/(e) = F'(e) + (n + 1) 

+1 F(xo) · (x - xot 
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Hence, we obtain 

1 (x - X )n+l 

F(xO) = - -- 0 
n F'(e) n + 1 (x - e) 

1 ( )n+1  ( )n f(n+1) ( ) 
= 

x - xo x - e  
f(n+1) (e) = 

e 
(x - x  )n+1 , 

n + I  (x - et n !  (n + I) !  0 
which implies the stated result. Q.E.D. 

We shall use the notation Pn for the nth Taylor polynomial ( 1) of f, and Rn for the 
remainder. Thus we may write the conclusion of Taylor's Theorem as f(x) = Pn (x) + 
Rn (x) where Rn is given by 

(3) 
f(n+1) (e) 

R (x) := (x - x  )n+l 
n (n + l) !  0 

for some point e between x and xO' This formula for Rn is referred to as the Lagrange 
form (or the derivative form) of the remainder. Many other expressions for Rn are known; 
one is in terms of integration and will be given later. (See Theorem 7.3. 18 .) 

Applications of Taylor's Theorem 

The remainder term Rn in Taylor's Theorem can be used to estimate the error in approx­
imating a function by its Taylor polynomial Pn • If the number n is prescribed, then the 
question of the accuracy of the approximation arises. On the other hand, if a certain accuracy 
is specified, then the question of finding a suitable value of n is germane. The following 
examples illustrate how one responds to these questions. 

6.4.2 Examples (a) Use Taylor's Theorem with n = 2 to approximate VI + x, 
x >  -1 .  

We take the function f (x) : =  ( 1 + x) 1/3, the point Xo = 0 ,  and n = 2. Since f'  (x) = 

� (1 + X)-2/3 and fl/ (x) = � (-D ( 1 + X)-5/3 , we have f'(O) = � and fl/ (O) = -2/9. 
Thus we obtain 

f(x) = P2 (x) + R2(x) = 1 + �x - iX2 + R2(x) ,  

where R2 (x) = t fill (e )x3 = it (1 + e) -8/3 x3 for some point e between 0 and x. 

For example, if we let x = 0.3, we get the approximation P2 (0.3) = 1 .09 for Vi3. 
Moreover, since e > 0 in this case, then ( 1 + e)-8/3 < 1 and so the error is at most 

5 ( 3 ) 3 1 R2 (0.3) ::s 81 10 = 600 < 0. 17 X 10-2 . 

Hence, we have 1Vi3 - 1 .091 < 0.5 x 10-2, so that two decimal place accuracy is assured. 
(b) Approximate the number e with error less than 10-5 . 

We shall consider the function g(x) := eX and take Xo = 0 and x = 1 in Taylor's 
Theorem. We need to determine n so that 1 Rn ( 1 )  1 < 10-5 . To do so, we shall use the fact 
that g' (X) = eX and the initial bound of eX ::s 3 for 0 ::s x ::s 1 .  

Since g'(x) = eX, it follows that g(k) (x) = eX for all k E N, and therefore g(k) (0) = 1 
for all k E N. Consequently the nth Taylor polynomial is given by 

x2 xn 
P (x) := 1 + x + - + . . .  + -

n 2 !  n !  
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and the remainder for x = 1 is given by Rn (1) = eC / (n + I ) !  for some e satisfying 
0 <  e < 1 .  Since eC < 3, we seek a value of n such that 3/(n + I ) !  < 10-5 . A calcu­
lation reveals that 9 !  = 362, 880 > 3 x 105 so that the value n = 8 will provide the desired 
accuracy; moreover, since 8 !  = 40, 320, no smaller value of n will be certain to suffice. 
Thus, we obtain 

1 1 e ';::;j P8( 1) = 1 + 1 + - + . . .  + - = 2.718 28 2 !  8 !  
with error less than 10-5 . 

Taylor's Theorem can also be used to derive inequalities. 

6.4.3 Examples (a) 1 - !x2 :s cos x for all x E R 
Use I(x) := cos x and Xo = 0 in Taylor's Theorem, to obtain 

1 2 cosx = 1 - "2x + R2 (x) ,  

where for some e between 0 and x we have 
I'" (e) 3 sin e 3 R2 (x) = --x = --x 3 !  6 

o 

If 0 :s x :s Jr ,  then 0 :s e < Jr ;  since e and x3 are both positive, we have R2 (x) :::: O. Also, 
if -Jr :s x :s 0, then -Jr :s e :s 0; since sin e and x3 are both negative, we again have 
R2(x) :::: O. Therefore, we see that 1 - !x2 :s cos x for Ix l  :s Jr .  If Ix l :::: Jr,  then we have 
1 - ! x2 < -3 :s cos x and the inequality is trivially valid. Hence, the inequality holds for 
all x E R  
(b) For any k E N, and for all x > 0, we have 

1 2 1 2k 1 2 1 2k+1 X - -x + . . .  - -x < In(1 + x) < x - -x + . . . + --x . 2 2k 2 2k + l  
Using the fact that the derivative of ln(1 + x) is 1/( 1  + x) for x > 0, we see that the 

nth Taylor polynomial for In(1 + x) with Xo = 0 is 
1 2 n I l n p (x) = x - -x + . . .  + (- I )  - -x n 2 n 

and the remainder is given by 

(_ l )nen+1 
R (x) = xn+1 n .  

n + 1 
for some e satisfying 0 < e < x .  Thus for any x > 0, if n = 2k is even, then we have 
R2k (x) > 0; and if n = 2k + 1 is odd, then we have R2k+1 (x) < O. The stated inequality 
then follows immediately. 0 

Relative Extrema 

It was established in Theorem 6.2. 1 that if a function I : I --+ IR is differentiable at a point 
e interior to the interval I ,  then a necessary condition for I to have a relative extremum at 
e is that I' (e) = o. One way to determine whether I has a relative maximum or relative 
minimum [or neither] at e, is to use the First Derivative Test 6.2.8. Higher order derivatives, 
if they exist, can also be used in this determination, as we now show. 
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6.4.4 Theorem Let I be an interval, let Xo be an interior point of I ,  and let n ::: 2. Suppose 
that the derivatives I', I" , . . .  , I(n) exist and are continuous in a neighborhood of Xo and 
that I' (xo) = . . .  = l(n-IJ cxo) = 0, but I(n) (xo) =1= 0. 

(i) Ifn is even and I(n) (xo) > 0, then I has a relative minimum at xo ' 
(ii) Ifn is even and I(n) (xo) < 0, then I has a relative maximum at xo ' 
(iii) Ifn is odd, then I has neither a relative minimum nor relative maximum at xo ' 

Proof. Applying Taylor's Theorem at xo' we find that for x E I we have 

. I(n) (c) n I(x) = Pn-I (x) + Rn_1 (x) = I(xo) + --, -(x - xo) , n .  
where c is some point between Xo and x .  Since I(n) is continuous, if I(n) (xo) =1= 0, then 
there exists an interval U containing Xo such that I(n) (x) will have the same sign as I(n) (xo) 
for x E U. If x E U, then the point c also belongs to U and consequently I(n) (c) and 
I(n) (xo) will have the same sign. 

(i) Ifn is even and l(n) (xo) > O, then forx E U wehave l(n) (c) > ° and (x _ xo)n ::: 
° so that Rn_1 (x) ::: 0. Hence, I(x) ::: I (xo) for x E U, and therefore I has a relative 
minimum at Xo-

(ii) If n is even and I(n) (xo) < 0, then it follows that Rn_1 (x) :::: ° for x E U, so that 
I (x) :::: I (xo) for x E U. Therefore, I has a relative maximum at xo' 

(iii) If n is odd, then (x - xo)n is positive if x > Xo and negative if x < xo ' Conse­
quently, if x E U, then Rn_1 (x) will have opposite signs to the left and to the right of xo ' 
Therefore, I has neither a relative minimum nor a relative maximum at xo ' Q.E.D. 

Convex Functions _______________________ _ 

The notion of convexity plays an important role in a number of areas, particularly in the 
modem theory of optimization. We shall briefly look at convex functions of one real variable 
and their relation to differentiation. The basic results, when appropriately modified, can be 
extended to higher dimensional spaces. 

6.4.5 Definition Let I S; JR be an interval. A function I : I � JR is said to be convex 
on I if for any t satisfying ° :::: t :::: 1 and any points x I ' x2 in I ,  we have 

1 ((1 - t)xI + tx2) :::: ( 1 - t)l(xl ) + tl(x2) · 

Note that if XI < x2' then as t ranges from ° to 1 ,  the point ( 1 - t)xI + tX2 traverses 
the interval from xl to x2 • Thus if I is convex on I and if x I ' x2 E I, then the chord joining 
any two points (XI ' I(xl» and (x2 ' l(x2» on the graph of I lies above the graph of I· 
(See Figure 6.4. l .) 

A convex function need not be differentiable at every point, as the example I (x) : = Ix I ,  
X E JR, reveals. However, it can be shown that if I i s  an open interval and if I :  I � 
JR is convex on I, then the left and right derivatives of I exist at every point of I .  
As a consequence, it follows that a convex function on an open interval i s  necessarily 
continuous. We will not verify the preceding assertions, nor will we develop many other 
interesting properties of convex functions. Rather, we will restrict ourselves to establishing 
the connection between a convex function I and its second derivative I", assuming that 
I" exists. 
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( 1  - t) Xl + tX2 

Figure 6.4.1 A convex function. 

X2 

6.4.6 Theorem Let I be an open interval and let f : I --* lR have a second derivative 
on I .  Then f is a convex function on I if and only if fl/ (x) � 0 for all x E I .  

Proof. (=} ) We will make use of the fact that the second derivative is given by the limit 

(4) fl/ ( ) - 1· f(a + h) - 2f(a) + f(a - h) a - 1m 2 h->O h 
for each a E I. (See Exercise 16.) Given a E I, let h be such that a + h and a - h belong 
to I .  Then a = H(a + h) + (a - h»), and since f is convex on I,  we have 

f(a) = f (! (a + h) + ! (a - h») S !f (a + h) + !f(a - h) . 
Therefore, we have f(a + h) - 2f(a) + f(a - h) � O. Since h2 > 0 for all h =j:. 0,  we see 
that the limit in (4) must be nonnegative. Hence, we obtain f"(a) � 0 for any a E I.  

({=) We will use Taylor's Theorem. Let xl ' x2 be any two points of I,  let 0 < t < 1 , 
and let Xo := ( 1 - t)x! + tx2 . Applying Taylor's Theorem to f at Xo we obtain a point c! 
between Xo and xl such that 

f(x!) = f(xo) + f'(xO) (xl - xo) + !!"(c,) (x, - xO)2 , 
and a point c2 between Xo and x2 such that 

f (x2) = f (xo) + f' (xo) (x2 - xo) + ! fl/ (c2) (x2 - xO)2 . 
If fl/ is nonnegative on I, then the term 

R := ! ( 1  - t)fl/(c, ) (xl - XO)2 + ! t!"(c2) (X2 - XO)2 

is also nonnegative. Thus we obtain 

( 1 - t)f(xl ) + tf(x2) = f(xo) + f'(xo) ((1 - t)xl + tX2 - xo) 
+! ( 1 - t)fl/(c, ) (xl - XO)2 + !t!"(c2) (x2 - xO)2 

= f(xo) + R 
� f(xo) = f((1 - t)x, + tx2) . 

Hence, f is  a convex function on I .  Q.E.D. 
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It is often desirable to estimate a solution of an equation with a high degree of accuracy. The 
Bisection Method, used in the proof of the Location of Roots Theorem 5.3.5, provides one 
estimation procedure, but it has the disadvantage of converging to a solution rather slowly. 
A method that often results in much more rapid convergence is based on the geometric 
idea of successively approximating a curve by tangent lines. The method is named after its 
discoverer, Isaac Newton. 

Let I be a differentiable function that has a zero at r and let x I be an initial estimate of r .  
The line tangent to the graph at (xl 'l(xl)) has the equation y = I(xl) + I'(xl ) (x - xl ) ' 
and crosses the x-axis at the point 

I(xl) x2 := xI - -, - . I (Xl ) 
(See Figure 6.4.2.) If we replace xl by the second estimate x2' then we obtain a point x3 ' 
and so on. At the nth iteration we get the point xn+l from the point xn by the formula 

I(xn) xn+l := xn - I'(xn) ' 
Under suitable hypotheses, the sequence (xn) will converge rapidly to a root of the equation 
I (x) = 0, as we now show. The key tool in establishing the rapid rate of convergence is 
Taylor's Theorem. 

y 

---r----------�._��----._----� x 

Figure 6.4.2 Newton's Method 

6.4.7 Newton's Method Let I := [a, b] and let I: I � lR be twice differentiable on 1 .  
Suppose that I (a) I (b) < 0 and that there are constants m ,  M such that I I' (x) I :::: m > 0 
and I I" (x) I ::: M for all x E I and let K : = M 12m. Then there exists a subinterval 1* 
containing a zero r of I such that for any Xl E 1* the sequence (xn) defined by 

(5) I (xn) 
for all n E N, xn+l := xn - I'(xn) 

belongs to 1* and (xn) converges to r .  Moreover 

(6) for all n E N. 
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Proof. Since f(a)f(b) < 0, the numbers f(a) and f(b) have opposite signs; hence by 
Theorem 5 .3 .5 there exists r E I  such that f (r) = O. Since f' is never zero on I, it follows 
from Rolle's Theorem 6.2.3 that f does not vanish at any other point of I . 

We now let x' E I be arbitrary; by Taylor's Theorem there exists a point c' between x' 
and r such that 

0 =  f(r) = f(x') + f'(x') (r - x') + �f"(c')(r - X')2, 
from which it follows that 

-f(x') = f'(x')(r - x') + �f"(c')(r - x')2 . 
If x" is the number defined from x' by "the Newton procedure": 

" , f(x') x := x - f' (x') , 
then an elementary calculation shows that 

whence it follows that 

" ' (  ') 1 f" (c') ( ')2 X = X + r - x + --- r - x 2 f'(x') , 

,, _ 
_ � f" (c') ( , _ )2 X r - 2 f, (x') x r . 

Since c' E I, the assumed bounds on f' and f" hold and, setting K := M/2m, we obtain 
the inequality 

(7) Ix" - r I ::: K lx' - r 12 . 
We now choose 8 > 0 so small that 8 < 1 / K and that the interval 1* := [r - 8, r + 8] 

is contained in I. If xn E 1*, then IXn - r l  ::: 8 and it follows from (7) that IXn+1 - r l  ::: 
K lxn - r l 2  ::: K82 < 8; hence xn E 1* implies that xn+l E 1* . Therefore if Xl E 1*, we 
infer that xn E 1* for all n E N. Also if xl E 1* , then an elementary induction argument 
using (7) shows that IXn+1 - r l < (K8)n lxl - r l  for n E No But since K8 < 1 this proves 
that lim(xn) = r . Q.E.D. 

6.4.8 Example We will illustrate Newton's Method by using it to approximate ,.j2. 
If we let f(x) := x2 - 2 for x E JR, then we seek the positive root of the equation 

f (x) = O. Since f' (x) = 2x, the iteration formula is 

. f(xn) x = X - --n+l n f'(xn) 
= X _ 

x; - 2 = � (x + �) . n 2xn 2 n xn 
If we take Xl := 1 as our initial estimate, we obtain the successive values x2 = 3/2 = 1 .5, 
x3 = 17/12 = 1 .416666 . . · ,  x4 = 577/408 = 1 .414215 . . · ,  and x5 = 665 857/470 832 
= 1 .414 213 562 374 . . " which is correct to eleven places. 0 

Remarks (a) If we let en := xn - r be the error in approximating r ,  then inequality 
(6) can be written in the form IKen+1 1 ::: IKen 1 2 . Consequently, if I Ken l < lO-m then 
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IK en+1 1 < 1O-2m so that the number of significant digits in Ken has been doubled. Be­
cause of this doubling, the sequence generated by Newton's Method is said to converge 
"quadratically". 
(b) In practice, when Newton's Method is programmed for a computer, one often makes an 
initial guess x 1 and lets the computer run. If xl is poorly chosen, or if the root is too near the 
endpoint of I ,  the procedure may not converge to a zero of f. Two possible difficulties are 
illustrated in Figures 6.4.3 and 6.4.4. One familiar strategy is to use the Bisection Method 
to arrive at a fairly close estimate of the root and then to switch to Newton's Method for 
the coup de grace. 

Figure 6.4.3 xn -+ 00. 

Exercises for Section 6.4 

--------��r_��---+ x 

Figure 6.4.4 xn oscillates between x 1 and x2• 

1 . Let f(x) := cos ax for x E R where a =1= O. Find f(n) (x) for n E N, x E R 
2. Let g(x) := Ix

3
1 for x E R Find g'(x) and gl/(x) for x E R, and glll(X) for x =1= O. Show that 

gill (0) does not exist. 
3. Use Induction to prove Leibniz's rule for the nth derivative of a product: 

(jg)(n\x) = t (n)f(n-k\x)g(k\X) . 
k=O k 

4. Show that if x > 0, then 1 + 
1
x -

k
x
2 

:5 JI+X :5 1 + 
1
x . 

5. Use the preceding exercise to approximate J'f.2 and ./2. What is the best accuracy you can be 
sure of, using this inequality? 

6. Use Taylor's Theorem with n = 2 to obtain more accurate approximations for J'f.2 and
./2

. 
7. If x >  0 show that 1 ( 1  + x) I /

3 
- (1 + 

1
x -

i
x
2
) 1  :5 (5/81)x

3
. Use this inequality to approxi­

mate 
Vf2 

and 3J2. 
8. If f(x) := eX , show that the remainder term in Taylor's Theorem converges to zero as n -+ 00, 

for each fixed Xo and x. [Hint: See Theorem 3.2. 1 1 .] 

• 9. If g(x) := sinx, show that the remainder term in Taylor'S Theorem converges to zero as n -+ 00 
for each fixed Xo and x. 

10. Let h(x) := e- 1/x2 for x =1= 0 and h(O) := O. Show that h(n) (0) = 0 for all n E N. Conclude that 
the remainder term in Taylor's Theorem for Xo = 0 does not converge to zero as n -+ 00 for 
x =1= O. [Hint: By L'Hospital's Rule, lim h(x)/xk = 0 for any k E N. Use Exercise 3 to calculate 

x--+O h(n) (x) for x =1= 0.] 



192 CHAPTER 6 DIFFERENTIATION 

1 1 . If x E [0, 1] and n E N, show that 

Iln( 1 + X) - (x - x2 + x3 + " ' + (_ l)n- l x
n
) l < xn+l . 2 3 n n + l 

Use this to approximate In 1 .5 with an error less than 0.01 .  Less than 0.001. 
12. We wish to approximate sin by a polynomial on [- 1 ,  1] so that the error is less than 0.001 . 

Show that we have 

ISinx - (x - x; + ::0) 1 < 
5�0 

for Ix l � 1 .  

1 3 .  Calculate e correct to 7 decimal places. 
14. Determine whether or not x = ° is a point of relative extremum of the following functions: 

(a) f(x) := x3 + 2, (b) g(x) := sinx - x, 
(c) h(x) := sin x + iX3, (d) k(x) := cos x - 1 + �x2. 

15. Let f be continuous on [a, b] and assume the second derivative j" exists on (a, b). Suppose 
that the graph of f and the line segment joining the points (a, f(a» and (b, f(b» intersect 
at a point (xo' f(xo» where a < Xo < b. Show that there exists a point c E (a, b) such that 
j" (c) = 0. 

16. Let I � lR be an open interval, let f : I -+ lR be differentiable on I, and suppose j" (a) exists 
at a E I. Show that 

j"( ) - 1" f(a + h) - 2f(a) + f(a - h) a 
- h� h2 

Give an example where this limit exists, but the function does not have a second derivative at a. 
17. Suppose that I � lR is an open interval and that j" (x) 2: ° for all x E I .  If e E l, show that the 

part of the graph of f on I is never below the tangent line to the graph at (c, f (c» . 
18 . Let I � lR be an interval and let e E l. Suppose that f and g are defined on I and that 

the derivatives f(n) , g(n) exist and are continuous on I .  If f(k) (c) = ° and g(k\c) = ° for 
k = 0, 1 ,  " ' , n - 1 ,  but g(n) (c) =f:. 0, show that 

. f(x) f(n) (c) hm -- = -- . 
x-+c g(x) g(n) (c) 

19 .  Show that the function f(x) := x3 - 2x - 5 has a zero r in the interval I := [2, 2.2]. If Xl := 2 and if we define the sequence (xn) using the Newton procedure, show that IXn+1 - r l � 
(0.7) IXn - r 1 2 . Show that x4 is accurate to within six decimal places. 

20. Approximate the real zeros of g(x) := X4 - x - 3. 
21 . Approximate the real zeros of h(x) := x3 - x - I . Apply Newton's Method starting with the 

initial choices (a) Xl := 2, (b) Xl := 0, (c) Xl := -2. Explain what happens. 
22. The equatiQn lnx = x - 2 has two solutions. Approximate them using Newton's Method. What 

happens if Xl := � is the initial point? 
23. The function f(x) = 8x3 - 8x2 + 1 has two zeros in [0, 1] . Approximate them, using Newton's 

Method, with the starting points (a) Xl := k, (b) Xl := � .  Explain what happens. 
24. Approximate the solution of the equation X = cos x, accurate to within six decimals. 



CHAPTER 7 

THE RIEMANN INTEGRAL 

We have already mentioned the developments, during the 1630s, by Fermat and Descartes 
leading to analytic geometry and the theory of the derivative. However, the subject we 
know as calculus did not begin to take shape until the late 1660s when Isaac Newton 
created his theory of "fluxions" and invented the method of "inverse tangents" to find areas 
under curves. The reversal of the process for finding tangent lines to find areas was also 
discovered in the 1680s by Gottfried Leibniz, who was unaware of Newton's unpublished 
work and who arrived at the discovery by a very different route. Leibniz introduced the 
terminology "calculus differentialis" and "calculus integralis", since finding tangent lines 
involved differences and finding areas involved summations. Thus, they had discovered that 
integration, being a process of summation, was inverse to the operation of differentiation. 

During a century and a half of development and refinement of techniques, calculus 
consisted of these paired operations and their applications, primarily to physical problems. 
In the 1850s, Bernhard Riemann adopted a new and different viewpoint. He separated the 
concept of integration from its companion, differentiation, and examined the motivating 
summation and limit process of finding areas by itself. He broadened the scope by consid­
ering all functions on an interval for which this process of "integration" could be defined: 
the class of "integrable" functions. The Fundamental Theorem of Calculus became a result 
that held only for a restricted set of integrable functions. The viewpoint of Riemann led 
others to invent other integration theories, the most significant being Lebesgue's theory of 
integration. But there have been some advances made in more recent times that extend even 

Bernard Riemann 
(Georg Friedrich) Bernard Riemann ( 1826-1866), the son of a poor Lutheran 
minister, was born near Hanover, Germany. To please his father, he enrolled 
( 1846) at the University of GOttingen as a student of theology and philosophy, 
but soon switched to mathemtics. He interrupted his studies at Gottingen to 
study at Berlin under C. G. J. Jacobi, P. G. J. Dirichlet, and F. G. Eisenstein, 
but returned to Gottingen in 1 849 to complete his thesis under Gauss. His 
thesis dealt with what are now called "Riemann surfaces". Gauss was so 
enthusiastic about Riemann's work that he arranged for him to become a 
privatdozent at Gottingen in 1 854. On admission as a privatdozent, Riemann was required to 
prove himself by delivering a probationary lecture before the entire faculty. As tradition dictated, 
he submitted three topics, the first two of which he was well prepared to discuss. To Riemann's 
surprise, Gauss chose that he should lecture on the third topic: "On the hypotheses that underlie 
the foundations of geometry". After its publication, this lecture had a profound effect on modem 
geometry. 

Despite the fact that Riemann contracted tuberculosis and died at the age of 39, he made 
major contributions in many areas: the foundations of geometry, number theory, real and complex 
analysis, topology, and mathematical physics. 

193 
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the Lebesgue theory to a considerable extent. We will give a brief introduction to these 
results in Chapter 10. 

We begin by defining the concept of Riemann integrability of real-valued functions 
defined on a closed bounded interval of JR, using the Riemann sums familiar to the reader 
from calculus. This method has the advantage that it extends immediately to the case af 
functions whose values are complex numbers, or vectors in the space JRn• In Section 7.2, 
we will establish the Riemann integrability of several important classes of functions: step 
functions, continuous functions, and monotone functions. However, we will also see that 
there are functions that are not Riemann integrable. The Fundamental Theorem of Calculus 
is the principal result in Section 7.3 . We will present it in a form that is slightly more 
general than is customary and does not require the function to be a derivative at every 
point of the interval. A number of important consequences of the Fundamental Theorem 
are also given. In Section 7.3 we also give a statement of the definitive Lebesgue Criterion 
for Riemann integrability. This famous result is usually not given in books at this level, 
since its proof (given in Appendix C) is somewhat complicated. However, its statement is 
well within the reach of students, who will also comprehend the power of this result. The 
final section presents several methods of approximating integrals, a subject that has become 
increasingly important during this era of high-speed computers. While the proofs of these 
results are not particularly difficult, we defer them to Appendix D. 

An interesting history of integration theory, including a chapter on the Riemann inte­
gral, is given in the book by Hawkins cited in the References. 

Section 7.1 Riemann Integral 

We will follow the procedure commonly used in calculus courses and define the Riemann 
integral as a kind of limit of the Riemann sums as the norm of the partitions tend to O. 
Since we assume that the reader !s familiar-at least informally-with the integral from a 
calculus course, we will not provide a motivation of the integral, or disuss its interpretation 
as the "area under the graph", or its many applications to physics, engineering, economics, 
etc. Instead, we will focus on the purely mathematical aspects of the integral. 

However, we first recall some basic terms that will be frequently used. 

Partitions and Tagged Partitions 

If I : = [a, b] is a closed bounded interval in JR, then a partition of I is a finite, ordered set 
P : =  (xO' Xl ' . • •  , Xn_l ' Xn) of points in I such that 

a = Xo < Xl < . . .  < Xn_l < Xn = b. 
(See Figure 7. 1 . 1 .) The points of P are used to divide I = [a , b] into non-overlapping 
subintervals 

Figure 7.1.1 A partition of [a, b]. 
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Often we will denote the partition P by the notation P = { [Xi_I , Xi J };=I ' We define the 
norm (or mesh) of P to be the number 

(1)  

Thus the norm of a partition is merely the length of the largest subinterval into which the 
partition divides [a, b] . Clearly, many partitions have the same norm, so the partition is not 
a function of the norm. 

If a point ti has been selected from each subinterval li = [xi_I ' Xi]' for i = 1 , 2 , . . .  , n, 
then the points are called tags of the subintervals Ii ' A set of ordered pairs 

P := { ([Xi_I ' Xi ] ' tJ J;=1 
of subintervals and corresponding tags is called a tagged partition of I ;  see Figure 7 . 1 .2. 
(The dot over the P indicates that a tag has been chosen for each subinterval.) The tags 
can be chosen in a wholly arbitrary fashion; for example, we can choose the tags to be the 
left endpoints, or the right endpoints, or the midpoints of the subintervals, etc. Note that an 
endpoint of a subinterval can be used as a tag for two consecutive subintervals. Since each 
tag can be chosen in infinitely many ways, each partition can be tagged in infinitely many 
ways. The norm of a tagged partition is defined as for an ordinary partition and does not 
depend on the choice of tags. 

II 12 13 In 
/ / / I .  I \ 

• • • • • 
a = Xo XI X2 X3 Xn_l Xn = b 

Figure 7.1.2 A tagged partition of [a, b] 

If P is the tagged partition given above, we define the Riemann sum of a function 
f :  [a, b] --+ lR corresponding to P to be the number 

n 
(2) S(f; p) := L f (t) (Xi - Xi-I ) ' i=1 
We will also use this notation when P denotes a subset of a partition, and not the entire 
partition. 

The reader will perceive that if the function f is positive on [a , b], then the Riemann 
sum (2) is the sum of the areas of n rectangles whose bases are the subintervals Ii = 
[Xi_i ' Xi] and whose heights are f (t) . (See Figure 7. 1 .3 .) 

Figure 7.1.3 A Riemann sum. 
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Definition of the Riemann Integral _________________ _ 

We now define the Riemann integral of a function f on an interval [a , b]. 

7.1.1 Definition A function f : [a , b] -+ IR is said to be Riemann integrable on [a, b] 
if there exists a number L E IR such that for every e > 0 there exists 8£ > 0 such that if P 
is any tagged partition of [a , b] with I IP II < 8£ , then 

I S(f; P) - L I < e. 
The set of all Riemann integrable functions on [a , b] will be denoted by R[a, b] . 

Remark It is sometimes said that the integral L is "the limit" of the Riemann sums 
S (f; p) as the norm II P II -+ O. However, since S (f; p) is not a function of I I P II , this limit 
is not of the type that we have studied before. 

First we will show that if f E R[a, b], then the number L is uniquely determined. It 
will be called the Riemann integral of f over [a , b]. Instead of L, we will usually write 

or lb f(x) dx. 
It should be understood that any letter other than x can be used in the latter expression, so 
long as it does not cause any ambiguity. 

7.1.2 Theorem If f E R[a, b], then the value of the integral is uniquely determined. 

Proof. Assume that L' and L" both satisfy the definition and let e > O. Then there exists 
8�/2 > 0 such that if PI is any tagged partion with I IPI II < 8�/2 ' then 

I S(f; PI ) - L' I < e/2. 
Also there exists 8�/2 > 0 such that if P 2 is any tagged partition with l iP 2 11 < 8�/2' then 

I S(f; P2) - L" I  < e/2. 
Now let 8£ : =  min{8�/2 ' 8�/2} > 0 and let P be a tagged partition with I IP II < 8£ . Since 
both I IP I I < 8�/2 and I IP II < 8�/2 ' then 

I S(f; p) - L' I < e/2 and I S(f; p) - L"I < e/2, 
whence it follows from the Triangle Inequality that 

IL' - L" I  = IL' - S(f; p) + S(f; p) - L" I 
� I L' - S(f; P) I + I S(f; p) - L" I 

< e/2 + e/2 = e . 
Since e > 0 i s  arbitrary, it follows that L' = L". 

Some Examples 

Q.E.D. 

If we use only the definition, in order to show that a function f is Riemann integrable 
we must (i) know (or guess correctly) the value L of the integral, and (ii) construct a 
8£ that will suffice for an arbitrary e > O. The determination of L is sometimes done by 
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calculating Riemann sums and guessing what L must be. The determination of 8s is likely 
to be difficult. 

In actual practice, we usually show that f E R[a, b] by making use of some of the 
theorems that will be given later. 

7.1.3 Examples (a) Every constant function on [a, b] is in R[a, b]. 

Let f(x) := k for all x E [a, b]. Ifp := {([Xi_I' Xi]' t)}7=1 is any tagged partition of 
[a, b], then it is clear that 

n 

S(f; 1') = I )(Xi - xi_I) = k(b - a). 

i=1 

Hence, for any 8 > 0, we can choose 8s := 1 so that if 111'11 < 8e, then 

IS(f; 1') - k(b - a)1 = 0< 8. 

Since 8 > ° is arbitrary, we conclude that f E R[a, b] and f: f = k(b - a). 

(b) Let g : [0, 3] � lR be defined by g(x) := 2 forO :::: X :::: 1, and g(x) := 3 for 1 < x :::: 

3. A preliminary investigation, based on the graph of g (see Figure 7.1.4), suggests that we 
might expect that f� g = 8. 

3 • 

2 ...... --

2 3 

Figure 7.1.4 Graph of g. 

Let l' be a tagged partition of [0, 3] with norm < 8; we will show how to determine 
8 in order to ensure that IS(g; 1') - 81 < 8. Let PI be the subset of l' having its tags in 
[0,1] where g(x) = 2, and let 1'2 be the subset of l' with its tags in (1, 3] where g(x) = 3. 

It is obvious that we have 

(3) 

Since 111'11 < 8, if U E [0, 1 - 8] and U E [xi_I' Xi]' then xi_I:::: 1 - 8 so that Xi < Xi-I + 

8 :::: 1, whence the tag ti E [0, 1]. Therefore, the interval [0, 1 - 8] is contained in the union 
of all subintervals in l' with tags ti E [0, 1]. Similarly, this union is contained in [0, 1 + 8]. 

(Why?) Since g(ti) = 2 for these tags, we have 

2( 1  - 8) :::: S(g; PI) :::: 2(1 + 8). 

A similar argument shows that the union of all subintervals with tags ti E (1, 3] contains the 
interval [1 + 8, 3] of length 2 - 8, and is contained in [1 - 8, 3] of length 2 + 8, Therefore, 

3(2 - 8) :::: S(g; 1'2) :::: 3(2 + 8), 

Adding these inequalities and using equation (3), we have 

8 - 58:::: S(g; 1') = S(g; PI) + S(g; 1'2) :::: 8 + 58, 
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whence it follows that 

I S(g; p) - 8 1  ::: 58. 
To have this final tenn < 8, we are led to take 88 < 815. 

Making such a choice (for example, if we take 88 : = 8 110), we can retrace the argument 
and see that I S(g; p) - 8 1 < 8 when I IPI I < 88 • Since 8 >  0 is arbitrary, we have proved 
that g E 1(.[0, 3] and that f� g = 8, as predicted. 
(c) Let h ex) := x for x E [0, 1 ] ; we will show that h E 1(.[0, 1 ] . 

We will employ a "trick" that enables us to guess the value of the integral by considering 
a particular choice of the tag points. Indeed, if {Ii }7=1 is any partition of [0, 1] and we 
choose the tag of the interval Ii = [Xi-l ' xi ] to be the midpoint qi : =  ! (Xi_1 + Xi)' then 
the contribution of this tenn to the Riemann sum corresponding to the tagged partition 
Q : =  { (Ii ' q) };=1 is 

h(q)(xi - Xi_I ) = ! (xi + Xi_1 ) (Xi - Xi_I ) = ! (x; - xL) · 
If we add these tenns and note that the sum telescopes, we obtain 

n 
S(h ; Q) = L ! (x; - xL) = ! (12 - 02) = ! .  i=1 

Now let P := { (Ii ' t) };=1 be an arbitrary tagged partition of [0, 1] with I IP II < 8 so 
that Xi - xi_1 < 8 for i = 1 ,  . . .  , n. Also let Q have the same partition points, but where 
we choose the tag qi to be the midpoint of the interval Ii . Since both ti and qi belong to 
this interval, we have I ti - qi I < 8. Using the Triangle Inequality, we deduce 

I S(h ; p) - S(h; Q) I = It ti (Xi - Xi_I) - 'j;; qi (Xi - xi_1 ) 1 
n n 

::: L Iti - qi I (Xi - Xi- I ) < 8 L(xi - Xi_I ) = 8 (xn - xo) = 8 . i=1 i=1 
Since S(h ; Q) = ! ,  we infer that if P is any tagged partition with I IP II < 8, then 

. 1 IS(h ; P) - 2 1  < 8 .  
Therefore we are led to take 88 ::: 8 .  If we  choose 88 : = 8 ,  we can retrace the argument to 
conclude that h E  1(.[0, 1 ] and fol h = fol X dx = ! .  
(d) Let F(x) : =  1 for X = ! ,  � ,  � ,  � ,  and F(x) : =  0 elsewhere on [0, 1 ] .  We will show - 1 that F E 1(.[0, 1] and that fa F = O. 

Here there are four points where F is not 0, each of which can belong to two subin­
tervals in a given tagged partition P. Only these tenns will make a nonzero contribution to 
S(F; p). Therefore we choose 8 := 8/8. 

. • 
8 . 

If I I P I I < 88 , let P a be the subset of P with tags different from ! ,  � ,  � ,  � ,  and 
let PI be the subset of P with tags at these points. Since S(F; po) = 0, it is seen 
that S(F; p) = S(F; po) + S(F; PI ) = S(F; PI ) . Since there are at most 8 tenns in 
S(F; PI ) and each tenn is < 1 . 88 , we conclude that 0 ::: S(F; p) = S(F; PI ) < 888 = 8. 
Thus F E  1(.[0, 1 ] and fol F = O. 

(e) Let G(x) := lin for X = lin (n E N), and G(x) := 0 elsewhere on [0, 1 ] . 
Given 8 > 0, let E8 be the (finite) set of points where G(x) � 8, let n8 be the number 

of points in E8, and let 88 := 81(2n8). Let P be a tagged partition such that I IP II < 88 • Let 
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Po be the subset of P with tags outside of E 6 and let PI be the subset of P with tags in 
E6• As in (d), we have 

0 :::: S(G; p) = S(G; PI) < (2n6)86 = e. 
Since e > 0 is arbitrary, we conclude that G E R[O, 1] and fol G = O. 

Some Properties of the Integral 

o 

The difficulties involved in determining the value of the integral and of 86 suggest that 
it would be very useful to have some general theorems. The first result inihis direction 
enables us to form certain algebraic combinations of integrable functions. 

7.1.4 Theorem Suppose that I and g are in R[a, b]. Then: 

(a) If k E JR, the function kl is in R[a, b] and 

lb kl = k lb I. 

(b) The function I + g is in R[a, b] and 

lb (f + g) = lb I + lb g. 
(c) If I(x) :::: g(x) for all x E [a , b], then 

Proof. If P = { ([Xi - 1 '  Xi] '  ti ) } ;=1 is a tagged partition of [a, b], then it is an easy exercise 
to show that 

S(kl; p) = kS(f; p) , S(f + g; p) = S(f; p) + S(g; p), 

S(f; p) :::: S(g; p) . 
We leave it to the reader to show that the assertion (a) follows from the first equality. 

As an example, we will complete the proofs of (b) and (c). 
Given e > 0, we can use the argument in the proof of the Uniqueness Theorem 7 . 1 .2 

to construct a number 86 > 0 such that if P is any tagged partition with II P II < 86, then 
both 

(4) and 

To prove (b), we note that 

I S(f + g; p) - (lb 1 +  lb g) 1 = I S(f; p) + S(g; p) - lb I - lb g l 
:::: IS(f; p) - lb I I + I S(g; p) - lb g l 

< e /2 + e /2 = e. 

Since e > 0 is arbitrary, we conclude that I + g E R[a, b] and that its integral is the sum 
of the integrals of I and g. 
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To prove (c), we note that the Triangle Inequality applied to (4) implies 

and S(g; p) < lb g + s12. 

If we use the fact that S(f; p) :s S(g; p), we have 

lb f :s lb g + s. 

But, since s > 0 is arbitrary, we conclude that 1: f :s 1: g. Q.E.D. 

Boundedness Theorem _____________________ _ 

We now show that an unbounded function cannot be Riemann integrable. 

7.1.5 Theorem Iff E R[a, b], then f is bounded on [a , b]. 

Proof, Assume that f is an unbounded function in R[a, b] with integral L. Then there 
exists 8 > 0 such that if P is any tagged partition of [a , b] with I IPII < 8, then we have 
IS(f ;  p) - L I < 1 ,  which implies that 

(5) IS(f; P) I < IL l + 1 .  

Now let Q = { [Xi_I ' xi 1 }:=1 be a partition of [a , b] with I I Q II < 8. Since If  I i s  not bounded 
on [a, b], then there exists at least one subinterval in Q, say [Xk_l , xk], on which If  I is not 
bounded-for, if I f  I is bounded on each subinterval [xi_I ' Xi ] by Mi , then it is bounded on 
[a , b] by max{MI ' . . .  , Mn } .  

We will now pick tags for Q that will provide a contradiction to (5). We tag Q by 
ti := Xi for i =1= k and we pick tk E [Xk_l , xk] such that 

If(tk) (Xk - Xk_ I) 1 > I L l  + 1 + II: f(t)(xi - Xi_I ) I · i# 
From the Triangle Inequality (in the form IA + B I � IA I - I B I) ,  we have 

IS(f; �2)1  � I f(tk) (xk - xk_I ) 1 - II: f(t) (Xi - xi_I ) 1 > IL l  + 1 ,  i# 
which contradicts (5). Q.E.D. 

We will close this section with an example of a function that is discontinuous at every 
rational number and is not monotone, but is Riemann integrable nevertheless. 

7.1.6 Example We consider Thomae's function h : [0, 1 ]  -+ lR defined, as in Example 
5 . 1 .6(h), by h (x) := O ifx  E [0, l ] is irrational, h (O) := 1 and by h (x) := lin if X E [0, 1 ]  
is  the rational number X = min where m, n E N have no common integer factors except 1 .  
It was seen in 5 . 1 .6(h) that h is continuous at every irrational number and discontinuous at 
every rational number in [0, 1 ] .  We will now show that h E R[O, 1 ] .  

Let s > 0; then the set Ee := {x E [0, 1 ]  : h ex) � s12} i s  a finite set. We let ne be the 
number of elements in Ee and let 8e := sl(4ne) . If P is a tagged partition with I IPII < 8e, 
let P I be the subset of P having tags in E e and P 2 be the subset of P having tags elsewhere 
in [0, 1 ] .  We observe that PI has at most 2ne intervals whose total length is < 2n/'e = sl2 
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and that 0 < h (tj ) :s 1 for every tag in PI '  Also the total lengths of the subintervals in P 2 
is :s 1 and h (t) < e 12 for every tag in P 2 ' Therefore we have 

I S(h ;  P) I = S(h; PI ) + S(h ;  P2) < 1 · 2nBDB + (e/2) . 1 = e. 
Since e > 0 is arbitrary, we infer that h E R[O, 1] with integral O. 

Exercises for Section 7.1 

1 .  If I := [0, 4], calculate the norms of the following partitions: 
(a) PI := (0, 1 , 2, 4) ,  (b) P2 := (0, 2, 3, 4) ,  
(c) P3 := (0, 1 ,  1 .5, 2, 3.4, 4), (d) P4 := (0, .5, 2.5, 3.5, 4). 

D 

2. If f(x) := x
2 
for x E [0, 4], calculate the following Riemann sums, where Pi has the same 

partition points as in Exercise 1 ,  and the tags are selected as indicated. 
(a) P I with the tags at the left endpoints of the subintervals. 
(b) P I with the tags at the right endpoints of the subintervals. 
(c) P 2 with the tags at the left endpoints of the subintervals. 
(d) P 2 with the tags at the right endpoints of the subintervals. 

3. Show that f : [a, b] --+ � is Riemann integrable on [a , b] if and only if there exists L E � 
such that for every s > 0 there exists 8B > 0 such that if P is any tagged partition with norm 
I IPII :::: 8B , then I S(f ; p) - L I  :::: s. 

4. Let P be a tagged parition of [0, 3]. 
(a) Show that the union UI of all subintervals in P with tags in [0, 1 ]  satisfies [0, 1 - IIP II ] S; 

UI S; [0, 1 + liP II ] · 
(b) Show that the union U2 of all subintervals in P with tags in [ 1 , 2] satisfies [1 + I IPII , 

2 - IIPII ] S; U2 S; [1 - IIP II ,  2 + IIP II J ,  
5. Let P := {«( , t)l7=1 be a tagged partition of [a , b ]  and let ci < c2 • 

(a) If u belongs to a subinterval Ii whose tag satisfies C 1 :::: ti :::: c2' show that C I - liP II :::: u :::: 
c2 + IIP II .  

(b) If v E [a, b] and satisfies c1 + I IPI I :::: v :::: c2 - IIPI I , then the tag ti of any subinterval Ii 
that contains v satisfies ti E [c I ' c2] · 

6. (a) Let f(x) := 2 if 0 :::: x < 1 and f(x) := 1 if 1 :::: x :::: 2. Show that f E R[O, 2] and 
evaluate its integral. 

(b) Let h (x) := 2 ifO :::: x < 1 ,  h(I) := 3 and h(x) := 1 if ! < x :::: 2. Show that h E R[O, 2] 
and evaluate its integral. 

7. Use Mathematical Induction and Theorem 7 . 1 .4 to show that if fl , " "  fn are in R[a, b] 
and if kl , • • •  , kn E �, then the linear combination f = 

2:
7=1 k; fi belongs to R[a, b] and 

J: f = 
2:7

=1 ki I: fi '  
8. If f E R[a, b] and If (x) 1  :::: M for all x E [a, b], show that I J: f l  :::: M(b - a). 
9. If f E R[a, b] and if (Pn) is any sequence of tagged partitions of [a , b] such that IIPn l1 --+ 0, 

rb . 
prove that Ja f = limn S(f; Pn)· 

10. Let g(x) := 0 if x E [0, 1 ]  is rational and g (x) := l /x if x E [0, 1] is irrational. Explain why 
g ¢ R[O, 1] .  However, show that there exists a sequence (p n) of tagged partitions of [a , b] such 
that II P n II --+ 0 and limn S (g; P n) exists. 

1 1 .  Suppose that f is bounded on [a, b] and that there exists two sequences of tagged partitions 
of [a , b] such that IIPn ll --+ 0 and II Qn l1 --+ 0, but such that limn S(f; Pn) # limn S(f; Qn)' 
Show that f is not in R[a, b]. 
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12. Consider the Dirichlet function, introduced in Example 5.1 .5(g), defined by f(x) := 1 for 
x E [0, 1] rational and f(x) := 0 for x E [0, 1] irrational. Use the preceding exercise to show 
that f is not Riemann integrable on [0, 1] . 

13 . Suppose that f : [a, b] --+ R and that f(x) = 0 except for a finite number of points cl , " ' ,  cn 
in [a, b]. Prove that f E R[a, b] and that f: f = O. 

14. If g E R[a, b] and if f(x) = g(x) except for a finite number of points in [a, b], prove that 
f E R[a, b] and that I: f = I: g. 

15. Suppose that c ::s d are points in [a , b]. If ep : [a , b] --+ R satisfies ep(x) = ex > 0 for x E [c, d] 
andep(x) = o elsewhere in [a, b], prove thatep E R[a, b] and that I: ep = ex(d - c). [Hint: Given 
e > o let 8, := e/4cx and show that if I IP II < 8, then we have ex(d - c - 28,) ::S Seep; p) ::s 
ex(d - c + 28,) .] 

16. Let 0 ::s a < b, let Q(x) := x2 for x E [a, b] and let P := {[xi_I ' X)}?=I be a partition of [a, b]. 
For each i, let qi be the positive square root of 

� (xt + xiXi_1 + xL)· 
(a) Show that qi satisfies 0 ::s xi_1 ::s qi ::s Xi ' 
(b) Show that Q(q)(Xi - Xi_I ) = � (xi - xi- I ) ' 
(c) If Q is the tagged partition with the same subintervals as P and the tags qi ' show that 

SeQ; Q) = � (b3 - a3). 
(d) Use the argument in Example 7. 1 .3(c) to show that Q E R[a, b] and 

lb Q = lb x2 dx = � (b3 _ a3). 

17. Let O ::s a < b and m E N, let M(x) := xm for x E [a, b] and let P := { [Xi_I ' xi D7=1 be a 
partition of [a, b]. For each i, let qi be the positive mth root of 

1 m m- I m- I m 
m + 1 (Xi + Xi Xi_1 + . . .  + XiXi_1 + Xi_ I ) . 

(a) Show that qi satisfies 0 ::s Xi_1 ::s qi ::s xi "  
(b) Show that M(q)CXi - Xi_I ) = m�1 (x;n+l - x:i1 ) . 
(c) If Q is the tagged partition with the same subintervals as P and the tags qi ' show that 

SCM; Q) = m�1 (bm+1 - am+1 ). 
(d) Use the argument in Example 7. 1 .3(c) to show that M E  R[a, b] and 

lb M = lb xm dx = _1_ (bm+ 1 _ am+1) .  
a a m + 1 

1 8. If f E R[a, b] and c E R, we define g on [a + c, b + c] by g(y) := fey - c). Prove that 
g E R[a + c, b + c] and that 1::: g = I: f· The function g is called the c-translate of f. 

Section 7.2 Riemann Integrable Functions 

We begin with a proof of the important Cauchy Criterion. We will then prove the Squeeze 
Theorem, which will be used to establish the Riemann integrability of several classes of 
functions (step functions, continuous functions, and monotone functions). Finally we will 
establish the Additivity Theorem. 

We have already noted that direct use of the definition requires that we know the value 
of the integral. The Cauchy Criterion removes this need, but at the cost of considering two 
Riemann sums, instead of just one. 
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7.2.1 Cauchy Criterion A function f : [a , b] -+ JR belongs to R[a, b] if and only iffor 
every 8 > 0 there exists 1/e > 0 such that if P and Q are any tagged partitions of [a, b] 
with IIP II < 1/e and II Q II < 1/e ' then 

I S(f; p) - S(f; Q) I < s-
Proof. (=» If f E R[a, b] with integral L, let 1/e := 0e/2 > 0 be such that if p, Q are 
tagged partitions such that I IP II < 1/e and II QI I < 1/e' then 

I S(f; p) - L I  < 8/2 and I S(f; Q) - L I  < 8/2. 
Therefore we have 

I S (f; p) - S(f; Q) I s I S (f; p) - L + L - S(f; Q) I 
s I S(f; p) - L I + IL - S(f; Q) I 
< 8/2 + 8/2 = 8. 

({:::) For each n E N, let on > 0 be such that if P and Q are tagged partitions with 
nonns < on' then 

I S(f; p) - S(f; Q) I < lin . 
Evidently we may assume that on � 0n+l for n E N; otherwise, we replace on by o� := 
min{o ! , . . .  , On }. 

For each n E N, let p" be a tagged partition with l iP" II < on . Clearly, if m > n then 
both Pm and p" have nonns < on ' so that 

(1) I S(f; p,,) - S(f; Pm) 1 < l/n for m > n . 
Consequently, the sequence (S(f; Pm))�=! is a Cauchy sequence in lR.. Therefore (by 
Theorem 3.5.5) this sequence converges in lR and we let A : =  limm S(f; Pm) .  

Passing to the limit in ( 1 )  as  m -+ 00, we have 

IS(f; p,,) - A I S l/n for all n E N. 
To see that A is the Riemann integral of f, given 8 > 0, let K E N satisfy K > 2/8. If Q 
is any tagged partition with II Q II < OK ' then 

I S (f; Q) - A I s I S(f; Q) - S(f; PK) I  + IS(f; PK) - A I 
S l /K + l/K < 8. 

Since 8 > 0 is arbitrary, then f E R[a, b] with integral A. 
We will now give two examples of the use of the Cauchy Criterion. 

Q.E.D. 

7.2.2 Examples (a) Let g : [0, 3] -+ lR be the function considered inExample 7 . 1 .3(b). 
In that example we saw that if P is a tagged partition of [0, 3] with nonn l iP I I < 0, then 

8 - 50 S S(g; p) S 8 + 50 . 

Hence if Q is another tagged partition with II Q II < 0, then 

8 - 50 S S(g; Q) S 8 + 50 . 

If we subtract these two inequalities, we obtain 

I S (g ; p) - S(g; Q) I s 10o .  
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In order to make this final term < e, we are led to employ the Cauchy Criterion with 
'Y/e : =  e/20. (We leave the details to the reader.) 
(b) The Cauchy Criterion can be used to show that a function I :  [a , b] � lR. is not 
Riemann integrable. To do this we need to show that: There exists eo > 0 such that lor 
any 'Y/ > 0 there exists tagged partitions P and Q with I IP II < 'Y/ and II Q II < 'Y/ such th(lt 
I S(f;  p) - S(f;  Q) I  2: eo· 

We will apply these remarks to the Dirichlet function, considered in 5 . 1 .6(g), defined 
by I(x) : =  1 if x E [0, 1 ]  is rational and I(x) : =  0 if x E [0, 1 ] is irrational. 

Here we take eo := ! .  If P is any partition all of whose tags are rational numbers then 
S(f;  p) = 1 ,  while if Q is any tagged partition all of whose tags are irrational numbers 
then S(f; Q) = O. Since we are able to take such tagged partitions with arbitrarily small 
norms, we conclude that the Dirichlet function is not Riemann integrable. 0 

The Squeeze Theorem 

The next result will be used to establish the Riemann integrability of some important classes 
of functions. 

7.2.3 Squeeze Theorem Let I :  [a , b] � lR.. Then I E R[a, b] if and only iflor every 
e > 0 there exist functions Cle and we in R[a, b] with 
(2) 
and such that 
(3) 
Proof. (::::}) Take Cle = we = I for all e > o. 

for all x E [a , b] , 

(-<=) Let e > O. Since Cle and we belong to R[a, b] , there exists 0e > 0 such that if P 
is any tagged partition with I IP II < 0e then 

It follows from these inequalities that 

lb Cle - e < S(Cle ; p) 

and 

and 

In view of inequality (2), we have S(Cle ; p) � S(f; p) � S(we ; p), whence 

lb Cle - e < S(f;  p) < lb we + e. 

If Q is another tagged partition with II Q II < ° e ' then we also have 

lb Cle - e < S(f;  Q) < lb we + e. 
If we subtract these two inequalities and use (3), we conclude that 

I S(f;  p) - S(f;  Q) I < lb we - lb Cle + 2e 

= lb (we - Cle) + 2e < 3e. 
Since e > 0 is arbitrary, the Cauchy Criterion implies that I E  R[a ,  b] . Q.E.D. 
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Classes of Riemann Integrable Functions _______________ _ 

The Squeeze Theorem is often used in connection with the class of step functions. It will be 
recalled from Definition 5.4.9 that a function cP : [a , b] � lR is a step function if it has only 
a finite number of distinct values, each value being assumed on one or more subintervals 
of [a, b]. For illustrations of step functions, see Figures 5.4.3 or 7. 1 .4. 

7.2.4 Lemma If i is a subinterval of [a , b] having endpoints c < d and if CPj (x) := 1 
for x E J and cP /x) := 0 elsewhere in [a, b], then CPj E R[a, b] and f: cP j = d - c. 

Proof. If J = [c, d] with c ::::: d, this is Exercise 7 . 1 . 15  and we can choose 8, := 8/4. 
A similar proof can be given for the three other subintervals having these endpoints. 
Alternatively, we observe that we can write 

CP[c.d) = CP[c.d] - CP[d.d] ' CP(c.d] = CP[c.d] - cp[c.c] and CP(c.d) = CP[c.d) - cp[c.c] " 

Since I: cp[c.c] = 0, all four of these functions have integral equal to d - C. Q.E.D. 

It is an important fact that any step function is Riemann integrable. 

7.2.5 Theorem If cP : [a , b] � lR is a step function, then cP E R[a, b] . 

Proof. Step functions ofthe type appearing in 7.2.4 are called "elementary step functions". 
In Exercise 5 it is shown that an arbitrary step function cP can be expressed as a linear 
combination of such elementary step functions: 

(4) 

where ij has endpoints cj < dj ' The lemma and Theorem 7 . 1 .4(a,b) imply that cP E R[a, b] 
and that 

(5) Q.E.D. 

We will now use the Squeeze Theorem to show that an arbitrary continuous function 
is Riemann integrable. 

7.2.6 Theorem If! : [a , b] � lR is continuous on [a , b], then ! E R[a, b] . 

Proof. It follows from Theorem 5 .4.3 that ! is uniformly continuous on [a , b] . Therefore, 
given 8 > 0 there exists 8, > 0 such that if u, v E [a , b] and I u - v i  < 8" then we have 
I! (u) - !(v) 1  < 8/(b - a). 

Let P = {Ii }7=1 be a partition such that l iP I I < 8" let ui E Ii be a point where ! attains 
i�s minimum value on Ii ' and let Vi E Ii be a point where ! attains its maximum value on 1; .  

Let a, be the step function defined by a/x) : =  !(ui ) for x E [Xi_I ' x) (i = 1 ,  . . .  , 

n - 1) and a/x) := !(un) for x E [xn_l , xn] .  Let we be defined similarly using the points 
Vi instead of the ui .  Then one has 

for all x E [a , b]. 
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Moreover, it is clear that 

0 .::: lb (we - ae) = tU(Vi ) - I(u)) (xi - Xi-I ) 

< t(�) (Xi - Xi-I ) = C. 
i= l b a 

Therefore it follows from the Squeeze Theorem that I E  R[a, b]. Q.E.D. 

Monotone functions are not necessarily continuous at every point, but they are also 
Riemarm integrable. 

7.2.7 Theorem If I :  [a , b] -+ � is monotone on [a , b], then I E  R[a, b]. 

Proof. Suppose that I is increasing on the interval [a , b], a < b. If c > 0 is given, we let 
q E N be such that 

h := I(b) - I(a) < _c _ .  

q b - a 
Let Yk := I(a) + kh for k = 0, 1 ,  " ' , q and consider sets Ak := I-I ([Yk-l ' Yk)) for 
k = 1 ,  " ' , q - 1 and Aq := 1-1 ([Yq_l ' Yq]) . The sets {Ak } are pairwise disjoint and have 
union [a , b] . The Characterization Theorem 2.5 . 1  implies that each Ak is either (i) empty, 
(ii) contains a single point, or (iii) is a nondegenerate interval (not necessarily closed) 
in [a , b]. We discard the sets for which (i) holds and relabel the remaining ones. If we 
adjoin the endpoints to the remaining intervals {Ak }, we obtain closed intervals Uk}' It 
is an exercise to show that the relabeled intervals {Ak}k=l are pairwise disjoint, satisfy 
[a , b] = Uk=l Ak and that I(x) E [Yk-l ' Yk] for X E Ak · 

We now define step functions ae and we on [a , b] by setting 

and for 

It is clear that a/x) .::: I(x) .::: w/x) for all x E [a , b] and that 

r (we - ae) = t/Yk - Yk-l) (Xk - xk_1 ) 1a k=l q 
= Lh . (Xk - xk_1) = h ·  (b - a) < c .  k=l 

Since c > 0 is arbitrary, the Squeeze Theorem implies that I E  R[a , b] . 

The Additivity Theorem 

Q.E.D. 

We now return to arbitrary Riemann integrable functions. Our next result shows that the 
integral is an "additive function" of the interval over which the function is integrated. This 
property is no surprise, but its proof is a bit delicate and may be omitted on a first reading. 

7.2.8 Additivity Theorem Let I :  [a , b] -+ � and let C E (a , b) . Then I E R[a , b] if 
and only if its restrictions to [a , c] and [c, b] are both Riemann integrable. In this case 

(6) 
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Proof. ({:::) Suppose that the restriction II of I to [a , c], and the restriction 12 of I to 
[c, b] are Riemann integrable to L I and L2, respectively. Then, given 8 > 0 there exists 8' > 
O such that if 1\ is a tagged partition of [a , c] with 1 1 1' I I I < 8', then I S(fI ; PI) - L I I < 8/3. 
Also there exists 8/1 > 0 such that if 1'2 is a tagged partition of [c, b] with I I l' 2 11 < 8/1 then 
I S(f2; 1'2) - L2 1  < 8/3. If M is a bound for II I ,  we define 8e :=  rnin{8', 8/1, 8/6M} and 
let l' be a tagged partition of [a , b] with II Q II < 8 . We will prove that 

(7) 
(i) If c is a partition point of Q, we split Q into a partition QI of [a, c] and a partition 

Q2 of [c, b] . Since S(f; Q) = S(f; QI ) + S(f; Q2)' and since QI has norm < 8' and Q2 
has norm < 8/1, the inequality (7) is clear. 

(ii) If c is not a partition point in Q = {(Ik ' tk) }�=I ' there exists k ::s m such that 
c E (Xk_I ' xk) . We let QI be the tagged partition of [a , c] defined by 

QI :=  {(II ' tl ), • . .  , (Ik-I ' tk_I ) , ([xk_l , c] , c)} , 
and Q2 be the tagged partition of [c, b] defined by 

Q2 : = {([c, xd, c) , (Ik+I , tk+I ) , . . . , (Im ' tm) }· 
A straightforward calculation shows that 

S(f; Q) - S(f; QI ) - S(f; Q2) = I(tk) (xk - Xk_l) - I(c) (xk - xk_l ) 
= (f(tk) - I(c)) . (xk - Xk_I ) , 

whence it  follows that 

I S(f; Q) - s(f; QI ) - S(f; Q2) 1  ::s 2M(xk - xk_l ) < 8/3. 

But since I I QI II < 8 ::s 8' and I I Q2 11 < 8 ::s 8/1, it follows that 

and 

from which we obtain (7). Since 8 > 0 is arbitrary, we infer that I E  R[a, b] and that (6) 
holds. 

(:::}) We suppose that I E R[a, b] and, given 8 > 0, we let YJe > 0 satisfy the Cauchy 
Criterion 7.2. 1 .  Let II be the restriction of I to [a , c] and let PI ' QI be tagged partitions 
of [a, c] with 1 11'1 11 < YJe and I I QI I I < YJe . By adding additional partition points and tags 
from [c, b], we can extend PI and QI to tagged partitions l' and Q of [a , b] that satisfy 
II l' II < YJ e and II Q I I  < YJ e ' If we use the same additional points and tags in [c, b] for both l' 
and Q, then 

S(fl ; PI) - S(fl ;  QI ) = S(f; 1') - S(f; Q). 

Since both l' and Q have norm < YJe, then I S(fI ; PI) - S(fl ;  QI) I  < 8 . Therefore the 
Cauchy Condition shows that the restriction II of I to [a , c] is in R[ a, c] . In the same way, 
we see that the restriction 12 of I to [c, b] is in R[ c, d]. 

The equality (6) now follows from the first part of the theorem. Q.E.D. 

7.2.9 Corollary If I E R[a, b], and if [c, d] � [a , b], then the restriction of I to [c, d] 
is in R[c, d]. 
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Proof. Since I E R[a, b) and C E [a , b), it follows from the theorem that its restriction 
to [c, b) is in R[c, b) . But if d E  [c, b), then another application of the theorem shows that 
the restriction of I to [c, d) is in R[c, d). Q.E.D. 

7.2.10 Corollary If I E  R[a, b) and if a = Co < c, < . , . < cm = b, then the restric­
tions of I to each of the subintervals [ci_" ci ) are Riemann integrable and 

Until now, we have considered the Riemann integral over an interval [a, b) where 
a < b. It is convenient to have the integral defined more generally. 

7.2.11 Definition If I E  R[a, b) and if a, (3 E [a , b) with a < (3, we define 

and 

7.2.12 Theorem If I E  R[a, b) and ifa, (3, y are any numbers in [a , b), then 

(8) if! I = iY I + if! I, 

in the sense that the existence of any two of these integrals implies the existence of the third 
integral and the equality (8) . 

Proof. If any two of the numbers a, (3, y are equal, then (8) holds. Thus we may suppose 
that all three of these numbers are distinct. 

For the sake of symmetry, we introduce the expression 

L(a, {3, y) := if! 1 + iY 1 +  i" f. 

It is clear that (8) holds if and only if L(a, (3, y) = O. Therefore, to establish the assertion, 
we need to show that L = 0 for all six permutations of the arguments a, {3 and y .  

We note that the Additivity Theorem 7.2.8 implies that L(a, (3, y) = 0 when a < y < 
(3.  But it is easily seen that both L({3, y , a) and L(y, a, (3) equal L(a, (3, y). Moreover, the 
numbers 

L({3, a, y) ,  L (a, y, (3) ,  and L(y, {3, a) 

are all equal to -L(a, (3, y). Therefore, L vanishes for all possible configurations of these 
three points. Q.E.D. 

Exercises for Section 7.2 

1. Let f : [a, b] -+ R Show that f t. R[a, b] if and only if there exists EO > 0 such that for every 
n E N there exist tagged partitions P n and Qn with 1 11\ II < lin and II Qn II < lin such that 
I S(f; Pn) - S(f; Qn) 1  � EO -

2. Consider the function h defined by h(x) := x + 1 for x E [0, 1] rational, and h(x) := 0 for 
x E [0, 1 ] irrational. Show that h is not Riemann integrable. 
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3. Let H(x) := k for x = 1/ k (k E N) and H(x) : =  0 elsewhere on [0, 1 ] .  Use Exercise 1 ,  or the 
argument in 7.2.2(b), to show that H is not Riemann integrable. 

4. If a(x) := -x and w(x) := x and if a(x) � f (x) � w(x) for all x E [0, 1] , does it follow from 
the Squeeze Theorem 7.2.3 that f E R[O, I]? 

5. If J is any subinterval of [a, b] and if cpJ (x) := 1 for x E J and CPJ(x) := o elsewhere on [a, b], 
we say that cP J is an elementary step function on [a, b]. Show that every step function is a linear 
combination of elementary step functions. 

6. If 1/1 : [a, b] -+ JR takes on only a finite number of distinct values, is 1/1 a step function? 
7. If S(f; p) is any Riemann sum of f : [a, b] -+ JR, show that there exists a step function 

rb . 
cp :  [a, b] -+ JR such that Ja cP = S(f; P). 

8. Suppose that f is continuous on [a, b], that f (x) 2: o for all x E [a, b] and that 1: f = O. Prove 
that f(x) = 0 for all x E [a, b]. 

9. Show that the continuity hypothesis in the preceding exercise cannot be dropped. 
10. If f and g are continuous on [a, b] and if 1: f = 1: g, prove that there exists c E [a, b] such 

that f(c) = g(c). 
1 1 .  If f is bounded by M on [a, b] and if the restriction of f to every interval [c, b] where c E (a , b) 

is Riemann integrable, show that f E R[a, b] and that t f -+ J: f as c -+ a+. [Hint: Let 
ae(x) := -M and we (x) := M for x E [a, c) andae(x) := wc<x) := f (x) for x E [c, b]. Apply 
the Squeeze Theorem 7.2.3 for c sufficiently near a.] 

12. Show that g(x) := sin(l /x) for x E (0, 1 ]  and g(O) := 0 belongs to R[O, 1]. 
13. Give an example of a function f : [a, b] -+ JR that is in R[c, b] for every c E (a, b) but which 

is not in R[a, b]. 
14. Suppose that f : [a, b] -+ JR, that a = Co < C 1 < . . .  < cm = b and that the restrictions of f to 

[ci-l '  ci ] belong to R[ci- l '  ci ] for i = 1 ,  . . .  , m. Prove that f E R[a, b] and that the formula 
in Corollary 7.2. 10 holds. 

15. If f is bounded and there is a finite set E such that f is continuous at every point of [a, b] \ E , 
show that f E R[a, b]. 

16. If f is continuous on [a, b], a < b, show that there exists C E [a, b] such that we have 1: f = 
f(c)(b - a). This result is sometimes called the Mean Value Theoremfor Integrals. 

17. If f and g are continuous on [a, b] and g(x) > 0 for all x E [a, bJ, show that there exists 
C E [a, b] such that J: fg = f(c) J: g. Show that this conclusion fails if we do not have 
g(x) > O. (Note that this result is an extension of the preceding exercise.) 

18. Let f be continuous on [a, b], let f(x) 2: 0 for x E [a, b], and let Mn := (1: r r/n . Show 
that lim(Mn) = sup{f(x) : x E [a, b]}. 

19. Suppose that a > 0 and that f E R[ -a, a]. 
(a) If f is even (that is, if f(-x) = f (x) for all x E [0, aD, show that J�a f = 2J; f· 
(b) If f is odd (that is, if f(-x) = -f(x) for all x E [0, aD, show that J�a f = O. 

20. Suppose that f : [a , b] -+ JR and that n E N. Let P n be the partition of [a , b] into n subintervals 
havingequal lengths, so thatx. := a + i (b - a)/n for i = 0, 1 , · · · ,  n. Let L (f) := S(f; P z )  l n n, 
and Rn (f) := S(f; P n,r) ' where P n,l has its tags at the left endpoints, and P n.r has its tags at the right endpoints of the subintervals [Xi_ I '  Xi ] . 
(a) If f is increasing on [a, b], show that Ln (f) � Rn (f) and that 

o � Rn (f) - Ln (f) = (i(b) - f(a») . (b : a) . 

(b) Show that f(a)(b - a) � Ln (f) � 1: f � Rn (f) � f(b)(b - a). 
(c) If f is decreasing on [a, b], obtain an inequality similar to that in (a). 
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(d) If f E R[a, b] is not monotone, show that J
: 
f is not necessarily between L. (f) and 

Rn (f)· 
21 .  If f is continuous on [-a, a], show that J

�
a f(x

2
) dx = 2Jo

a f(x2) dx. 
22. Iff is continuouson [- l , l] , showthatJ

;/2 
f(cosx) dx = J

;/2 
f(sinx) dx = 

� 
J
; 
f(sinxldx. 

[Hint: Examine certain Riemann sums.] 

Section 7.3 The Fundamental Theorem 

We will now explore the connection between the notions of the derivative and the integral. 
In fact, there are two theorems relating to this problem: one has to do with integrating a 
derivative, and the other with differentiating an integral. These theorems, taken together, 
are called the Fundamental Theorem of Calculus. Roughly stated, they imply that the 
operations of differentiation and integration are inverse to each other. However, there are 
some subleties that should not be overlooked. 

The Fundamental Theorem (First Form) 

The First Form of the Fundamental Theorem provides a theoretical basis for the method 
of calculating an integral that the reader learned in calculus. It asserts that if a function 
f is the derivative of a function F, and if f belongs to R.[a, b], then the integral I: f 
can be calculated by means of the evaluation F 1: := F(b) - F(a). A function F such that 
F'(x) = f(x) for all x E [a , b] is called an antiderivative or a primitive of f on [a, b] . 
Thus, when f has an antiderivative, it is a very simple matter to calculate its integral. 

In practice, it is convenient to allow some exceptional points e where F'(e) does not 
exist in JR., or where it does not equal fee). It turns out that we can permit afinite number 
of such exceptional points. 

7.3.1 Fundamental Theorem of Calculus (First Form) Suppose there is a tinite set E 
in [a , b] and functions f, F : [a , b] --+ JR. such that: 

(a) F is continuous on [a , b], 
(b) F'(X) = f(x) for a11 x E [a , b]\E, 

(c) f belongs to R.[a , b]. 

Then we have 

(1) lb 
a 

f = F(b) - F(a). 

Proof. We will prove the theorem in the case where E := {a, b}. The general case can 
be obtained by breaking the interval into the union of a finite number of intervals (see 
Exercise 1). 

Let c: > 0 be given. Since f E R.[a , b] by assumption (c), there exists 88 > 0 such that 
if P is any tagged partition with I IPI I < 88 , then 

(2) 
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If the subintervals in P are [Xi - 1 '  xi ] ,  then the Mean Value Theorem 6.2.4 applied to F on 
[Xi_I ' Xi] implies that there exists ui E (xi_ 1 ' Xi) such that 

for i = 1 ,  . . .  , n . 
If we add these terms, note the telescoping of the sum, and use the fact that F' (u) = feu), 
we obtain 

n n 
F(b) - F(a) = L (F(xi) - F(xi_ I ») = L f (u) (xi - xi_I ) '  

i=1 i=1 

Now let P u := {([xi_ 1 ' Xi ] '  u) }7=1 ' so the sum on the right equals S(f; P J. If we substi­
tute F(b) - F(a) = S(f; pu) into (2), we conclude that 

IF(b) - F(a) - lb f l < e. 

But, since e > 0 is arbitrary, we infer that equation (1) holds. Q.E.D. 

Remark If the function F is differentiable at every point of [a , b], then (by Theorem 
6.1 .2) hypothesis (a) is automatically satisfied. If f is not defined for some point c E E, 
we take f(c) := O. Even if F is differentiable at every point of [a , b],  condition (c) is not 
automatically satisfied, since there exist functions F such that F' is not Riemann integrable. 
(See Example 7.3.2(e).) 

7.3.2 Examples (a) If F(x) := !x2 for all x E [a , b] , then F' (x) = x for all x E [a , b] .  
Further, f = F' i s  continuous so it i s  in R[a , b ] .  Therefore the Fundamental Theorem (with 
E = 0) implies that 

lb X dx = F(b) - F(a) = ! (b2 - a2) .  

(b) If G(x) := Arctan X for X E [a , b] ,  then G'(x) = 1/(x2 + 1 )  for all X E [a , b] ;  also 
G' is continuous, so it is in R[a, b]. Therefore the Fundamental Theorem (with E = 0) 
implies that 

[b _2_
1
- dx = Arctan b - Arctana .  Ja X + 1 

(c) If A(x) := Ix l for X E [- 10, 10] ,  then A' (x) = - 1  if x E [- 10, 0) and A'(x) = + 1  
for x E (0, 10]. Recalling the definition of the signum function (in 4. 1 . l0(b» , we have 
A' (x) = sgn(x) for all x E [- 10, 1O]\{0}. Since the signum function is a step function, it 
belongs to R[ - 10, 10]. Therefore the Fundamental Theorem (with E = {OD implies that 

[ 10 
sgn(x) dx = A(10) _ A(- lO) = 10 - 10 = O. i- IO 

(d) If H (x) := 2,JX for x E [0, b], then H is continuous on [0, b] and H' (x) = 1/,JX for 
X. E (0, b]. Since h := H' is not bounded on (0, b], it does not belong to R[O, b] no matter 
how we define h (O) . Therefore, the Fundamental Theorem 7.3 . 1  does not apply. (However, 
we will see in Example 1O. 1 . 10(a) that h is generalized Riemann integrable on [0, b].) 
(e) Let K(x) := x2 cos(1/x2) forx E (0, l ] and let K (O) := O. It follows from the Product 
Rule 6.1 .3(c) and the Chain Rule 6. 1 .6 that 

K' (x) = 2x cos(1/x2) + (2/x) sin(l/x2) for x E (0, 1 ] .  
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Further, as in Example 6 .1 .7(e), it can be shown that K'(O) = 0. Thus K is continuous 
and differentiable at every point of [0, 1 ] .  Since it can be seen that the function K' is 
not bounded on [0, 1 ] ,  it does not belong to R[O, 1 ]  and the Fundamental Theorem 7.3 .1  
does not apply to K'. (However, we will see from Theorem 10. 1 .9 that K' is  generalized 
Riemann integrable on [0, 1 ] . )  0 

The Fundamental Theorem (Second Form) ______________ _ 

We now tum to the Fundamental Theorem (Second Form) in which we wish to differentiate 
an integral involving a variable upper limit. 

7.3.3 Definition If f E R[a, b], then the function defined by 

(3) F(z) := lz f for z E [a , b] , 

is called the indefinite integral of f with basepoint a. (Sometimes a point other than a is 
used as a basepoint; see Exercise 6.) 

We will first show that if f E R[a, b], then its indefinite integral F satisfies a Lipschitz 
condition; hence F is continuous on [a , b]. 

7.3.4 Theorem The indefinite integral F defined by (3) is continuous on [a , b]. In fact, 
if If(x) 1  ::: M for all x E [a , b], then W(z) - F(w) 1 ::: Mlz - w i  for all z, w E [a , b]. 

Proof. The Additivity Theorem 7.2.8 implies that if z, w E [a , b] and w ::: z, then 

whence we have 

F(z) - F(w) = iZ f. 

Now if -M ::: f(x) ::: M for all x E [a , b], then Theorem 7 . 1 .4(c) implies that 

-M(z - w) ::: iZ f ::: M(z - w), 

whence it follows that 

IF (z) - F(w) 1 ::: liZ f l ::: M lz  - w i , 

as asserted. Q.E.D. 

We will now show that the indefinite integral F is differentiable at any point where f 
is continuous. 

7.3.5 Fundamental Theorem of Calculus (Second Form) Let f E R[a , b] and let f be 
continuous at a pointe E [a , b]. Then the indefinite integral, defined by (3) , is differentiable 
at e and F'(e) = fee). 
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Proof. We will suppose that c E [a , b) and consider the right-hand derivative of F at c. 
Since f is continuous at c, given s > 0 there exists Yie > 0 such that if c ::: x < c + Yie ' 
then 

(4) fCc) - s < f (x) < fCc) + s. 
Let h satisfy 0 < h < Yie ' The Additivity Theorem 7.2.8 implies that f is integrable on the 
intervals [a , c] , [a , c + h] and [c, c + h] and that 

t+h 
F(c + h) - F(c) = lc f· 

Now on the interval [c, c + h] the function f satisfies inequality (4), so that (by Theorem 
7.1 .4(c» we have 

t+h 
(f(c) - s) . h ::: F(c + h) - F(c) = lc f ::: (f(c) + s) . h . 

If we divide by h > 0 and subtract fCc), we obtain \ F(c + h� - F(c) _ f(C) \ ::: s. 
But, since s > 0 is arbitrary, we conclude that the right-hand limit is given by 

1· F(c + h) - F(c) - f( ) 1m - C .  h-+O+ h 
It is proved in the same way that the left-hand limit of this difference quotient also equals 
fCc) when c E (a, b], whence the assertion follows. Q.E.D. 

If f is continuous on all of [a , b], we obtain the following result. 

7.3.6 Theorem If f is continuous on [a , b], then the indefinite integral F, defined by 
(3), is differentiable on [a, b] and F' (x) = f (x) for all x E [a , b]. 

Theorem 7.3.6 can be summarized: If f is continuous on [a , b], then its indefinite 
integral is an antiderivative of f. We will now see that, in general, the indefinite integral 
need not be an antiderivative (either because the derivative of the indefinite integral does 
not exist or does not equal f (x» . 

7.3.7 Examples (a) If f (x) :=  sgn x on [- 1 , 1 ] ,  then f E R[- I ,  1] and has the indef­
inite integral F (x) : = Ix I - 1 with the basepoint -1 .  However, since F' (0) does not exist, 
F is not an anti derivative of f on [ - 1 ,  1 ] .  
(b) If h denotes Thomae's function, considered in 7 . 1 .6, then its indefinite integral 
H(x) := J; h is identically 0 on [0, 1 ] . Here, the derivative of this indefinite integral 
exists at every point and H' (x) = O. But H' (x) =f. h(x) whenever x E Q n [0, 1 ] ,  so that 
H is not an antiderivative of h on [0, 1 ] . D 

Substitution Theorem ______________________ _ 

The next theorem provides the justification for the "change of variable" method that is often 
used to evaluate integrals. This theorem is employed (usually implicitly) in the evaluation by 
means of procedures that involve the manipulation of "differentials", common in elementary 
courses. 
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7.3.8 Substitution Theorem Let J := [a, fJ] and let q; : J ---+ lR have a continuous 
derivative on J. If f : 1 ---+ lR is continuous on an interval l containing q;(J), then 

(5) 1{3 1 «J({3) f(q;(t» · q;'(t) dt = f(x) dx .  a «J(a) The proof of this theorem is based on the Chain Rule 6. 1 .6, and will be outlined in 
Exercise 15 .  The hypotheses that f and q;' are continuous are restrictive, but are used to 
ensure the existence of the Riemann integral on the left side of (5). 

t sin 0 
7.3.9 Examples (a) Consider the integral 11 0 

dt. 
Here we substitute q;(t) := 0 for t E [ 1 , 4] so that q;'(t) = 1/(20) is continuous 

on [ 1 ,  4]. If we let f (x) : = 2 sin x, then the integrand has the form (f 0 q;) . q;' and the 
Substitution Theorem 7.3.8 implies that the integral equals 11

2 2 sin x dx = -2 cos x I i = 
2(cos 1 - cos 2) . 

t sin 0 
(b) Consider the integral 10 0 

dt. 
Since q;(t) :=  0 does not have a continuous derivative on [0, 4] , the Substitution 

Theorem 7.3.8 is not applicable, at least with this substitution. (In fact, it is not obvious 
that this integral exists; however, we can apply Exercise 7.2. 1 1  to obtain this conclusion. 
We could then apply the Fundamental Theorem 7.3. 1 to F(t) := -2 cos 0 with E :=  {O} 
to evaluate this integral.) D 

We will give a more powerful Substitution Theorem for the generalized Riemann 
integral in Section 10. 1 .  

Lebesgue's Integrability Criterion 

We will now present a statement of the definitive theorem due to Henri Lebesgue ( 1875-
1941 )  giving a necessary and sufficient condition for a function to be Riemann integrable, 
and will give some applications of this theorem. In order to state this result, we need to 
introduce the important notion of a null set. 

Warning Some people use the term "null set" as a synonym for the terms "empty set" 
or "void set" referring to 0 (= the set that has no elements). However, we will always use 
the term "null set" in conformity with our next definition, as is customary in the theory of 
integration. 

7.3.10 Definition (a) A set Z C lR is said to be a null set if for every e > 0 there exists 
a countable collection { (ak , bk) J:I of open intervals such that 

(6) 
00 

Z � U (ak , bk) k=1 
and 

00 

L(bk - ak) ::: e. 
k=1 

(b) If Q(x) is a statement about the point x E l, we say that Q(x) holds almost every­
where on I (or for almost every x E I), if there exists a null set Z C I such that 
Q(x) holds for all x E I \Z. In this case we may write 

Q(x) for a.e. x E 1. 

It is trivial that any subset of a null set is also a null set, and it is easy to see that the 
union of two null sets is a null set. We will now give an example that may be very surprising. 
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7.3.11 Example The «:1\ of rational numbers in [0, 1 ] is a null set. 
We enumerate QI = {rl ' r2 , . . .  } .  Given 8 > 0, note that the open interval JI := 

(rl - 8/4, rl + 8/4) contains rl and has length 8/2; also the open interval J2 := (r2 -
8/8, r2 + 8/8) contains r2 and has length 8/4. In general, the open interval 

Jk := (rk - 2k:1 ' 
rk + 

2k:l ) 
contains the point rk and has length 8/2k . Therefore, the union U�I Jk of these open 
intervals contains every point of QI ; moreover, the sum of the lengths is L�I (8/2k) = 8 .  
Since 8 > ° is  arbitrary, Q\ is  a null set. 0 

The argument just given can be modified to show that: Every countable set is a null 
set. However, it can be shown that there exist uncountable null sets in lR; for example, the 
Cantor set that will be introduced in Definition 1 1 . 1 . 10. 

We now state Lebesgue's Integrability Criterion. It asserts that a bounded function on 
an interval is Riemann integrable if and only if its points of discontinuity form a null set. 

7.3.12 Lebesgue's Integrability Criterion A bounded function f : [a , b] --+ lR is Rie­
mann integrable if and only if it is continuous almost everywhere on [a, b] . 

A proof of this result will be given in Appendix C. However, we will apply Legesgue's 
Theorem here to some specific functions, and show that some of our previous results follow 
immediately from it. We shall also use this theorem to obtain the important Composition 
and Product Theorems. 

7.3.13 Examples (a) The step function g in Example 7 . 1 .3(b) is continuous at every 
point except the point x = 1 .  Therefore it follows from the Lebesgue Integrability Criterion 
that g is Riemann integrable. 

In fact, since every step function has at most a finite set of points of discontinuity, 
then: Every step function on [a , b] is Riemann integrable. 
(b) Since it was seen in Theorem 5.5.4 that the set of points of discontinuity of a monotone 
function is countable, we conclude that: Every monotone function on [a , b] is Riemann 
integrable. 
(c) The function G in Example 7 . 1 .3(e) is discontinuous precisely at the points D := 
{I , 1/2, . . .  , l /n, . . .  } .  Since this is a countable set, it  is a null set and Lebesgue's Criterion 
implies that G is Riemann integrable. 
(d) The Dirichlet function was shown in Example 7.2.2(b) not to be Riemann integrable. 

Note that it is discontinuous at every point of [0, 1 ] .  Since it can be shown that the 
interval [0, 1 ]  is not a null set, Lebesgue's Criterion yields the same conclusion. 
(e) Let h : [0, 1 ]  --+ lR be Thomae's function, defined in Examples 5 . 1 .6(h) and 7 . 1 .6. 

In Example 5 . 1 .6(h), we saw that h is continuous at every irrational number and is 
discontinuous at every rational number in [0, 1 ] . By Example 7.3. 1 1 ,  it is discontinuous on 
a null set, so Lebesgue's Criterion implies that Thomae's function is Riemann integrable 
on [0, 1 ] ,  as we saw in Example 7 . 1 .6. 0 

We now obtain a result that will enable us to take other combiI\ations of Riemann 
integrable functions. 
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7.3.14 Composition Theorem Let f E R[a, b] with f([a , b]) S; [c, d] and let cp : [c, d] 
-+ lR be continuous. Then the composition cp 0 f belongs to R[a, b]. 

Proof. If f is continuous at a point u E [a , b], then cp 0 f is also continuous at u. Since 
the set D of points discontinuity of f is a null set, it follows that the set Dl S; D of points 
of discontinuity of cp 0 f is also a null set. Therefore the composition cp 0 f also belon�s 
to R[a , b]. Q.E.D. 

It will be seen in Exercise 22 that the hypothesis that cp is continuous cannot be dropped. 
The next result is a corollary of the Composition Theorem. 

7.3.15 Corollary Suppose that f E R[a ,  b]. Then its absolute value If I is in R[a, b], 
and 

lIb f l :s Ib I f I :s M(b - a), 

where I f(x) 1  :s M for all x E [a , b] . 

Proof. We have seen in Theorem 7 . 1 .5 that if f is integrable, then there exists M such 
that If (x) I :s M for all x E [a , b]. Let cp(t) := It I for t E [-M, M] ; then the Composition 
Theorem implies that I f I = cp 0 f E R[ a ,  b]. The first inequality follows from the fact that 
- If I :s f :s I f I and 7. 1 .4(c), and the second from the fact that If(x) 1 :s M. Q.E.D. 

7.3.16 The Product Theorem Iff and g belong to R[a , b], then the product fg belongs 
to R[a, b]. 

Proof. If cp(t) := t2 for t E [-M, M], it follows from the Composition Theorem that 
f2 = cp 0 f belongs to R[a, b]. Similarly, (f + g)2 and g2 belong to R[a, b]. But since 
we can write the product as 

it follows that fg E R[a ,  b] . Q.E.D. 

Integration by Parts 

We will conclude this section with a rather general form of Integration by Parts for the 
Riemann integral, and Taylor's Theorem with the Remainder. 

7.3.17 Integration by Parts Let F, G be differentiable on [a , b] and let f := F' and 
g := G' belong to R[a , b]. Then 

(7) Ib Ib (b 
a 

fG = FG a 
- Ja 

Fg. 
Proof. By Theorem 6. 1 .3(c), the derivative (FG)' exists on [a , b] and 

(FG)' = F'G + FG' = fG + Fg. 
Since F, G are continuous and f, g belong to R[a , b], the Product Theorem 7.3. 16 implies 
that fG and Fg are integrable. Therefore the Fundamental Theorem 7.3. 1 implies that 

from which (7) follows. 

b Ib 1b 1b FG I = (FG)' = fG + Fg, a a a a 

Q.E.D. 
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A special, but useful, case of this theorem is when I and g are continuous on [a, b] 
and F, G are their indefinite integrals F(x) := J: I and G(x) := J: g. 

We close this section with a version of Taylor's Theorem for the Riemann Integral. 

7.3.18 Taylor's Theorem with the Remainder Suppose that I', . . .  , I(n) , I(n+l) exist 
on [a, b] and that l(n+1) E 'R.[a , b] . Then we have 

I'(a) I(n) (a) 
(8) I(b) = I(a) + -

l !- (b - a) + . . .  + -n-! -(b - a)" + Rn , 
where the remainder is given by 

b ' 
(9) R = � 1 l(n+1) (t) . (b - t)n dt . n n ! a 

Proof. Apply Integration by Parts to equation (9), with F(t) := I(n) (t) and G(t) := 
(b - t)n In ! , so that g(t) = -(b - t)n-1/(n - I) ! , to get 

1 I t=b 1 lb Rn = -I(n) (t) . (b - t)n + I(n) (t) . (b - a)"-1 dt n ! t=a (n - l ) ! a 

I(n) (a) 1 lb 
= - -- . (b - a)n + I(n) (t) . (b - t)n-l dt. n ! (n - I) ! a 

If we continue to integrate by parts in this way, we obtain (8). 

Exercises for Section 7.3 

Q.E.D. 

1. Extend the proof of the Fundamental Theorem 7.3. 1 to the case of an arbitrary finite set E. 
2. If n E N  and Hn(x) := xn+1 /(n + 1 ) for x E [a , b] , show that the Fundamental Theorem 7.3. 1 

implies that J: xn dx = (bn+1 - an+1 )/(n + 1) . What is the set E here? 
3. If g(x) := x for Ix l ::: 1 and g(x) := -x for Ix l < 1 and if G(x) := ! lx2 - 1 1 ,  show that 

J�2 g(x) dx = G(3) - G(-2) = 5/2. 
4. Let B(x) := _ !x2 for x < 0 and B(x) := !x2 for x ::: O. Show that J: Ix l dx = B(b) - B(a) . 
5. Let f : [a, b] --+ R and let C E R 

(a) If <I> : [a, b] --+ R is an anti derivative of f on [a, b], show that <l>c(x) := <I>(x) + C is also 
an antiderivative of f on [a, b]. 

(b) If <1>1 and <1>2 are antiderivatives of f on [a, b], show that <1>, - <1>2 is a constant function on [a, b]. 
6. If f E R[a, b] and if C E [a, b], the function defined by FC<z) := Jcz f for z E [a, b] is called the 

indefinite integral of f with basepoint c. Find a relation between Fa and Fc. 
7. We have seen in Example 7.1 .6 that Thomae's function is in R[O, 1] with integral equal to O. Can 

the Fundamental Theorem 7.3. 1 be used to obtain this conclusion? Explain your answer. 
8. Let F(x) be defined for x ::: 0 by F(x) := (n - l)x - (n - l)n/2 for x E [n - 1 ,  n), n E N. 

Show that F is continuous and evaluate F' (x) at points where this derivative exists. Use this 
result to evaluate J: [x D dx for 0 � a < b, where [x D denotes the greatest integer in x, as defined 
in Exercise 5. 1 .4. 

9. Let f E R[a, b] and define F(x) := J: f for x E [a, b]. 
(a) Evaluate G(x) := fcx f in terms of F, where c E [a, b]. 
(b) Evaluate H(x) := J: f in terms of F. 
(c) Evaluate S(x) := J:IOX f in terms of F. 
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10. Let f : [a , b] � lR be continuous on [a , b] and let v : [c, d] � lR be differentiable on [c, d] 
with v([c, d]) � [a, b]. If we define G(x) := JaV(X) f, show that G'(x) = f(v(x» . v'(x) for all 
x E [c, d]. 

1 1 .  Find F' (x) when F is defined on [0, 1] by: 
2 

(a) F(x) := J; ( 1 + t3)- 1 dt. 
12. Let f : [0, 3] � lR be defined by f(x) := x for 0 :::: x < 1, f(x) := 1 for 1 :::: x < 2 and 

f(x) := x for 2 :::: x :::: 3. Obtain formulas for F(x) := J; f and sketch the graphs of f and F. 
Where is F differentiable? Evaluate F' (x) at all such points. 

13. If f : lR � lR is continuous and c > 0, define g : lR � lR by g(x) := J:�c f (t) dt . Show that 
g is differentiable on lR and find g' (x) . 

14. If f : [0, 1] � lR i s continuous and J; f = Jxl f for all x E [0, 1] , show that f(x) = 0 for all 
x E [0, 1 ] . 

15. Use the following argumenttoprove the Substitution Theorem 7.3.8. Define F(u) := J;(a) f(x)dx 
for u E /, and H(t) := F(<(J(t» for t E J. Show that H'(t) = f(«J(t» <(J'(t) for t E J and that 

1�� 1� f(x) dx = F(<(J(f3» = H(f3) = f(«J(t» <(J'(t) dt. 
I'(a) a 

16. Use the Substitution Theorem 7.3.8 to evaluate the following integrals. 
(a) l

l
tll+fidt, (b) 12 t2 (1 + t3)- 1/2 dt = 4/3, 

t v'1+"7t t cos 0 
(
c
) 11 0 dt, (d) 11 0 dt = 2(sin 2 - sin 1) . 

17. Sometimes the Substitution Theorem 7.3.8 cannot be applied but the following result, called 
the "Second Substitution Theorem" is useful. In addition to the hypotheses of 7.3.8, assume 
that «J' (t) =1= 0 for all t E J, so the function 1/f : «J(J) � lR inverse to «J exists and has derivative 
1/f' (<(J(t» = l!<P'(t) . Then 

1� 11'(�) f(<(J(t» dt = f(x)1/f'(x) dx . 
a I'(a) 

To prove this, let G(t) := J� f(<(J(s» ds for t E J, so that G'(t) = f(<(J(t» . Note that 
K(x) := G(1/f (x» is differentiable on the interval «J(J) and that K'(x) = G'(1/f(x» 1/f'(x) = 
f(<(J 0 1/f(x» 1/f'(x) = f(x)1/f'(x). Calculate G(f3) = K(<(J(f3» in two ways to obtain the for­
mula. 

18. Apply the Second Substition Theorem to evaluate the following integrals. 

f9 dt f3 dt (a) -r. ,  (b) r.-;--;- = In(3 + 2v1z) - ln 3, 
1 2 + yt 1 tyt + 1  

f4 0 dt f4 dt (c) 
1 1 +' r.t ' (d) r. = Arctan( l ) - Arctan(l/2) . 

Y '  1 y t (t + 4) 
19. Explain why Theorem 7.3.8 and/or Exercise 7.3 . 17 cannot be applied to evaluate the following 

integrals, using the indicated substitution. 

14 0dt 
(a) -r. «J(t) = 0, 

o 1 + y t 14 cos 0 dt (b) 
o 0 «J(t) = ./t, 

(c) [I /1+2lfT dt «J(t) = It l , (d) t dt «J(t) = Arcsin t . 
lo � 

20. (a) If ZI and Z2 are null sets, show that ZI U Z2 is a null set. 
(b) More generally, if Zn is a null set for each n E N, show that U:I Zn is a null set. [Hint: 

Given 8 > 0 and n E N, let {J: : k E N} be a countable collection of open intervals whose 
union contains Zn and the sum of whose lengths is :::: 8 /2n . Now consider the countable 
collection {J: : n, k E N}.] 
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21. Let f, g E R[a, b]. 
(a) If t E R, show that 1: (tf ± g)2 2: O. 

(b) Use (a) to show that 21 J: fgl ::: t J: f2 + (l/t) 1: g2 for t > O. 

(c) If 1: f2 = 0, show that 1: fg = O. 

(d) Now prove that 1 J: fg 12::: U: I fg l)2 ::: U: f2) . U: g2). This inequality is called the 
Cauchy-Bunyakovsky-Schwarz Inequality (or simply the Schwarz Inequality). 

22. Let h : [0, 1] -+ R be Thomae's function and let sgn be the signum function. Show that the 
composite function sgn 0 h is not Riemann integrable on [0, 1] . 

Section 7.4 Approximate Integration 

The Fundamental Theorem of Calculus 7.3 . 1  yields an effective method of evaluating 
the integral f: f provided we can find an antiderivative F such that F' (x) = f (x) when 
x E [a , b] . However, when we cannot find such an F, we may not be able to use the Funda­
mental Theorem. Nevertheless, when f is continuous, there are a number of techniques for 
approximating the Riemann integral f: f by using sums that resemble the Riemann sums. 

One very elementary procedure to obtain quick estimates of f: f, based on Theorem 
7.1 .4(c), is to note that if g(x) :'S f(x) :'S h (x) for all x E [a , b], then 

1b g :'S 1b f :'S 1\. 
If the integrals of g and h can be calculated, then we have bounds for f: f. Often these 
bounds are accurate enough for our needs. 

For example, suppose we wish to estimate the value of fol e-x2 dx. 1t is easy to show 
2 that e-x :'S e-x :'S 1 for x E [0, 1 ] ,  so that 

i1 e-x dx :'S i1 e-x2 dx :'S i1 1 dx. 

Consequently, we have 1 - l ie :'S fol e-x2 dx :'S 1 .  If we use the mean of the bracketing 
values, we obtain the estimate 1 - 1/2e � 0.816  for the integral with an error less than 
1/2e < 0. 184. This estimate is crude, but it is obtained rapidly and may be quite satis­
factory for our needs. If a better approximation is desired, we can attempt to find closer 
approximating functions g and h. 2 Taylor's Theorem 6.4. 1 can be used to approximate e-x by a polynomial. In using 
Taylor's Theorem, we must get bounds on the remainder term for our calculations to have 
significance. For example, if we apply Taylor's Theorem to e-Y for 0 :'S Y :'S 1 ,  we get 

e-Y = 1 - y + !l - �l + R3 , 
where R3 = le-c 124 where c is some number with 0 :'S c :'S 1 .  Since we have no better 
information as to the location of c, we must be content with the estimate 0 :'S R3 :'S l124. 
Hence we have 
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where 0 ::: R3 ::: x8/24, for x E [0, 1 ] .  Therefore, we obtain 

1 1 
e-x2 dx = 1\I - X2 + !x4 - �x6) dx + 1 1 

R3 dx 

= 1 - � + to - -iz + 1 1 
R3 dx . 

Since we have 0 ::: fol R3 dx ::: 9.�4 = 2�6 < 0.005, it follows that 

1 1 
e-x2 dx ::::::: � (::::::: 0.7429) , 

with an error less than 0.005. 
Equal Partitions ________________________ _ 

If I : [a , b] -+ lR is continuous, we know that its Riemann integral exists. To find an 
approximate value for this integral with the minimum amount of calculation, it is convenient 
to consider partitions Pn of [a , b] into n equal subintervals having length hn := (b - a)/n. 
Hence P n is the partition: 

a < a + hn < a + 2hn < . . .  < a + nhn = b. 
If we pick our tag points to be the lelt endpoints and the right endpoints of the subintervals, 
we obtain the nth left approximation given by 

n-I Ln (f) := hn L I(a + khn) , 
k=O 

and the nth right approximation given by 
n 

Rn (f) := hn L I (a + khn) · 
k=1 

It should be noted that it is almost as easy to evaluate both of these approximations as only 
one of them, since they differ only by the terms I(a) and I(b). 

Unless we have reason to believe that one of Ln (f) or Rn (f) is closer to the actual 
value of the integral than the other one, we generally take their mean: 

! (Ln (f) + Rn Cf)) , 
which is readily seen to equal n-I 
( 1 )  Tn (f) := hn ( !/(a) + L I(a + khn) + !/(b» , 

k=1 
as a reasonable approximation to f: I. 

However, we note that if I is increasing on [a , b], then it is clear from a sketch of the 
graph of I that 

(2) 
In this case, we readily see that 

lib 1 - Tn Cf) I ::: ! (Rn (f) - Ln (f») 
= !hn (f(b) - I(a» = (f(b) - ICa» . (b - a) . 2n 
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An error estimate such as this is useful, since it gives an upper bound for the error of the 
approximation in terms of quantities that are known at the outset. In particular, it can be 
used to determine how large we should choose n in order to have an approximation that 
will be correct to within a specified error c: > o. 

The above discussion was valid for the case that I is increasing on [a , b] . If I is 
decreasing, then the inequalities in (2) should be reversed. We can summarize both cases 
in the following statement. 

7.4.1 Theorem If I :  [a , b] --+ IR is monotone and if Tn (f) is given by ( 1 ) ,  then 

(3) lib 1 - Tn (f) I S I I(b) - l(a) 1 . (b � a) . 
2 

7.4.2 Example If I(x) := e-x on [0, 1 ] , then I is decreasing. It follows from (3) 
that if n = 8, then I fol e-x2 dx - T8 (f) I s (1 - e-I )/16 < 0.04, and if n = 16, then 
I fol e-x2 dx - TI6 (f) I s (1 - e- I )/32 < 0.02. Actually, the approximation is consider­
able better, as we will see in Example 7.4.5. D 

The Trapezoidal Rule 

The method of numerical integration called the "Trapezoidal Rule" is based on approximat­
ing the continuous function I : [a , b] --+ IR by a piecewise linear continuous function. Let 
n E N and, as before, let hn := (b - a) / n and consider the partition P n . We approximate I 
by the piecewise linear function gn that passes through the points (a + khn , I(a + khn»), 
where k = 0, 1 ,  . . .  , n .  It seems reasonable that the integral f: I will be "approximately 
equal to" the integral I: gn when n is sufficiently large (provided that I is reasonably 
smooth). 

Since the area of a trapezoid with horizontal base h and vertical sides II and Iz is known 
to be �h(ll + Iz), we have ia+<k+I)h n 

gn = �hn · [J(a + khn) + I(a + (k + l)hn)] ' a+khn 
for k = 0, 1 ,  . . . , n - 1 .  Summing these terms and noting that each partition point in P n 
except a and b belongs to two adjacent subintervals, we obtain 

ib gn = hn (�I(a) + I(a + hn) + . . .  + I(a + (k - l)hn) + �I(b») . 
But the term on the right is precisely Tn (f), found in (1) as the mean of Ln (f) and Rn (f). 
We call Tn (f) the nth Trapezoidal Approximation of I. 

In Theorem 7.4. 1 we obtained an error estimate in the case where I is monotone; we 
now state one without this restriction on I, but in terms of the second derivative I" of I. 
7.4.3 Theorem Let I, I' and !" be continuous on [a , b] and let Tn (f) be the n th 
Trapezoidal Approximation ( 1 ) . Then there exists c E [a , b] such that ib (b a)hz 
(4) Tn (f) - a 1 = 12 

n . !"(c). 

A proof of this result will be given in Appendix D; it depends on a number of results 
we have obtained in Chapters 5 and 6. 
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The equality (4) is interesting in that it can give both an upper bound and a lower bound 
for the difference Tn (f) - f: I· For example, if !" (x) ::: A > 0 for all x E [a, b], then (4) 
implies that this difference always exceeds fi A (b - a )h� . If we only have !" (x) ::: 0 for 
x E [a , b], which is the case when I is convex (= concave upward), then the Trapezoidal 
Approximation is always too large. The reader should draw a figure to visualize this. 

However, it is usually the upper bound that is of greater interest. 

7.4.4 Corollary Let I, I' and I" be continuous, and let I!" (x) I ::::: B2 for all x E [a, b] . 
Then 

(5) I T (f) - lb I I < (b - a)h� . B = 
(b - a)3 . B . n a - 12 2 12n2 2 

When an upper bound B2 can be found, (5) can be used to determine how large n must 
be chosen in order to be certain of a desired accuracy. 

2 
7.4.5 Example If I (x) := e-x on [0, 1] , then a calculation shows that !" (x) = 

2 2e-x (2x2 - 1) , so that we can take B2 = 2. Thus, if n = 8, then 

I Tg (f) _ 1 1 I I ::::: 12 � 64 = 3�4 < 0.003. 

On the other hand, if n = 16, then we have 

t 2 1 I TI6 (f) - Jo I I ::::: 12 . 256 = 1 536 < 0.000 66. 

Thus, the accuracy in this case is considerably better than predicted in Example 7.4.2 D 

The Midpoint Rule ______________________ _ 

One obvious method of approximating the integral of I is to take the Riemann sums 
evaluated at the midpoints of the subintervals. Thus, if P n is the equally spaced partition 
given before, the Midpoint Approximation of I is given by 

Mn (f) := hn (I(a + !hn) + I (a + �hJ + . . .  + I (a (n - D hJ) n 
(6) = hn L I (a + (k - D hJ . k=1 

Another method might be to use piecewise linear functions that are tangent to the 
graph of I at the midpoints of these subintervals. At first glance, it seems as if we would 
need to know the slope of the tangent line to the graph of I at each of the midpoints 
a + (k - !hn) (k = 1 , 2, . . .  , n). However, it is an exercise in geometry to show that the 
area of the trapezoid whose top is this tangent line at the midpoint a + (k - !)hn is equal 
to the area of the rectangle whose height is I(a + (k - !)hn) . (See Figure 7.4. 1 .) Thus, 
this area is given by (6), and the "Tangent Trapezoid Rule" turns out to be the same as 
the "Midpoint Rule". We now state a theorem showing that the Midpoint Rule gives better 
accuracy than the Trapezoidal Rule by a factor of 2. 
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Figure 7.4.1 The tangent trapezoid. 

7.4.6 Theorem Let f, f', and f" be continuous on [a, b] and let Mn(f) be the n th  
Midpoint Approximation (6). Then there exists y E [a, b] such that 

(7) lab f - Mn(f) = (b �:)h� . f"(y). 

The proof of this result is in Appendix D. 
As in the case with Theorem 7.4.3, formula (7) can be used to give both an upper 

bound and a lower bound for the difference J: f - Mn (f), although it is an upper bound 
that is usually of greater interest. In contrast with the Trapezoidal Rule, if the function is 
convex, then the Midpoint Approximation is always too small. 

The next result is parallel to Corollary 7.4.4. 

7.4.7 Corollary Let f, f', and f" be continuous, and let I f"(x) 1 � B2 for all x E [a, b]. 
Then 

(8) 

Simpson's Rule 

1M (f) - r f l < 
(b - a)h� . B = (b - a)3 . B . n 1a - 24 2 24n2 2 

The final approximation procedure that we will consider usually gives a better approxi­
mation than either the Trapezoidal or the Midpoint Rule and requires essentially no extra 
calculation. However, the convexity (or the concavity) of f does not give any information 
about the error for this method. 

Whereas the Trapezoidal and Midpoint Rules were based on the approximation of f 
by piecewise linear functions, Simpson's Rule approximates the graph of f by parabolic 
arcs. To help motivate the formula, the reader may show that if three points 

(-h ,  Yo) , (0, Yl) '  and (h , Y2) 
are given, then the quadratic function q (x) := Ax2 + Bx + C that passes through these 
points has the property that 



224 CHAPTER 7 THE RIEMANN INTEGRAL 

Now let f be a continuous function on [a , b] and let n E N  be even, and let hn := 
(b - a)/n. On each "double subinterval" 

we approximate f by n /2 quadratic functions that agree with f at the points 

Yn := f eb) . 
These considerations lead to the nth Simpson Approximation, defined by 

Sn (f) := �hn (J(a) + 4f (a + hn) + 2f(a + 2hn) + 4f (a + 3hn) 
(9) +2f (a + 4hn) + . . . + 2f(b - 2hn) + 4f(b - hn) + f (b)) . 
Note that the coefficients of the values of f at the n + 1 partition points follow the pattern 
1 ,  4, 2, 4, 2, . . .  , 4, 2, 4, 1 .  

We now state a theorem that gives an estimate about the accuracy of the Simpson 
approximation; it involves thefourth derivative of f. 
7.4.8 Theorem Let f, f' , f" , f(3) and f(4) be continuous on [a , b] and let n E N  be 
even. If Sn (f) is the nth Simpson Approximation (9), then there exists c E [a , b] such 
that 

( 10) 

A proof of this result is given in Appendix D. 
The next result is parallel to Corollaries 7.4.4 and 7.4.7. 

7.4.9 Corollary Let f, f', f", f(3) and f(4) be continuous on [a , b] and let If (4) (x) 1 ::: 
B4 for all x E [a , b] . Then 

( 1 1) lb (b - a)h� (b - a)5 S - < · B =  · B  I n (f) 
a 
f l - 180 4 180n4 4 · 

Successful use of the estimate ( 1 1 ) depends on being able to find an upper bound for 
the fourth derivative. 

2 
7.4.10 Example If f(x) := 4e-X on [0, 1 ] then a calculation shows that 

f(4) (X) = 4e-x2 (4x4 - 12x
2 

+ 3) , 
whence i t  follows that If(4) (x ) 1 ::: 20 for x E [0, 1 ] , so we can take B4 = 20. It follows 
from ( 1 1 ) that if n = 8 then 

I t I 1 1 S8 (f) - Jo 
f ::: 1 80 . 84 · 20 = 36, 864 < 0.000 03 

and that if n = 16 then 11 1 I SI6 (f) - f l ::: < 0.000001 7 . 
o 589, 824 o 
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Remark The nth Midpoint Approximation Mn (f) can be used to "step up" to the (2n)th 
Trapezoidal and Simpson Approximations by using the formulas 

and 

that are given in the Exercises. Thus once the initial Trapezoidal Approximation T\ = T\ (f) 
has been calculated, only the Midpoint Approximations Mn = Mn (f) need be found. That 
is, we employ the following sequence of calculations: 

M\ = (b - a)f (! (a + b») , 

Exercises for Section 7.4 

T2 = !M\ + ! T\ , 
T4 = !M2 + !T2 , 
Tg = !M4 + !T4 ,  

S2 = �M\ + � T\ ;  
S4 = �M2 + � T2 ; 
Sg = �M4 + �T4 ; 

1 .  Use the Trapezoidal Approximation with n = 4 to evaluate In2 = fI2 ( I /x) dx . Show that 
0.6866 ::: In 2 ::: 0.6958 and that 

1 I 
0.0013 < 768 ::: T4 - ln2 ::: 

96 
< 0.Ql05. 

2. Use the Simpson Approximation with n = 4 to evaluate ln 2 = fI2 (1/x) dx. Show that 0.6927 ::: 
In 2 ::: 0.6933 and that 

I I 1 0.000 016 < 
25 

. 
1920 ::: S4 - ln 2 ::: 

1920 < 0.000 521 .  

3 .  Let f (x) := (1 + X2)-1 for x E [0, 1 ] . Show that f"(x) = 2(3x2 - 1 ) ( 1  + x2)-3 and that 
i f" (x) i ::: 2 for x E [0, 1] . Use the Trapezoidal Approximation with n = 4 to evaluate rr/4 = 
fol f (x) dx. Show that i T4(f) - (rr/4) i ::: 1/96 < 0.Ql05. 

4. If the Trapezoidal Approximation Tn (f) is used to approximate rr /4 as in Exercise 3, show that 
we must take n 2: 409 in order to be sure that the error is less than 10-6. 

5. Let f be as in Exercise 3. Show that f(4) (X) = 24(5x4 - lOx2 + 1 ) ( 1  + x2)-s and that 
i f(4) (x ) i ::: 96 for x E [0, 1]. Use Simpson's Approximation with n = 4 to evaluate rr/4. Show 
that i S4(f) - (rr/4) i ::: 1/480 < 0.0021 .  

6 .  If the Simpson Approximation Sn (f) i s  used to approximate rr /4 as in Exercise 5 ,  show that we 
must take n 2: 28 in order to be sure that the error is less than 10-6• 

7. If p is a polynomial of degree at most 3, show that the Simpson Approximations are exact. 

8. Show that if f" (x) 2: 0 on [a , b] (that is, if f is convex on [a, b D, then for any natural numbers 
m ,  n we have Mn (f) ::: f: f (x) dx ::: Tm (f). If f" (x) ::: 0 on [a, b], this inequality is reversed. 

9. Show that T2n (f) = ! [Mn (f) + Tn (f)]. 
10. Show that S2n (f) = �Mn (f) + � Tn (f). 
1 1 . Show that one has the estimate I Sn (f) - I: f(X) dx l ::: [(b - a)2/18n2]B2, where B2 2: if" (x) i for all x E [a , b] . 
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12. Note that J; (1 - x2) 1/2 dx = rr /4. Explain why the error estimates given by formulas (4), (7), 
and (lO) cannot be used. Show that if hex) = (1 - x2)1/2 for x in [0, 1], then Tn (h) � rr/4 � 
Mn(h). Calculate Mg(h) and Tg(h). 

13. If h is as in Exercise 12, explain why K := Jo1/v'z hex) dx = rr/8 + 1/4. Show that ih" (x) I.� 
23/2 and that Ih(4) (x) I � 9 . 27/2 for x E [0, 1/.y2]. Show that IK  - Tn (h) 1  � 1/12n2 and that 
IK - Sn (h) 1 � l / lOn4• Use these results to calculate rr. 

In Exercises 14-20, approximate the indicated integrals, giving estimates for the error. Use a calculator 
to obtain a high degree of precision. 

14. 12 (1 + x4) 1/2 dx. 15 .  12 
(4 + X3) 1/2 dx .  

17. t' sinx dx. 10 x 

20. 1 1 
cos (x2) dx. 

18. 17</2 dx 
o 1 + sin x 

r ' dx 16. 
io l + x3 · 

t'/2 19. 10 .Jsinx dx. 



CHAPTER 8 

SEQUEN CES OF FUNCTIONS 

In previous chapters we have often made use of sequences of real numbers. In this chapter 
we shall consider sequences whose terms are functions rather than real numbers. Sequences 
of functions arise naturally in real analysis and are especially useful in obtaining approxi­
mations to a given function and defining new functions from known ones. 

In Section 8 . 1  we will introduce two different notions of convergence for a sequence of 
functions: pointwise convergence and uniform convergence. The latter type of convergence 
is very important, and will be the main focus of our attention. The reason for this focus is 
the fact that, as is shown in Section 8.2, uniform convergence "preserves" certain properties 
in the sense that if each term of a uniformly convergent sequence of functions possesses 
these properties, then the limit function also possesses the properties. 

In Section 8.3 we will apply the concept of uniform convergence to define and derive 
the basic pn'perties of the exponential and logarithmic functions. Section 8.4 is devoted to 
a similar treatment of the trigonometric functions. 

Section 8.1 Pointwise and Uniform Convergence 

Let A � lR be given and suppose that for each n E N there is a function In : A --* lR; we 
shall say that Un) is a sequence of functions on A to R Clearly, for each x E A, such a 
sequence gives rise to a sequence of real numbers, namely the sequence 

( 1 )  

obtained by evaluating each of the functions at the point x .  For certain values of x E A 
the sequence ( 1 )  may converge, and for other values of x E A this sequence may diverge. 
For each x E A for which the sequence ( 1 )  converges, there is a uniquely determined real 
number limUn (x)). In general, the value of this limit, when it exists, will depend on the 
choice of the point x E A.  Thus, there arises in this way a function whose domain consists 
of all numbers x E A for which the sequence ( 1 )  converges. 

8.1.1 Definition Let Un) be a sequence of functions on A � lR to lR, let Ao � A, and let 
I : Ao --* R We say that the sequence Un) converges on Ao to I if, for each x E Ao' the 
sequence Un (x)) converges to I (x) in R In this case we call I the limit on Ao of the 
stquence Un).  When such a function I exists, we say that the sequence Un) is convergent 
on Ao' or that Un) converges pointwise on AD" 

It follows from Theorem 3. 1 .4 that, except for a possible modification of the domain 
Ao' the limit function is uniquely determined. Ordinarily we choose Ao to be the largest 
set possible; that is, we take Ao to be the set of all x E A for which the sequence ( 1 )  is 
convergent in R 

227 
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In order to symbolize that the sequence Un) converges on Ao to I, we sometimes 
write 

or 

Sometimes, when In and I are given by formulas, we write 

or for x E Ao' 

8.1.2 Examples (a) lim(xln) = 0 for x E R 
For n E N, let In (x) := xln and let I(x) := 0 for x E R By Example 3 . 1 .6(a), we 

have lim(lln) = O. Hence it follows from Theorem 3.2.3 that 

limUn (x)) = lim(x In) = x limO In) = x . 0 = 0 

for all x E R (See Figure 8 . 1 . 1 .) 

( 1  ,g( 1 ) )  

--���=----------- f 

Figure 8.1.1 fn (x) = x/no Figure 8.1.2 gn (x) = x" . 

(b) lim(x
n
) .  

Let gn (x) := x
n 

for x E JR, n E N. (See Figure 8 . 1 .2.) Clearly, if x = 1 ,  then the 
sequence (g n (1)) = (1)  converges to 1 .  It follows from Example 3 . 1 . 1 1  (b) that lim(x

n
) = 0 

for 0 S x < 1 and it is readily seen that this is also true for - 1  < x < O. If x = -1 ,  then 
gn (-1 )  = (_ I )

n
, and it was seen in Example 3 .2.8(b) that the sequence is divergent. 

Similarly, if rx l > 1 ,  then the sequence (x
n
) is not bounded, and so it is not convergent 

in R We conclude that if 

g(x) := {� for - 1 < x < 1 ,  
for x = 1 ,  

then the sequence (g n) converges to g on the set ( - 1 ,  1 ] .  

(c) lim ( x2 + nx)ln) = x for x E R 
Let hn (x) := (x2 + nx)ln for x E JR, n E N, and let h ex) := x for x E R (See Fig­

ure 8 . 1 .3.) Since we have hn (x) = (x2 
In) + x, it follows from Example 3 . 1 .6(a) and 

Theorem 3.2.3 that hn (x) --+ x = h ex) for all x E R 
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Figure 8.1.3 hn (x) = (x2 + nx)/n, Figure 8.1.4 Fn (x) = sin(nx + n)/n. 

(d) lim(( 1/n) sin(nx + n») = 0 for x E lR.. 
Let Fn (x) := ( l In) sin(nx + n) for x E JR, n E N, and let F(x) := 0 for x E lR.. (See 

Figure 8. 1 .4.) Since I sin y I :::: 1 for all y E JR we have 

(2) 1 1 . I 1 
IFn (x) - F(x) 1 = ;; sm(nx + n) :::: ;; 

for all x E JR. Therefore it follows that lim(Fn (x» = 0 = F(x) for all x E lR.. The reader 
should note that, given any e > 0, if n is sufficiently large, then I Fn (x) - F (x) I < e for all 
values of x simultaneously! D 

Partly to reinforce Definition 8. 1 . 1  and partly to prepare the way for the important 
notion of uniform convergence, we reformulate Definition 8. 1 . 1  as follows. 

8.1.3 Lemma A sequence Un) of functions on A � JR to JR converges to a function 
I : Ao --+ JR on Ao if and only if for each e > 0 and each x E Ao there is a natural number 
K(e, x) such that ifn � K(e, x), then 

(3) 

We leave it to the reader to show that this is equivalent to Definition 8. 1 . 1 .  We wish to 
emphasize that the value of K (e, x) will depend, in general, on both e > 0 and x E Ao' The 
reader should confirm the fact that in Examples 8 . 1 .2(a-c), the value of K(e, x) required 
to obtain an inequality such as (3) does depend on both e > 0 and x E Ao' The intuitive 
reason for this is that the convergence of the sequence is "significantly faster" at some 
points than it is at others. However, in Example 8 .1 .2(d), as we have seen in inequality (2), 
if we choose n sufficiently large, we can make I Fn (x) - F (x) I < e for all values of x E lR.. 
It is precisely this rather subtle difference that distinguishes between the notion of the 
"pointwise convergence" of a sequence of functions (as defined in Definition 8. 1 . 1) and the 
notion of "uniform convergence". 

Uniform Convergence ______________________ _ 

8.1.4 Definition A sequence Un) of functions on A � JR to JR converges uniformly 
on Ao � A to a function I : Ao --+ JR if for each e > 0 there is a natural number K(e) 
(depending on e but not on x E Ao) such that if n � K (e), then 

(4) lin (x) - l(x) 1 < e for all x E Ao' 
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In this case we say that the sequence Un) is uniformly convergent on Ao' Sometimes we 
write 

or for x E Ao' 

It is an immediate consequence of the definitions that if the sequence Un) is uniformly 
convergent on Ao to I, then this sequence also converges pointwise on Ao to I in the sense 
of Definition 8. 1 . 1 .  That the converse is not always true is seen by a careful examination of 
Examples 8. 1 .2(a-c); other examples will be given below. 

It is sometimes useful to have the following necessary and sufficient condition for a 
sequence Un) to lail to converge uniformly on Ao to I· 

8.1.5 Lemma A sequence Un) of functions on A S; � to � does not converge uniformly 
on Ao S; A to a function I : Ao ---+ � if and only if for some eo > 0 there is a subsequence 
(I. ) of (I. ) and a sequence (xk) in Ao such that nk n 

(5) I /nk (Xk) - /(Xk) l ::: eo for all k E N. 

The proof of this result requires only that the reader negate Definition 8 .1 .4; we leave 
this to the reader as an important exercise. We now show how this result can be used. 

8.1.6 Examples (a) Consider Example 8 . 1 .2(a). If we let nk := k and xk := k, then 
In/xk) = 1 so that I Ink (Xk) - I (Xk) I = 1 1 - 01 = 1 .  Therefore the sequence Un) does not 
converge uniformly on � to I. . ( 1  

)
l/k (b) ConSIder Example 8 . 1 .2(b). If nk := k and xk := "2 , then 

I gnk (xk) - g(Xk) I = I ! - 01 = ! . 
Therefore the sequence (gn) does not converge uniformly on (- 1 ,  1] to g. 
(c) Consider Example 8 . 1 .2(c). If nk := k and xk :=  -k, then hnk (xk) = 0 and h (xk) = 
-k so that Ihnk (xk) - h (xk) 1 = k. Therefore the sequence (hn) does not converge uniformly 
on � to h . 0 

The Uniform Norm 

In discussing uniform convergence, it is often convenient to use the notion of the uniform 
norm on a set of bounded functions. 

8.1.7 Definition If A S; � and ({l : A ---+ � is a function, we say that ({l is bounded on A 
if the set ({l(A) is a bounded subset of R If ({l is bounded we define the uniform norm of 
({l on A by 

(6) 

(7) 

1 i({l I iA := sup{ I({l(x) I  : x E A}. 

Note that it follows that if e > 0, then 

for all x E A. 

8.1.8 Lemma A sequence Un) of bounded functions on A S; � converges uniformly on 
A to I if and only iE II In - ! II A ---+ O. 
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Proof. (=» If Un) converges uniformly on A to f, then by Definition 8 . 1 .4, given any 
e > 0 there exists K(e) such that if n ::: K(e) and x E A then 

From the definition of supremum, it follows that II fn - f i lA :::: e whenever n ::: K (e). Since 
e > 0 is arbitrary this implies that II fn - f II A -+ o. 

( {=) If II fn - f II A -+ 0, then given e > 0 there is a natural number H (e) such that if 
n ::: H(e) then II fn - f il A :::: e . 1t follows from (7) that Ifn(x) - f(x) I :::: dor all n ::: H (e) 
and x E A. Therefore Un) converges uniformly on A to f. Q.E.D. 

We now illustrate the use of Lemma 8 . 1 .8 as a tool in examining a sequence of bounded 
functions for uniform convergence. 

8.1.9 Examples (a) We cannot apply Lemma 8. 1 .8 to the sequence in Example 8 .1 .2(a) 
since the function fn (x) - f (x) = x I n is not bounded on R 

For the sake of illustration, let A := [0, 1 ] .  Although the sequence (xln) did not 
converge uniformly on JR to the zero function, we shall show that the convergence is 
uniform on A. To see this, we observe that 

1 
II fn - f il A = sup { Ixln - 01 : 0 :s x :s I } = -n 

so that Il fn - f il A  -+ O. Therefore Un) is uniformly convergent on A to f· 
(b) Let gn (x) := xn for x E A := [0, 1] and n E N, and let g(x) := 0 for 0 :s x < 1 and 
g (1) : = 1 .  The functions g n (x) - g (x) are bounded on A and 

for O :s  x < I} = 1 for x = 1 
for any n E N. Since I Ign - g il A does not converge to 0, we infer that the sequence (gn) 
does not converge uniformly on A to g. 
(c) We cannot apply Lemma 8 . 1 .8 to the sequence in Example 8 .1 .2(c) since the function 
hn (x) - h ex) = x2 In is not bounded on JR. 

Instead, let A := [0, 8] and consider 
I 

I l hn - h ilA = sup{x2In : O :s x :s 8} = 64ln. 

Therefore, the sequence (hn) converges uniformly on A to h. 
(d) If we refer to Example 8 . 1 .2(d), we see from (2) that Il Fn - F IIJR. :s lin .  Hence (Fn) 
converges uniformly on JR to F. 
(e) Let G(x) := xn (1 - x) for x E A := [0, 1]. Then the sequence (Gn (x» converges to 
G(x) := 0 for each x E A. To calculate the uniform norm of G n - G = G n on A, we find 
the derivative and solve 

G� (x) = xn-1 (n - (n + l )x) = 0 
to obtain the point xn := nl(n + 1) .  This is an interior point of [0, 1] ,  and it is easily 
verified by using the First Derivative Test 6.2.8 that G n attains a maximum on [0, 1] at xn . 
Therefore, we obtain 

1 
IIGJ A  = Gn (xn) = ( 1 + 1 In)-n . -I ' n +  

which converges to ( l Ie) · 0 = O. Thus we see that convergence is uniform on A. D 
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By making use of the uniform norm, we can obtain a necessary and sufficient condition 
for uniform convergence that is often useful. 

8.1.10 Caucby Criterion for Uniform Convergence Let Un) be a sequence of bounded 
functions on A £ R. Then this sequence converges uniformly on A to a bounded function 
I if and only if for each e > 0 there is a number H (e) in N such that for all m, n ::: H (e), 
then ll im - In II A � e. 

Proof. ( =}) If In � I on A, then given e > 0 there exists a natural number K ( ! e) such 
that if n ::: K (!e) then II In - f il A  � !e. Hence, if both m, n ::: K (!e) , then we conclude 
that 

l im (x) - In (x) 1 � l im (x) - l(x) 1 + l in (x) - l (x) 1 � !e + !e = e 
for all x E A. Therefore 11 1m - In li A  � e, for m, n ::: K(!e) = :  H (e) . 

(<:=) Conversely, suppose that for e > 0 there is H(e) such that if m, n ::: H(e), then 
1 1 1m - In I I A � e. Therefore, for each x E A we have 

(8) for m, n ::: H (e) . 
It follows that Un (x)) is a Cauchy sequence in R; therefore, by Theorem 3.5 .5, it is a 
convergent sequence. We define I : A -+ R by 

I(x) := limUn(x)) for x E A . 

If we let n -+ 00 in (8), it follows from Theorem 3 .2.6 that for each x E A we have 

for m ::: H(e) . 

Therefore the sequence Un) converges uniformly on A to I. Q.E.D. 

Exercises for Section 8.1 

1 .  Show that lim(x/(x + n» = 0 for all x E JR, x � O. 

2. Show that lim(nx/(l + n2x2» = 0 for all x E R 

3. Evaluate lim(nx/(l + nx» for x E JR, x � O. 

4. Evaluate lim(xn /(1  + xn» for x E JR, x � O. 

5. Evaluate �im«sinnx)/(l + nx» for x E JR, x � O. 

6. Show that lim(Arctannx) = (:rr/2)sgn x for x E R 

7. Evaluate lim(e-nX)  for x E JR, x � O. 

8. Show that lim(xe-nX)  = 0 for x E JR, x � O. 

9. Show that lim(x2e-nx)  = 0 and that lim(n2x2e-nx)  = 0 for x E JR, x � O. 

10. Show that lim ( cos :rrx)2n) exists for all x E R What is its limit? 
1 1 . Show that if a > 0, then the convergence of the sequence in Exercise 1 is uniform on the interval 

[0, a], but is not uniform on the interval [0, 00). 
12. Show that if a > 0, then the convergence of the sequence in Exercise 2 is uniform on the interval 

[a, 00), but is not tyllform on the interval [0, 00). 
13. Show that if a > 0, then the convergence of the sequence in Exercise 3 is uniform on the interval 

[a, 00), but is not uniform on the interval [0, 00). 
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14. Show that if 0 < b < 1 ,  then the convergence of the sequence in Exercise 4 is uniform on the 
interval [0, b], but is not uniform on the interval [0, 1 ] .  

15. Show that if a > 0, then the convergence of the sequence in Exercise 5 i s  uniform on the interval 
[a, 00), but is not uniform on the interval [0, 00). 

16. Show that if a > 0, then the convergence of the sequence in Exercise 6 is uniform on the interval 
[a , 00), but is not uniform on the interval (0, 00). 

17. Show that if a > 0, then the convergence of the sequence in Exercise 7 is uniform on the interval 
[a , 00), but is not uniform on the interval (0, 00) . 

18. Show that the convergence of the sequence in Exercise 8 is uniform on [0, 00) . 
19. Show that the sequence (x2e-

n
x) converges uniformly on [0, 00) . 

20. Show that if a >  0, then the sequence (n2x2e-nx)  converges uniformly on the interval [a , 00), 
but that it does not converge uniformly on the interval [0, 00). 

21 .  Show that if Un) '  (gn) converge uniformly on the set A to I, g, respectively, then Un + gn) 
converges uniformly on A to I + g. 

22. Show that if In (x) := x + 1jn and I(x) : =  x for x E R, then Un) converges uniformly on R 
to I, but the sequence U;) does not converge uniformly on R. (Thus the product of uniformlv 
convergent sequences of functions may not converge uniformly.) 

23. Let Un) '  (gn) be sequences of bounded i functions on A that converge uniformly on A to I, g, 
respectively. Show that Ungn) converges uniformly on A to Ig. 

24. Let Un) be a sequence of functions that converges uniformly to I on A and that satisfies 
I In (x) I ::5 M for all n E N and all x E A. If g is continuous on the interval [ -M, M], show that 
the sequence (g 0 In) converges uniformly to g o  I on A. 

Section 8.2 Interchange of Limits 

It is often useful to know whether the limit of a sequence of functions is a continuous 
function, a differentiable function, or a Riemann integrable function. Unfortunately, it 
is not always the case that the limit of a sequence of functions possesses these useful 
properties. 

8.2.1 Example (a) Let gn (x) := xn for x E [0, 1] and n E N. Then, as we have noted 
in Example 8 .1 .2(b), the sequence (gn) converges pointwise to the function 

g(x) := {� for 0 :::: x < 1 ,  
for x = 1 .  

Although all of the functions gn are continuous at x = 1 ,  the limit function g i s  not 
continuous at x = 1 .  Recall that it was shown in Example 8 . 1 .6(b) that this sequence does 
not converge uniformly to g on [0, 1 ] .  
(b) Each of the functions gn (x) = xn in part (a) has a continuous derivative on [0, 1 ] .  
HOwever, the limit function g does not have a derivative at x = I ,  since it is  not continuous 
at that point. 
(c) Let in : [0, 1] -+ lR be defined for n � 2 by 

i" (x) , �  {�':2 (x - 2/n) 
for 

for 
for 

0 :::: x :::: l in, 
lin :::: x :::: 21n, 
21n :::: x :::: 1 .  
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(See Figure 8.2. 1 .) It is clear that each of the functions In is continuous on [0, 1 ] ;  hence 
it is Riemann integrable. Either by means of a direct calculation, or by referring to the 
significance of the integral as an area, we obtain 

1 1 In (x) dx = 1 for n ::: 2. 

The reader may show that In (x) -+ 0 for all x E [0, 1 ] ;  hence the limit function I vanishes 
identically and is continuous (and hence integrable), and fo1 I(x) dx = O. Therefore we 
have the uncomfortable situation that: 11 I (x) dx = 0 i= 1 = lim 1 1 

In (x) dx . 

1 (n, n) 

--�--���--------------�----�x 

n n 
Figure 8.2.1 Example 8.2. 1 (c). 

(d) Those who consider the functions In in part (c) to be "artificial" may prefer to consider 
the sequence (hn) defined by hn (x) := 2nxe-nx2 

for x E [0, 1 ] ,  n E N. Since hn = H� , 
2 

where Hn (x) := _e-nx , the Fundamental Theorem 7.3 . 1  gives 

1 1 hn (x) dx = Hn ( l )  - Hn (O) = 1 - e-n
. 

It is an exercise to show that h (x) := lim(hn (x)) = 0 for all x E [0, 1 ] ;  hence 

11 h (x) dx i= lim 11 hn (x) dx . D 

Although the extent of the discontinuity of the limit function in Example 8.2. 1(a) is 
not very great, ,it is evident that more complicated examples can be constructed that will 
produce more extensive discontinuity. In any case, we must abandon the hope that the limit 
of a convergent sequence of continuous [respectively, differentiable, integrable] functions 
will be continuous [respectively, differentiable, integrable] . 

It will now be seen that the additional hypothesis of uniform convergence is sufficient 
to guarantee that the limit of a sequence of continuous functions is continuous. Similar 
results will also be established for sequences of differentiable and integrable functions. 

Interchange of Limit and Continuity 

8.2.2 Theorem Let Un) be a sequence of continuous functions on a set A � lR and 
suppose that Un) converges uniformly on A to a function I : A -+ R Then I is continuous 
on A. 
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Proof. By hypothesis, given e > 0 there exists a natural number H := HUe) such that 
if n 2: H then l in (x) - l(x) 1 < �e for all x E A.  Let c E A be arbitrary; we will show 
that I is continuous at c. By the Triangle Inequality we have 

I/ (x) - l(c) 1 ::s I / (x) - IH (x) 1 + I IH (x) - IH (c) 1 + I IH (c) - l(c) 1 
::s �e + I IH (x) - IH (c) I + �e. 

Since I H is continuous at c, there exists a number 8 : = 8 U e, c, I H) > 0 such that if 
Ix - cl < 8 and x E A, then IIH(x) - IH(c) 1 < �e . Th�refore, if Ix - cl < 8 and x E A, 
then we have I I (x) - I (c) I < e . Since e > 0 is arbitrary, this establishes the continuity of 
I at the arbitrary point c E A. (See Figure 8.2.2.) Q.E.D. 

Figure 8.2.2 If (x) - f(c) 1 < e. 

Remark Although the uniform convergence of the sequence of continuous functions 
is sufficient to guarantee the continuity of the limit function, it is not necessary. (See 
Exercise 2.) 

Interchange of Limit and Derivative 

We mentioned in Section 6. 1 that Weierstrass showed that the function defined by the series 
00 

I(x) := L Z-k cos(3kx) 
k=O 

is continuous at every point but does not have a derivative at any point in R By considering 
the partial sums of this series, we obtain a sequence of functions Un) that possess a 
derivative at every point and are uniformly convergent to I. Thus, even though the sequence 
of differentiable functions Un) is uniformly convergent, it does not follow that the limit 
function is differentiable. 

We now show that if the sequence 01 derivatives U�) is uniformly convergent, then 
all is well. If one adds the hypothesis that the derivatives are continuous, then it is possible 
to give a short proof, based on the integral. (See Exercise 1 1 .) However, if the derivatives 
are not assumed to be continuous, a somewhat more delicate argument is required. 

8.2.3 Theorem Let J � lR. be a bounded interval and let Un) be a sequence of functions 
on J to R Suppose that there exists Xo E J such that Un (xo)) converges, and that the 
sequence U�) of derivatives exists on J and converges uniformly on J tola function g. 

Then the sequence Untconverges uniformly on J to a function I that has a derivative 
at every point of J and !' = g. 
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Proof. Let a < b be the endpoints of J and let x E J be arbitrary. If m, n E N, we apply 
the Mean Value Theorem 6.2.4 to the difference fm - fn on the interval with endpoints xo' 
x. We conclude that there exists a point y (depending on m, n) such that 

fm (x) - fn (x) = fm (xo) - fn (xo) + (x - xo){f� (Y) - f� (Y)} . 
Hence we have 

( 1 )  

From Theorem 8 . 1 . 10, i t  follows from ( 1 )  and the hypotheses that Un (xo» i s  convergent and 
that U�) is uniformly convergent on J, that Un) is uniformly convergent on J. We denote 
the limit of the sequence Un) by f. Since the fn are all continuous and the convergence is 
uniform, it follows from Theorem 8.2.2 that f is continuous on J. 

To establish the existence of the derivative of f at a point c E J, we apply the Mean 
Value Theorem 6.2.4 to fm - fn on an interval with end points c, x .  We conclude that there 
exists a point z (depending on m, n) such that 

{ tm (x) - fn (x) }  - {tm (c) - fn (c) } = (x - c) { t� (z) - f� (z) } . 
Hence, if x =j:. c, we have 

I fm (X) - fm (C) _ fn (X) - fn (C) I :s 11 1.' - 1.' 11 . x - c x - c m n J 
Since U�) converges uniformly on J, if 8 > 0 is given there exists H(8) such that if 
m, n 2: H (8) and x =j:. c, then 

(2) I fm (x) - fm(c) - fn (x) - fn(c) I :s 8. x - c x - c 
If we take the limit in (2) with respect to m and use Theorem 3.2.6, we have 

I f(x) - f(c) - fn(x) - fn (c) I :s 8. x - c x - c 
provided that x =j:. c, n 2: H(8).  Since g(c) = limU�(c» , there exists N(8) such that if 
n 2: N(8), then I f� (c) - g(c) 1 < 8. Now let K := SUp{H(8), N(8)}. Since f� (c) exists, 
there exists 0K (8) > 0 such that if 0 < Ix - c l  < 0K (8), then 

I fK (x) - fK (c) - f� (C) 1 < 8. x - c 
Combining these inequalities, we conclude that if 0 < Ix - cl < 0K (8), then 

I f(x) - f(c) - g(C) 1 < 38. x - c  

Since 8 > 0 is arbitrary, this shows that f' (c) exists and equals g (c). Since c E J is arbitrary, 
we conclude that f' = g on J. Q.E.D. 

Interchange of Limit and Integral 

We have seen in Example 8.2. I (c) that if Un) is a sequence R[a , b] that converges on [a , b] 
to a function f in R[a, b], then it need not happen that 

(3) rb f = lim r f. .  Ja n--*oo Ja n 
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We will now show that uniform convergence of the sequence is sufficient to guarantee that 
this equality holds. 

8.2.4 Theorem Let Un) be a sequence of functions in R[a , b] and suppose that Un) 
converges uniformly on [a , b] to I. Then I E R[a , b] and (3) holds. 

Proof. It follows from the Cauchy Criterion 8. 1 . 10 that, given s > 0 there exists H(s) 
such that if m > n ::: H(s) then 

-s :s 1m (X) - In (X) :s s . for x E [a .b] .  
Theorem 7. 1 .4 implies that 

-db - a) :s 1b 1m - 1b In :s s(b - a) . 

Since s > 0 is  arbitrary, the sequence <I: 1m) is a Cauchy sequence in lR. and therefore 
converges to some number, say A E R 

We now show I E R [a , b] with integral A. If IS >  0 is given, let K(s) be such that 
if m > K(s), then I lm(x) - I(x) I < s for all x E [a , b]. 1f P := {([xi-! '  Xi ] ' t)l?=1 is any 
tagged partition of [a , b] and if m > K (s), then 

n 
:s L I lm (t) - l(ti ) I (Xi - Xi_I ) i=1 

n 
:s L S(Xi - Xi-I ) = s(b - a) . i=1 

We now choose r ::: K(s) such that I f: Ir - A I  < s and we let 0r,E! > 0 be such that 

b ' . I fa Ir - SUr ; P) I  < s whenever I IP II < 0r,E! ' Then we have 

I Su; p) - A I :s I Su; P) - SUr ;  p) 1 + I sur ; p) _ 1b Ir l + 11b Ir - A I 

:s s(b - a) + s + s = s (b - a + 2) . 
But since s > 0 is arbitrary, it follows that I E  R [a, b] and f: 1 = A. Q.E.D. 

The hypothesis of uniform convergence is a very stringent one and restricts the utility 
of this result. In Section 10.4 we will obtain some far-reaching generalizations of Theorem 
8.2.4. For the present, we will state a result that does not require the uniformity of the 
convergence, but does require that the limit function be Riemann integrable. The proof is 
omitted. 

8.2.5 Bounded Convergence Theorem Let Un) be a sequence in R[a, b] that con­
verges on [a , b] to a function I E  R[a , b] . Suppose also that there exists B > 0 such that 
l in (x) 1  :s B for all X E [a , b] , n E N. Then equation (3) holds. 
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Dini's Theorem 

We will end this section with a famous theorem due to Ulisse Dini (1845-1918) which 
gives a partial converse to Theorem 8.2.2 when the sequence is monotone. We will present 
a proof using nonconstant gauges (see Section 5.5). 

8.2.6 Dini's Theorem Suppose that Un) is a monotone sequence of continuous functions 
on I : = [a , b] that converges on I to a continuous function I. Then the convergence of the 
sequence is uniform. 

Proof. We suppose that the sequence Un) is decreasing and let gm := 1m - I· Then (gm) 
is a decreasing sequence of continuous functions converging on I to the O-function. We 
will show that the convergence is uniform on I .  

Given e > 0 ,  t E l , there exists m t E N  such that 0 ::: g (t) < e /2. Since g is E, mE,t me,t 
continuous at t, there exists 80 (t) > 0 such that 0 ::: g (x) < e for all x E I satisfying 

c;. me t  
Ix - t l ::: 8, (t). Thus, 8, is a gauge on I, and if P = { (I; , t) }7=1 is a 8, -fine partition, we 
set M, := max{m, t ' • . .  , m

, t } .  If m ::: M, and x E I, then (by Lemma 5 .5 .3) there exists 
, 1 ' 

n 
an index i with Ix - t; I ::: 8/t; ) and hence 

0 ::: gm (x) ::: gm ,t (x) < e. 
, 

Therefore, the sequence (gm) converges uniformly to the O-function. Q.E.D. 

It will be seen in the exercises that we cannot drop any one of the three hypotheses: (i) 
the functions In are continuous, (ii) the limit function I is continuous, (iii) I is a closed 
bounded interval. 

Exercises for Section 8.2 

1 .  Show that the sequence «x
n 
1(1 + x

n
» does not converge uniformly on [0, 2] by showing that 

the limit function is not continuous on [0, 2]. 

2. Ptove that the sequence in Example 8.2. 1 (c) is an example of a sequence of continuous functions 
that converges nonuniformly to a continuous limit. 

3. Construct a sequence of functions on [0, 1 ]  each of which is discontinuous at every point of [0, 1 ]  
and which converges uniformly to a function that is continuous at every point. 

4. Suppose Un) is a sequence of continuous functions on an interval I that converges uniformly on 
I to a functlon f. If (xn) s::: I converges to Xo E I, show that limUn (xn» = f (xo)' 

5. Let f : lR -+ lR be uniformly continuous on lR and let fn (x) := f(x + l in) for x E lR. Show 
that Un) converges uniformly on lR to f. 

6. Let fn (x) := 1/(1 + xt for x E [0, 1 ] .  Find the pointwise limit f of the sequence Un) on [0, 1 ] .  
Does Un) converge uniformly to f on [0, I]? 

7. Suppose the sequence Un) converges uniformly to f on the set A, and suppose that each fn is 
bounded on A. (That is, for each n there is a constant M n such that I fn (x) I ::: Mn for all x E A.) 
Show that the function f is bounded on A. 

8. Let fn (x) := nxl(1 + nx2) for x E A := [0, (0), Show that each fn is bounded on A, but the 
pointwise limit f of the sequence is not bounded on A. Does Un) converge uniformly to f on A? 
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9< Let fn (x) := xn In for x E [0, 1] .  Show that the sequence Un) of differentiable functions con­
verges uniformly to a differentiable function f on [0, 1], and that the sequence U�) converges 
on [0, 1] to a function g, but that g( l )  =I- f'(I). 

10. Let gn (x) := e-nx In for x � 0, n E N. Examine the relation between lim(gn) and lim(g�) .  

H. Let I := [a, b ]  and let Un) be a sequence of functions on I --+ � that converges on I to f. 
Suppose that each derivative f� i s  continuous on I and that the sequence U�) i s  uniformly 
convergent to g on I. Prove that f(x) - f(a) = J: g(t) dt and that f'(x) = g(x) for all x E I .  

12. Show that lim JI2 e-nx2 dx = 0. 
13. If a >  0, show that limJa" (sinnx)/(nx) dx = 0. What happens if a = O? 

14. Let fn (x) := nxl(l + nx) for x E [0, 1] .  Show that Un) converges nonuniformly to an inte­
grable function f and that Jol f (x) dx = lim Jol fn (x) dx . 

15. Let gn (x) := nx(1 - x)n for x E [0, 1] , n E N. Discuss the convergence of (gn) and U; gn dx). 
16. Let {rl , r2 , " ' ,  rn · · · } be an enumeration of the rational numbers in I := [0, 1], and let fn : 

I --+ � be defined to be 1 if x = r I ' . . .  , r n and equal to ° otherwise. Show that fn is Riemann 
integrable for each n E N, that fl (x) ::: f2(x) ::: . . .  ::: fn (x) ::: . . .  and that f(x) := limUn<x» 
is the Dirichlet function, which is not Riemann integrable on [0, 1] .  

17. Let fn (x) := 1 for x E (0, 1 In) and fn (x) := ° elsewhere in [0, 1]. Show that Un) is a decreas­
ing sequence of discontinuous functions that converges to a continuous limit function, but the 
convergence is not uniform on [0, 1] .  

18. Let fn (x) := xn for x E [0, 1] ,  n E N. Show that Un) is a decreasing sequence of continuous 
functions that converges to a function that is not continuous, but the convergence is not uniform 
on [0, 1]. 

19. Let fn (x) := xln for x E [0, 00) , n E N. Show that Un) is a decreasing sequence of continuous 
functions that converges to a continuous limit function, but the convergence is not uniform on 
[0, 00). 

20. Give an example of a decreasing sequence Un) of continuous functions on [0, 1) that converges 
to a continuous limit function, but the convergence is not uniform on [0, 1) . 

Section 8.3 The Exponential and Logarithmic Functions 

We will now introduce the exponential and logarithmic functions and will derive some of 
their most important properties. In earlier sections of this book we assumed some familiarity 
with these functions for the purpose of discussing examples. However, it is necessary at 
some point to place these important functions on a firm foundation in order to establish 
their existence and determine their basic properties. We will do that here. There are several 
alternative approaches one can take to accomplish this goal. We will proceed by first proving 
the existence of a function that has itself as derivative. From this basic result, we obtain 
the main properties of the exponential function. The logarithm function is then introduced 
as the inverse of the exponential function, and this inverse relation is used to derive the 
properties of the logarithm function. 

The Exponential Function 

We begin by establishing the key existence result for the exponential function. 
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8.3.1 Theorem There exists a function E : JR. -+ JR. such that: 

(i) E'(x) = E(x) for all x E JR.. 

(ii) E (0) = 1 .  

Proof. We inductively define a sequence (En) of continuous functions as follows: 

( 1) E1 (x) : = 1 + x , 
(2) En+1 (x) : = 1 + fox En (t) dt, 

for all n E N, x E R Clearly E1 is continuous on JR. and hence is integrable over any 
bounded interval. If En has been defined and is continuous on JR., then it is integrable over 
any bounded interval, so that En+l is well-defined by the above formula. Moreover, it 
follows from the Fundamental Theorem (Second Form) 7.3.5 that En+l is differentiable at 
any point x E JR. and that 

(3) for n E N. 

An Induction argument (which we leave to the reader) shows that 

(4) 
X x2 xn 

E (x) = 1 + - + - + . . .  + -n I !  2 !  n !  for x E R 
Let A > 0 be given; then if Ix I :::: A and m > n > 2A, we have 

(5) IE (x) _ E (x) 1 = I x
n+1 

+ . . .  + x
m I m n (n + I ) !  m ! 

< 1 + - + · · · +  -An+1 [ A (A)m-n-lJ 
(n + l) ! n n An+1 < 2. (n + I) ! 

Since lim(A
n In!) = 0, it follows that the sequence (En) converges uniformly on the interval [ -A, A] where A > 0 is arbitrary. In particular this means that (En (x» converges for each 

x E R We define E : JR. -+ JR. by 

E(x) : =  lim En (x) for x E R 
Since each x E JR. is contained inside some interval [-A, A], it follows from Theorem 8.2.2 
that E is continuous at x .  Moreover, it is clear from (1) and (2) that En(O) = 1 for all n E N. 
Therefore E (0) = 1 ,  which proves (ii). 

On any interval [-A, A] we have the uniform convergence of the sequence (En) .  In 
view of (3), we also have the uniform convergence of the sequence (E� ) of derivatives. It 
therefore follows from Theorem 8.2.3 that the limit function E is differentiable on [-A, A] 
and that 

E'(x) = lim(E� (x» = lim(En_1 (x» = E(x) 

for all x E [-A , A]. Since A > 0 is arbitrary, statement (i) is established. Q.E.D. 

8.3.2 Corollary The function E has a derivative of every order and E(n) (x) = E(x) for 
all n E N, x E JR.. 
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Proof. If n = 1 ,  the statement is merely property (i). It follows for arbitrary n E N  by 
Induction. Q.E.D. 

8.3.3 Corollary Ifx > 0, then 1 + x < E(x). 

Proof. It is clear from (4) that if x > 0, then the sequence (En (x» is strictly increasing. 
Hence E 1 (x) < E (x) for all x > O. Q.E.D. 

It is next shown that the function E, whose existence was established in Theorem 8.3 . 1 ,  
i s  unique. 

8.3.4 Theorem The function E : JR -+ JR that satisfies (i) and (ii) of Theorem 8.3 . 1  is 
unique. 

Proof. Let EI and E2 be two functions on JR to JR that satisfy properties (i) and (ii) of 
Theorem 8.3 . 1  and let F := EI - E2. Then 

F' (x) = E� (x) - E� (x) = EI (x) - E2(x) = F(x) 
for all x E JR and 

F(O) = E1 (0) - E2 (0) = 1 - 1  = o. 

It is clear (by Induction) that F has derivatives of all orders and indeed that F(n) (x) = F (x) 
for n E N, x E R 

Let x E JR be arbitrary, and let Ix be the closed interval with endpoints 0, x. Since F 
is continuous on Ix ' there exists K > 0 such that W(t) 1 ::: K for all t E Ix . If we apply 
Taylor's Theorem 6.4. 1 to F on the interval Ix and use the fact that F(k) (O) = F(O) = 0 
for all k E N, it follows that for each n E N  there is a point cn E Ix such that 

F' (0) F(n-I) F(n) (c ) 
F(x) = F(O) + --x + . . .  + xn-I + n xn 

1 !  (n - l) !  n !  

Therefore we have 

F (cn) n = --x .  n !  

IF (x) 1 ::: 
K 1� ln 

n .  for all n E N. 

But since lim( lx ln In !) = 0, we conclude that F(x) = O. Since x E JR is arbitrary, we infer 
that EI (x) - E2(x) = F(x) = 0 for all x E JR. Q.E.D. 

The standard terminology and notation for the function E (which we now know exists 
and is unique) is given in the following definition. 

8.3.5 Definition The unique function E : JR -+ JR such that E' (x) = E (x) for all x E JR 
and E(O) = 1 ,  is called the exponential function. The number e := E(1) is called Euler's 
number. We will frequently write 

exp(x) := E(x) or eX := E(x) for x E R 
The number e can be obtained as a limit, and thereby approximated, in several different 

ways. [See Exercises 1 and to, and Example 3.3.6.] 
The use of the notation eX for E(x) is justified by property (v) in the next theorem, 

where it is noted that if r is a rational number, then E (r) and er coincide. (Rational exponents 
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were discussed in Section 5.6.) Thus, the function E can be viewed as extending the idea 
of exponentiation from rational numbers to arbitrary real numbers. For a definition of aX 

for a > 0 and arbitrary x E �, see Definition 8.3 . 10. 

8.3.6 Theorem The exponential function satisfies the following properties: 

(iii) E(x) i= 0 for all x E �; 
(iv) E(x + y) = E(x)E(y) for all x ,  y E R 
(v) E(r) = er for all r E IQ. 

Proof. (iii) Let a E � be such that E(a) = 0, and let fa be the closed interval with 
endpoints 0, a. Let K 2: I E  (t) I for all t E fa ' Taylor's Theorem 6.4. 1 ,  implies that for each 
n E N there exists a point cn E fa such that 

E' (a) E (n- l) (a) 
1 = E(O) = E(a) + -- (-a) + . . . + (_a)n-l 

I !  (n - I ) !  

E(n) (a) E (c ) 
+ (_a)n = __ n_ (_a)n . 

(n) ! n !  

Thus we have 0 < 1 :s (Kin!) l a in for n E N. But since lim( la ln In !)  = 0 ,  this is a con­
tradiction. 

(iv) Let y be fixed; by (iii) we have E(y) i= O. Let G : � -+ � be defined by 

G(x) := 
E(x + y) 

for x E R E(y) 
Evidently we have G'(x) = E'(x + y)1 E(y) = E(x + y)1 E (y) = G(x) for all x E �, and 
G(O) = E(O + y)1 E(y) = 1 .  It follows from the uniqueness of E, proved in Theorem 8.3.4, 
that G(x) = E(x) for all x E R Hence E(x + y) = E(x)E(y) for all x E R Since y E � 
is arbitrary, we obtain (iv). 

(v) It follows from (iv) and Induction that if n E N, x E �, then 

E(nx) = E(x)n . 
If we let x = 1 I n, this relation implies that 

whence it follows that E(lln) = e1/n . Also we have E(-m) = lIE(m) = llem = e-m 
for m E N. Therefore, if m E Z, n E N, we have 

This establishes (v). Q.E.D. 

8.3.7 Theorem The exponential function E is strictly increasing on � and has range 
equal to {y E � : y > O}. Further, we have 

(vi) lim E(x) = 0 and lim E(x) = 00. 
x�-oo x-+oo 

Proof. We know that E (0) = 1 > 0 and E (x) i= 0 for all x E R Since E is continuous 
on �, it follows from Bolzano's Intermediate Value Theorem 5 .3.7 that E(x) > 0 for all 
x E R Therefore E' (x) = E (x) > 0 for x E �, so that E is strictly increasing on R 
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It follows from Corollary 8.3 .3 that 2 < e and that lim E (x) = 00. Also, if z > 0, then 
x--->oo 

since 0 < E ( -z) = 1/ E (z) it follows that lim E (x) = O. Therefore, by the Intermediate 
X 4 - (X)  

Value Theorem 5.3 .7, every y E lR with y > 0 belongs to the range of E. Q.E.D. 

The Logarithm Function _____________________ _ 

We have seen that the exponential function E is a strictly increasing differentiable function 
with domain lR and range {y E lR : y > O}. (See Figure 8.3 . 1 .) It follows that lR has an 
inverse function. 

Figure 8.3.1 Graph of E. Figure 8.3.2 Graph of L.  

8.3.8 Definition The function inverse to E : lR � lR is called the logarithm (or the 
natural logarithm). (See Figure 8.3 .2.) It will be denoted by L, or by In. 

Since E and L are inverse functions, we have 

(L 0 E)(x) = x 
and 

for all x E lR 

(E 0 L)(y) = y for all y E lR, Y > O. 

These formulas may also be written in the form 

ln ex = x ,  e1ny = y. 

8.3.9 Theorem The logarithm is a strictly increasing function L with domain {x E lR : 
x > O} and range R The derivative of L is given by 

(vii) L' (x) = l/x for x > O. 
The logarithm satisfies the functional equation 

(viii) L(xy) = L(x) + L(y) for x > 0, y > O. 
Moreover, we have 

(ix) 
(x) 
(xi) 

L(l) = 0 and L(e) = 1 ,  
L(x') = rL(x) for x > 0, r E Ql. 
lim L(x) = - 00  and lim L(x) = 00. 

X"'" 0+ x ..... 00 
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Proof. That L is strictly increasing with domain {x E IR : x > O} and range IR follows 
from the fact that E is strictly increasing with domain IR and range {y E IR : y > OJ. 

(vii) Since E' (x) = E (x) > 0, it follows from Theorem 6. 1 .9 that L is differentiable 
on (0, 00) and that 

1 
L'(x) 

_ 1 = 1 
- (E' 0 L) (x) (E 0 L)(x) x 

for X E (O, oo) . 

(viii) If x > 0, y > 0, let u := L(x) and v := L(y). Then we have x = E(u) and 
y = E(v). It follows from property (iv) of Theorem 8 .3 .6 that 

xy = E(u)E(v) = E(u + v) ,  

so that L (xy) = (L 0 E)(u + v) = u + v = L (x) + L (y).  This establishes (viii). 
The properties in (ix) follow from the relations E (0) = 1 and E (1)  = e. 
(x) This result follows from (viii) and Mathematical Induction for n E N, and is 

extended to r E Ql by arguments similar to those in the proof of 8.3.6(v). 
To establish property (xi), we first note that since 2 < e, then lim(e

n
) = 00 and 

lim(e-n
) = O. Since L (e

n
) = n and L (e-n

) = -n it follows from the fact that L is strictly 
increasing that 

lim L(x) = lim L(e
n
) = 00 and lim L(x) = lim L(e-

n
) = -00. Q.E.D. 

x-+oo x-+O+ 

Power Functions 

In Definition 5 .6.6, we discussed the power function x t-+ xr ,  X > 0, where r is a rational 
number. By using the exponential and logarithm functions, we can extend the notion of 
power functions from rational to arbitrary real powers. 

8.3.10 Definition If a E IR and x > 0, the number x'" is defined to be 

x'" := e"' lnx = E(aL(x)) .  

The function x t-+ x'" for x > 0 is called the power function with exponent a. 

Note If x > 0 and a = min where m E Z, n E N, then we defined x'" : =  (xm) l/n in 
Section 5.6. Hence we have In x'" = a lnx, whence x'" = e

1n x" 
= e

", lnx
. Hence Definition 

8.3 . 10  is consistent with the definition given in Section 5 .6. 

We now state some properties of the power functions. Their proofs are immediate 
consequences of the properties of the exponential and logarithm functions and will be left 
to the reader. 

8.3.11 Theorem If a E IR and x ,  y belong to (0, 00), then: 

(a) I'" = I ,  
(c) (xy)'" = x'" y"' , 

(b) x'" > 0, 
(d) (x/y)'" = x'" /y"' . 

8.3.12 Theorem If a,fJ E IR and x E (0, 00), then: 

(a) x"'+f3 
= x'" xf3 , (b) (x"' )f3 = x"'f3 = (xf3)"', 

(c) x-'" = l/x"', (d) if a < fJ, then x'" < xf3 for x > 1 .  

The next result concerns the differentiability of the power functions. 



8.3 THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 245 

8.3.13 Theorem Let a E lR.. Then the function x f-+ xa on (0, (0) to JR is continuous 
and differentiable, and 

Dxa = axa-1 

Proof. By the Chain Rule we have 

for x E (0, (0). 

Dxa = Dea 1nx 
= ea 1nx . D(a lnx) 

a 
= xa . - = axa-1 for x E (0, (0). 

x 
Q.E.D. 

It will be seen in an exercise that if a > 0, the power function x f-+ xa is strictly 
increasing on (0, (0) to JR, and that if a < 0, the function x f-+ xa is strictly decreasing. 
(What happens if a = o?) 

The graphs of the functions x f-+ xa on (0, (0) to JR are similar to those in Figure 5.6.8. 

The Function lo� 

If a > 0, a =1= 1 ,  it is sometimes useful to define the function loga ' 

8.3.14 Definition Let a > 0, a =1= 1 .  We define 

lnx 
log (x) := -a 

In a 
for x E (0, (0). 

For x E (0, (0), the number loga (x) is called the logarithm of x to the base a. The 
case a = e yields the logarithm (or natural logarithm) function of Definition 8.3.8. The 
case a = 10 gives the base 10 logarithm (or common logarithm) function 10glO often used 
in computations. Properties of the functions loga will be given in the exercises. 

Exercises for Section 8.3 

1. Show that if x > 0 and if n > 2x, then 

lex _ (1 + .:.. + . . .  + X
n ) 1  < 

2xn+1 

I !  n !  (n + l) !  
Use this fonnula to show that 2 �  < e < 2 � ,  hence e is not an integer. 

2. Calculate e correct to S decimal places. 
3. Show that if 0 � x � a and n E N, then 

x xn X xn-1 eaxn 
1 + - + " . + - < eX < 1 + - + " . + --- + --. 1 !  n !  - - 1 !  (n - I ) !  n !  

4 .  Show that i f  n � 2, then 

0 <  en ! - (1 + 1 + � + " . + �) n !  < _e_ < 1 .  2 !  n !  n + 1 
Use this inequality to prove that e is not a rational number. 

S. If x � 0 and n E N, show that 
1 2 3 n- l (_X)n -- = I - x + x - x  + " ' + (-X) + -- . x + l  l + x 

Use this to show that 
x2 x3 xn !ox (-tt 

In(x + l) = x - - + - _ · · · + (-W-1 _ + -- dt 
2 3 n 0 l + t  
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and that 

I ln(x + 1) - (X -
X2 + x3 _ " ' + (_ l)n- I x

n ) l :5 xn+l . 2 3 n n + 1  
6. Use the fonnula in the preceding exercise to calculate In 1 . 1 and In 1 .4 accurate to four decimal 

places. How large must one choose n in this inequality to calculate In 2 accurate to four decimal 
places? 

7. Show that In(eI2) = 1 - ln 2. Use this result to calculate ln 2 accurate to four decimal places. 
8. Let f : JR -+ JR be such that f'(x) = f(x) for all x E R Show that there exists K E JR such 

that f(x) = Kex for all x E R 

9. Let ak > 0 for k = I ,  " " n and let A := (al + . . . + an)ln be the arithmetic mean of these 
numbers. For each k, putxk := akl A - l in the inequality 1 + x :5 eX (valid for x � 0). Multiply 
the resulting tenns to prove the Arithmetic-Geometric Mean Inequality 

(6) (a · · · a ) l
ln < � (a + . .  · + a ) . I n - n I n 

Moreover, show that equality holds in (6) if and only if al = a2 = . . . = an ' 
10. Evaluate L' (1) by using the sequence (1 + lin) and the fact that e = lim ( (1 + 1/n)n) .  
1 1 .  Establish the assertions in Theorem 8.3. 1 1 .  
12. Establish the assertions i n  Theorem 8.3.12. 
13. (a) Show that if a > 0, then the function x 1-+ x" is strictly increasing on (0, (0) to JR and that 

lim x" = 0 and lim x" = 00. 
X-+O+ x--+oo 

(b) Show that if a < 0, then the function x 1-+ x" is strictly decreasing on (0, (0) to JR and 
that lim x" = 00 and lim x" = O. x-+o+ x--+oo 

14. Prove that if a > 0, a =f:. I, then alog• X = x for all x E (0, (0) and loga (aY) = y for all y E JR. 
Therefore the function x 1-+ loga x on (0, (0) to JR is inverse to the function y 1-+ aY on R 

15. If a > 0, a =f:. I, show that the function x 1-+ loga x is differentiable on (0, (0) and that 
D loga x = 1/(x lna) for x E (0, 00). 

16. If a > 0, a =f:. I, and x and y belong to (0, (0), prove that loga (xy) = loga x + loga y. 
17. If a >  0, a =f:. I ,  and b > 0, b =f:. I ,  show that 

( lnb) log x = - 10gb X a Ina for x E (0, (0). 

In particular, show that 10gIO x = (In ej ln 10) lnx = (loglO e) lnx for x E (0, (0). 

Section 8.4 The Trigonometric Functions 

Along with the exponential and logarithmic functions, there is another very important 
collection of transcendental functions known as the "trigonometric functions". These are 
the sine, cosine, tangent, cotangent, secant, and cosecant functions. In elementary courses, 
they are usually introduced on a geometric basis in terms of either triangles or the unit 
circle. In this section, we introduce the trigonometric functions in an analytical manner 
and then establish some of their basic properties. In particular, the various properties of 
the trigonometric functions that were used in examples in earlier parts of this book will be 
derived rigorously in this section. 

It suffices to deal with the sine and cosine since the other four trigonometric functions 
are defined in terms of these two. Our approach to the sine and cosine is similar in spirit to 
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our approach to the exponential function in that we first establish the existence of functions 
that satisfy certain differentiation properties. 

8.4.1 Theorem There exist functions C : � --* � and S : � --* � such that 

(i) CI/(x) = -C(x) and SI/(x) = -S(x) for all x E � 
(ii) C(O) = 1 ,  C'(O) = 0, and S(O) = 0, S'(O) = 1 . 
Proof. We define the sequences (Cn) and (Sn) of continuous functions inductively as 
follows: 

(1) 
(2) 

(3) 

C1 (x) :  = 1 ,  Sl (x) := x, 
Sn (x) : = loX Cn (t) dt, 

Cn+1 (x) : = I - lox 
Sn (t) dt, 

for all n E N, x E R 
One sees by Induction that the functions C n and Sn are continuous on � and hence they 

are integrable over any bounded interval; thus these functions are well-defined by the above 
fonnulas. Moreover, it follows from the Fundamental Theorem 7.3.5 that Sn and Cn+1 are 
differentiable at every point and that 

(4) S� (x) = Cn (x) and C�+l (X) = -Sn (x) for n E N, x E R 
Induction arguments (which we leave to the reader) show that 

x2 x4 x2n 
Cn+1 (x) = 1 - 2! + 4! - · · · + (- It (2n) ! ' 

x3 x5 x2n+1 
Sn+l (x) = x - 3T + 5T - . . .  + (-lt (2n + I) ! ' 

Let A > 0 be given. Then if Ix l ::: A and m > n > 2A, we have that (since A/2n < 1 /4): 

I x2n x2n+2 X2m-2 I (5) I Cm (x) - Cn (x) 1 = (2n) ! - (2n + 2) ! + . . . ± (2m _ 2) ! 

< � [
1 + 

(�) 2 
+ . . . + 

(�)2m-2n-2] 
- (2n) ! 2n 2n 

A2n ( 16) < (2n) ! 1 5  
. 

Since lim(A2n /(2n) !) = 0, the sequence (Cn) converges uniformly on the interval [-A, A], 
where A >  0 is arbitrary. In particular, this means that (Cn (x» converges for each x E R 
We define C : � --* � by 

C(x) := lim C/x) for x E �. 
It follows from Theorem 8.2.2 that C is continuous on � and, since Cn (0) = 1 for all n E N, 
that C(O) = 1 . 

If Ix I ::: A and m � n > 2A, it follows from (2) that 

Sm (x) - Sn (x) = loX {Cm (t) - Cn (t) }  dt . 
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If we use (5) and Corollary 7.3 . 15 ,  we conclude that 

A2n ( 16 ) I Sm (x) - Sn (x) 1 S (2n) ! 15A , 
whence the sequence (Sn) converges uniformly on [-A, A]. We define S : JR -+ JR by 

Sex) := lim Sn (x) for x E IR. 

It follows from Theorem 8.2.2 that S is continuous on JR and, since Sn (0) = 0 for all n E N, 
that S(O) = O. 

Since C� (x) = -Sn-l (x) for n > 1 ,  it follows from the above that the sequence (C�) 
converges uniformly on [-A, A]. Hence by Theorem 8.2.3, the limit function C is differ­
entiable on [-A , A] and 

C'(x) = lim C�(x) = lim(-Sn_l (x)) = -Sex) 
Since A > 0 is arbitrary, we have 

(6) C'(x) = -Sex) for x E IR. 

for x E [-A , A]. 

A similar argument, based on the fact that S� (x) = Cn (x), shows that S is differentiable on 
JR and that 

(7) S'(x) = C(x) 
It follows from (6) and (7) that 

C"(x) = -(S(x))' = -C(x) 
for all x E IR. Moreover, we have 

C' (0) = -S(O) = 0, 

Thus statements (i) and (ii) are proved. 

for all x E IR. 

and S"(X) = (C(x))' = -Sex) 

S' (0) = C(O) = 1 .  

8.4.2 Corollary If C ,  S are the functions in Theorem 8.4. 1 ,  then 

(iii) C'(x) = -Sex) and S'(x) = C(x) forx E IR. 

Moreover, these functions have derivatives of all orders. 

Q.E.D. 

Proof. The formulas (iii) were established in (6) and (7). The existence of the higher 
order derivatives follows by Induction. Q.E.D. 

8.4.3 Corollary The functions C and S satisfy the Pythagorean Identity: 

(iv) (C(x))2 + (S(x))2 = 1 for x E R  

Proof. Let f(x) := (C(X))2 + (S(x))2 for x E JR, so that 

f'(x) = 2C(x) (-S(x)) + 2S(x)(C(x)) = 0 for x E IR. 

Thus it follows that f(x) is a constant for all x E IR. But since f(O) = 1 + 0 = 1 ,  we 
conclude that f (x) = 1 for all x E IR. Q.E.D. 

We next establish the uniqueness of the functions C and S. 

8.4.4 Theorem The functions C and S satisfying properties (i) and (ii) of Theorem 8.4.1 
are unique. 
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Proof. Let C, and C2 be two functions on JR to JR that satisfy Cj'(x) = -C/x) for all 
x E JR and Cj (O) = 1 ,  C; (O) = 0 for j = 1 , 2. If we let D := C1 - C2' then DI/(x) = 
-D(x) for x E JR and D(O) = 0 and D(k) (0) = 0 for all k E N. 

Now let x E JR be arbitrary, and let Ix be the interval with endpoints 0, x. Since 
D = C, - C2 and T := S, - S2 = C� - C; are continuous on Ix ' there exists K > 0 such 
that I D(t) 1  :::: K and I T (t) 1 :::: K for all t E Ix ' If we apply Taylor's Theorem 6.4. 1 to D 
on Ix and use the fact that D(O) = 0, D(k) (0) = 0 for k E N, it follows that for each n E N 
there is a point cn E Ix such that 

D'(O) D(n-') (0) D(n) (c ) D(x) = D(O) + --x + . . .  + xn-' + 
n xn 

1 !  (n - l) !  n !  

= 
D(n) (cn) xn . n !  

Now either D(n) (cn) = ±D(cn) or D(n) (cn) = ±T(cn) .  In either case we have 

K Ix ln ID (x) l :::: -,- . 
n .  

But since lim( lx ln In !) = 0 ,  we conclude that D(x) = O. Since x E JR i s  arbitrary, we infer 
that C, (x) - Czex) = 0 for all x E R 

A similar argument shows that if S, and S2 are two functions on JR � JR such that 
Sj' (x) = -Sj (x) for all x E JR and Sj (O) = 0, S; (0) = l for j = 1 , 2, then we have S, (x) = 
Szex) for all x E R Q.E.D. 

Now that existence and uniqueness of the functions C and S have been established, we 
shall give these functions their familiar names. 

8.4.5 Definition The unique functions C : JR � JR and S : JR � JR such that CI/ (x) = 
-C(x) and SI/(x) = -Sex) for all x E JR and C(O) = 1 ,  C'(O) = 0, and S(O) = 0, 
s' (0) = 1 ,  are called the cosine function and the sine function, respectively. We ordi­
narily write 

cos x := C(x) and sinx := Sex) for x E R 

The differentiation properties in (i) of Theorem 8.4. 1 do not by themselves lead to 
uniquely determined functions. We have the following relationship. 

8.4.6 Theorem If f : JR � JR is such that 

fl/(x) = -f(x) 
then there exist real numbers a, f3 such that 

f(x) = aC(x) + f3S(x) 

for x E JR, 

for x E R 

Proof. Let g (x) : = f (0) C (x) + f' (0) S (x) for x E R It is readily seen that gl/ (x) = 
-g(x) and that g(O) = f(O), and since 

g'(x) = -f(O)S(x) + f'(O)C(x) , 
that g'(O) = f'(O) . Therefore the function h := f - g is such that hl/(x) = -hex) for all 
x E JR and h (O) = 0, h' (O) = O. Thus it follows from the proof of the preceding theorem 
that h ex) = 0 for all x E R Therefore f(x) = g(x) for all x E R Q.E.D. 
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We shall now derive a few of the basic properties of the cosine and sine functions. 

8.4.7 Theorem The function C is even and S is odd in the sense that 
(v) C( -x) = C(x) and S( -x) = -Sex) for x E �. 
If x,  y E �, then we have the "addition formulas" 
(vi) C(x + y) = C(x)C(y) - S(x)S(y) ,  Sex + y) = S(x)C(y) + C(x)S(y) .  

Proof. (v) If qJ(x) := C(-x) for x E �, then a calculation shows that qJ"(x) = -qJ(x) 
for x E R Moreover, qJ (0) = 1 and qJ'(O) = ° so that qJ = C. Hence, C(-x) = C(x) for 
all x E R In a similar way one shows that S( -x) = -Sex) for all x E R 

(vi) Let y E � be given and let f(x) := C(x + y) for x E �. A calculation shows that 
f"(x) = -f(x) for x E �. Hence, by Theorem 8.4.6, there exists real numbers a, {l such 
that 

f(x) = C(x + y) = aC(x) + {lS(x) and 
f'(x) = -Sex + y) = -as(x) + {lC(x) 

for x E R If we let x = 0, we obtain C (y) = a and -S (y) = {l, whence the first formula 
in (vi) follows. The second formula is proved similarly. Q.E.D. 

The following inequalities were used earlier (for example, in 4.2.8) . 

8.4.8 Theorem If x E �, x � 0, then we have 

(vii) 

(ix) 

-x ::: S (x) ::: x ;  
x - !x3 < Sex) < x· 

6 - - , 

(viii) 

(x) 

1 - !x2 ::: C (x) ::: 1 ;  
1 - !x2 < C(x) < 1 - !x2 + -lx4. 2 - - 2 24 

Proof. Corollary 8.4.3 implies that - 1  ::: C (t) ::: 1 for t E �, so that if x � 0, then 

-x ::: fox C (t) dt ::: x ,  

whence we have (vii). If we integrate (vii), we obtain 

_!x2 < lox S (t) dt < !x2 2 - - 2 ' 
o 

whence we have 

_ !x2 ::: -C (x) + 1 ::: !x2 • 
Thus we have.! - !x2 ::: C(x), which implies (viii). 

Inequality (ix) follows by integrating (viii), and (x) follows by integrating (ix). Q.E.D. 

The number 7r is obtained via the following lemma. 

8.4.9 Lemma There exists a root y of the cosine function in the interval (v'2, J3). 
Moreover C(x) > ° for x E [0, y) .  The number2y is the smallest positive root of S. 

Proof. IneqUality (x) of Theorem 8.4.8 implies that C has a root between the positive 
root v'2 of x2 - 2 = ° and the smallest positive root of X4 - 12x2 + 24 = 0, which is 
J 6 - 2J3 < J3. We let y be the smallest such root of C. 
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It follows from the second formula in (vi) with x = y that S(2x) = 2S(x)C(x) . This 
relation implies that S(2y) = 0, so that 2y is a positive root of S. The same relation implies 
that if 28 > 0 is the smallest positive root of S, then C(8) = O. Since y is the smallest 
positive root of C, we have 8 = y .  Q.E.D. 

8.4.10 Definition Let rr := 2y denote the smallest positive root of S. 

Note The inequality "J2 < y < )6 - 2J3 implies that 2.828 < rr < 3 . 185 .  

8.4.11 Theorem The functions C and S have period 2rr in the sense that 

(xi) C(x + 2rr) = C(x) and S(x + 2rr) = S(x) for x E R 

Moreover we have 
(xii) S(x) = C Grr - x) = -C (x + !rr) , C(x) = S Grr - x) = S (x + !rr) for all 
x E R  

Proof. (xi) Since S(2x) = 2S(x)C(x) and S(rr) = 0, then S(2rr) = O. Further, if x = y 
in (vi), we obtain C(2x) = (C(x»2 - (S(x» 2 . Therefore C(2rr) = 1 .  Hence (vi) with 
y = 2rr gives 

C(x + 2rr) = C(x)C(2rr) - S(x)S(2rr) = C(x) , 
and 

S(x + 2rr) = S(x)C(2rr) + C(x)S(2rr) = S(x) . 
(xii) We note that C(!rr) = 0,  and it  is  an exercise to show that S(!rr) = 1 .  If we 

employ these together with formulas (vi), the desired relations are obtained. Q.E.D. 

Exercises for Section 8.4 

1. Calculate cos(.2), sin(.2) and cos I, sin 1 correct to four decimal places. 
2. Show that I sin x I .::s 1 and I cos x I .::s 1 for all x E R 
3. Show that property (vii) of Theorem 8.4.8 does not hold if x < 0, but that we have I sin x I .::s Ix I 

for all x E R Also show that I sinx - x l  .::s Ix 13/6 for all x E R 
4. Show that if x > 0 then 

x2 X4 x6 x2 x4 
1 - - + - - - < cos x < 1 - - + - .  

2 24 720 - - 2 24 
Use this inequality to establish a lower bound for 7r . 

5. Calculate 7r by approximating the smallest positive zero of sin. (Either bisect intervals or use 
Newton's Method of Section 6.4.) 

6. Define the sequence (en) and (sn) inductively by el (x) := 1, SI (x) := x, and 

sn (x) := lox e. (t) dt. en+1 (x) := 1 + lox sn (t) dt 

for all n E N, x E R Reason as in the proof of Theorem 8.4. 1 to conclude that there exist 
functions e : JR --+ JR and s : JR --+ JR such that (j) e" (x) = e(x) and S" (x) = s (x) for all x E JR. 
and (jj) e(O) = 1 .  e'(O) = 0 and s (O) = o. s'(O) = 1 .  Moreover. e'(x) = s(x) and s'(x) = e(x) 
for all x E lR. 
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7. Show that the functions c, s in the preceding exercise have derivatives of all orders, and that they 
satisfy the identity (c(x»2 - (s(x» 2 = 1 for all x E R. Moreover, they are the unique functions 
satisfying G) and (jj). (The functions c, s are called the hyperbolic cosine and hyperbolic sine 
functions, respectively.) 

8. If I : R ---+ R is such that J" (x) = I (x) for all x E R, show that there exist real numbers a,.,B 
such that I(x) = ac(x) + ,Bs(x) for all x E R. Apply this to the functions II (x) := eX and 
I2(x) := e-x for x E R. Show that c(x) = 1 (eX + e-X) and s ex) = 1 (eX - e-X) for x E R. 

9. Show that the functions c, s in the preceding exercises are even and odd, respectively, and that 
c(x + y) = c(x)c(y) + s (x)s(y), 

for all x ,  y E R. 
sex + y) = s (x)c(y) + c(x)s(y), 

10. Show that c(x) 2: 1 for all x E R, that both c and s are strictly increasing au (0, 00), and that 
lim c(x) = lim sex) = 00. 

x---+ oo x---+oo 



CHAPTER 9 

INFINITE SERIES 

In Section 3.7 we gave a brief introduction to the theory of infinite series. The reader will 
do well to look over that section at this time, since we will not repeat the definitions and 
results given there. 

Instead, in Section 9.1  we will introduce the important notion of the "absolute conver­
gence" of a series. In Section 9.2 we will present some "tests" for absolute convergence that 
will probably be familiar to the reader from calculus. The third section gives a discussion of 
series that are not absolutely convergent. In the final section we study series of functions and 
will establish the basic properties of power series which are very important in applications. 

Section 9.1 Absolute Convergence 

We have already met (in Section 3.7) a number of infinite series that are convergent and 
others that are divergent. For example, in Example 3.7.6(b) we saw that the harmonic 
series: 

00 1 L: -n=! n 
is divergent since its sequence of partial sums sn := t + ! + . . .  + � (n E N) is un­
bounded. On the other hand, we saw in Example 3 .7.6(f) that the alternating harmonic 
series: f: (_ I )n+ ! 

n=! n 
is convergent because of the subtraction that takes place. Since 

I (_ I�n+! 1 
= 
� , 

these two series illustrate the fact that a series L xn may be convergent, but the series L IXn I 
obtained by taking the absolute values of the terms may be divergent. This observation leads 
uS to an important definition. 

9.1.1 Definition Let X := (xn) be a sequence in lR.. We say that the series L xn is 
absolutely convergent if the series L IXn I is convergent in lR.. A series is said to be 
conditionally (or nonabsolutely) convergent if it is convergent, but it is not absolutely 
convergent. 

253 
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It is trivial that a series of positive terms is absolutely convergent if and only if it 
is convergent. We have noted above that the alternating hannonic series is conditionally 
convergent. 

9.1.2 Theorem If a series in � is absolutely convergent, then it is convergent. 

Proof. Since L IXn I is convergent, the Cauchy Criterion 3.7.4 implies that, given e > 0 
there exists M(e) E N  such that if m > n ::: M(e), then 

IXn+1 1 + IXn+1 1 + . . .  + IXm l  < e. 
However, by the Triangle Inequality, the left side of this expression dominates 

ISm - sn l = IXn+1 + xn+2 + . . .  + xm l . 
Since e > 0 is arbitrary, Cauchy's Criterion implies that L xn converges. Q.E.D. 

Grouping of Series __________________ �----------------------------

Given a, series L xn ' we can construct many other series L Yk by leaving the order of the 
terms xn fixed, but inserting parentheses that group together finite numbers of terms. For 
example, the series indicated by 

1 - � + (� - �) + (� - � + �) - � + (� - . . .  + 
1
1
3
) - . . .  

is obtained by grouping the terms in the alternating hannonic series. It is an interesting 
fact that such grouping does not affect the convergence or the value of a convergent series. 

9.1.3 Theorem If a series L xn is convergent, then any series obtained from it by group­
ing the terms is also convergent and to the same value. 

Proof. Suppose that we have 

YI := XI + . . .  + xk ' Y2 := xk +1 + . . .  + xk ' 1 1 2 
If sn denotes the nth partial sum of L xn and tk denotes the kth partial sum of L Yk' then 
we have 

Thus, the sequence (tk) of partial sums of the grouped series L Yk is a subsequence of the 
sequence (sn) of partial sums of L xn ' Since this latter series was assumed to be convergent, 
so is the grouped series L Yk' Q.E.D. 

It is clear that the converse to this theorem is not true. Indeed, the grouping 

( l  - 1 )  + ( l  - 1 )  + ( l  - 1)  + . . .  
produces a convergent series from L�o( _ 1)n , which was seen to be divergent in Example 
3.7.2(b) since the terms do not approach O. 
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Loosely speaking, a "rearrangement" of a series is another series that is obtained from the 
given one by using all of the terms exactly once, but scrambling the order in which the 
terms are taken. For example, the harmonic series has rearrangements 

1 1 1 1 1 1 
2 + 1 + 4 + "3 + " ' + 2n + 2n -- 1  + . . .  

, 

1 1 1 1 1 1 
1 + 2 + 4 + "3 + 5 + 7 + · · · · 

The first rearrangement is obtained from the harmonic series by interchanging the first and 
second terms, the third and fourth terms, and so forth. The second rearrangement is obtained 
from the harmonic series by taking one "odd term", two "even terms", three "odd terms", 
and so forth. It is obvious that there are infinitely many other possible rearrangements of 
the harmonic series. 

9.1.4 Definition A series L Yk in JR is a rearrangement of a series L xn if there is a 
bijection f of N onto N such that Yk = Xf(k) for all k E N. 

While grouping series does not affect the convergence of a series, making rearrange­
ments may do so. If fact, there is a remarkable observation, due to Riemann, that if L1n is a 
conditionally convergent series in JR, and if C E JR is arbitrary, then there is a rearrangement 
of L xn that converges to c. 

To prove this assertion, we first note that a conditionally convergent series must contain 
infinitely many positive terms and infinitely many negative terms (see Exercise 1), and that 
both the series of positive terms and the series of negative terms diverge (see Exercise 2). 
To construct a series converging to c, we take positive terms until the partial sum is greater 
than c, then we take negative terms until the partial sum is less than c, then we take positive 
terms until the partial sum is greater than c, then we take negative terms, etc. 

In our manipulations with series, we generally want to be sure that rearrangements 
will not affect the convergence or the value of the series. That is why the following result 
is important. 

9.1.5 Rearrangement Theorem Let L xn be an absolutely convergent series in R Then 
any rearrangement L Yk of L xn converges to the same value. 

Proof. Suppose that L xn converges to x E R Thus, if c > 0, let N be such that if 
n, q > N and sn := XI + . . .  + xn ' then 

q 
and L IXk l < C. k=N+I 

Let M E N  be such that all of the terms X I ' . . . , X N are contained as summands in t M : = 

Y I + . . .  + Y M ' It follows that if m � M, then tm - S n is the sum of a finite number of terms xk with index k > N. Hence, for some q > N, we have 

q I tm - sn l :S  L IXk l < c. k=N+l 



256 CHAPTER 9 INFINITE SERIES 

Therefore, if m :::: M, then we have 

I tm - x l  � I tm - sn l + ISn - x l  < 8 + 8 = 28. 

Since 8 > 0 is arbitrary, we conclude that L Yk converges to x. 

Exercises for Section 9.1 

Q.E.D. 

1 .  Show that if a convergent series contains only a finite number of negative terms, then it is 
absolutely convergent. 

2. Show that if a series is conditionally convergent, then the series obtained from its positive terms 
is divergent, and the series obtained from its negative terms is divergent. 

3. If I: an is conditionally convergent, give an argument to show that there exists a rearrangement 
whose partial sums diverge to 00. 

4. Where is the fact that the series I: xn is absolutely convergent used in the proof of 9.1 .5? 

5. If I: an is absolutely convergent, is it true that every rearrangement of I: an is also absolutely 
convergent? 

6. Find an explicit expression for the nth partial sum of I::;':2 ln( 1 - 1 /  n 2) to show that this series 
converges to - In 2. Is this convergence absolute? 

7. (a) If I: an is absolutely convergent and (bn ) is a bounded sequence, show that I: anbn is 
absolutely convergent. 

(b) Give an example to show that if the convergence of I: an is conditional and (bn) is a 
bounded sequence, then I: anbn may diverge. 

8. Give an example of a convergent series I: an such that I: a� is not convergent. (Compare this 
with Exercise 3.7.8) 

9. If (an) is a decreasing sequence of strictly positive numbers and if I: an is convergent, show 
that lim(nan ) = O. 

1 0. Give an example of a divergent series I: an with (an) decreasing and such that lim(nan ) = O. 

1 1 . If (an) is a sequence and if lim(n2 an) exists in JR, show that I: an is absolutely convergent. 

12. Let a > O. Show that the series I:(l + an )- ' is divergent if 0 < a � 1 and is convergent if 
a > 1 . 

13 .  (a) Does the series f: (�-yin) converge? 
n=' n 

(b) Does the series f: (vn+T - yin) converge? 
n=' n 

14. If (a ) is a subsequence of (a ), then the series I: a is called a subseries of I: a . Show that nk n nk n 
I: an is absolutely convergent if and only if every sub series of it is convergent. 

15.  Let a : N x N --+ JR and write ajj := a (i, j). If Aj := I:j:, ajj for each i E N and if A := 
I::':, Aj , we say that A is an iterated sum of the ajj and write A = I::':l I:j:, ajr We define 
the other iterated sum, denoted by I:j:, I::':, ajj , in a similar way. 
Suppose ajj 2: 0 for i, j E N. If (ck) is any enumeration of {ajj : i ,  j E N}, show that the 
following statements are equivalent: 
(i) The interated sum I::':, I:j:, ajj converges to B. 
(ii) The series I::, ck converges to C. 
In this case, we have B = C. 
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16. The preceding exercise may fail if the terms are not positive. For example, let aij := + 1 if 
i - j = 1 ,  aij : =  - 1  if i - j = -1 ,  and aij := 0 elsewhere. Show that the iterated sums 

both exist but are not equal. 

00 00 

L L aij i= 1 j=1 
and 

00 00 

L L aij j=1 i= 1 

Section 9.2 Tests for Absolute Convergence 

In Section 3.7 we gave some results concerning the convergence of infinite series; namely, 
the nth Term Test, the fact that a series of positive terms is convergent if and only if its 
sequence of partial sums is bounded, the Cauchy Criterion, and the Comparison and Limit 
Comparison Tests. 

We will now give some additional results that may be familiar from calculus. These 
results are particularly useful in establishing absolute convergence. 

9.2.1 Limit Comparison Test, II. Suppose that X := (xn) and Y := (Yn) are nonzero 
real sequences and suppose that the following limit exists in IR.: 
(1) r : =  lim 1 �: I · 
(a) If r "I- 0, then L xn is absolutely convergent if and only if L Yn is absolutely 
convergent. 
(b) If r = 0 and if L Yn is absolutely convergent, then L xn is absolutely convergent. 

Proof. This result follows immediately from Theorem 3.7.8. 

The Root and Ratio Tests 

The following test is due to Cauchy. 

9.2.2 Root Test Let X := (xn) be a sequence in R 

(a) If there exist r E IR. with r < 1 and K E N such that 

(2) 
then the series L xn is absolutely convergent. 
(b) If there exists K E N  such that 

(3) 

then the series L xn is divergent. 

for n :::: K, 

for n :::: K, 

Q.E.D. 

Proof. (a) If (2) holds, then we have IXn I s rn 
for n :::: K. Since the geometric series L rn 

is convergent for 0 S r < 1 ,  the Comparison Test 3.7.7 implies that L IXn I is convergent. 
(b) If (3) holds, then IXn I :::: 1 for n :::: K, so the terms do not approach 0 and the nth 

Term Test 3.7.3 applies. Q.E.D. 

In calculus courses, one often meets the following version of the Root Test. 
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9.2.3 Corollary Let X := (xn) be a sequence in lR and suppose that the limit 

(4) 

exists in R Then L xn is absolutely convergent when r < 1 and is divergent when r > 1 .  

Proof. If the limit in (4) exists and r < 1 ,  then there exist r ,  with r < r, < 1 and K E N 
such that Ixi/n ::: r, for n > K.  In this case we can apply 9.2.2(a). 

If r > 1 ,  then there exists K E N  such that IXn l '/
n 

> 1 for n 2: K and the nth Tenn 
Test applies. Q.E.D. 

Note No conclusion is possible in Corollary 9.2.3 when r = 1 ,  for either convergence or 
divergence is possible. See Example 9.2.7(b). 

Our next test is due to D' Alembert. 

9.2.4 Ratio Test Let X := (xn) be a sequence of nonzero real numbers. 
(a) If there exist r E lR with 0 < r < 1 and K E N such that 

(5) IX�:' I ::: r for n 2: K, 

then the series L xn is absolutely convergent. 
(b) If there exists K E N such that 

(6) IX�:' I 2: 1 for n 2: K, 

then the series L xn is divergent. 

Proof. (a) If (5) holds, an Induction argument shows that IXK+m l ::: IXK lrm for m E N. 
Thus, for n 2: K the tenns in L IXn I are dominated by a fixed multiple of the tenns in 
the geometric series L rm with 0 < r < 1 .  The Comparison Test 3 .7.7 then implies that 
L IXn I is convergent. 

(b) If (6) holds, an Induction argument shows that Ix K +m I 2: Ix K I for m E N and the 
nth Tenn Test applies. Q.E.D. 

Once again we have a familiar result from calculus. 

9.2.5 Corollary Let X := (xn) be a nonzero sequence in lR and suppose that the limit 

(7) r := lim I X�:' I 
exists in R Then L xn is absolutely convergent when r < 1 and is divergent when r > 1 .  

Proof. If r < 1 and if r < r, < 1 ,  then there exists K E lR such that IXn+dxn l < r, for 
n 2: K .  Thus Theorem 9.2.4(a) applies to give the absolute convergence of L xn '  

If r > l , then there exists K E N such that lxn+, /xn l > l for n 2: K, whence it follows 
that IXk l does not converge to 0 and the nth Tenn Test applies. Q.E.D. 

Note No conclusion is possible in Corollary 9.2.5 when r = 1, for either convergence or 
divergence is possible. See Example 9.2.7(c). 
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The Integral Test 

The next test-a very powerful one-uses the notion of the improper integral, which is 
defined as follows: If f is in R[a , b] for every b > a and if the limit lim t f(t) dt exists b ..... oo a 
in lR, then the improper integral Jaoo f(t) dt is defined to be this limit. 

9.2.6 Integral Test Let f be a positive, decreasing function on {t : t :::: I } .  Then the 
series L�I f (k) converges if and only if the improper integral 

roo f(t) dt = lim rb f(t}dt II b ..... oo II . 
exists. In the case of convergence, the partial sum sn = LZ=I f(k) and the sum S = 

L�I f(k) satisfy the estimate 

(8) roo f(t) dt � S - Sn � roo f(t) dt. In+1 In 
Proof. Since f is positive and decreasing on the interval [k - 1 ,  k], we have 

(9) f(k) � l
k 

f(t) dt � f(k - 1 ) . k-I 
By adding this inequality for k = 2, 3, . . .  , n , we obtain 

sn - f(l) � in 
f(t) dt � sn_I ' 

which shows that either both or neither of the limits 

lim S n�oo n and lim r f(t) dt n ..... oo II 
exist. If they exist, then on adding (9) for k = n + 1 , . . . , m, we obtain 

sm - sn � 1
m 
f(t) dt � Sm_1 - Sn_I ' 

whence it follows that 1m+1 1m 
f(t) dt � Sm - Sn � f(t) dt. n+1 n 

If we take the limit in this last inequality as m -+ 00, we obtain (8). Q.E.D. 

We will now show how the results in Theorems 9.2. 1-9.2.6 can be applied to the 
p-series, which were introduced in Example 3.7.6(d,e). 

9.2.7 Examples (a) Consider the case p = 2; that is, the series L l/n2 • We compare 
it with the convergent series L 1/(n(n + 1» of Example 3.7.2(c). Since 1 1  1 I n + l 1 n2 -7 n(n + 1 ) = 

-n- = 1 + ;; -+ 1 , 
the Limit Comparison Test 9.2. 1 implies that L 1/n2 i s  convergent. 
(b) We demonstrate the failure of the Root Test for the p-series. Note that 1 (n I /n )p . 
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Since (see Example 3. 1 .  l 1 (d)) we know that n l/n � 1 ,  we have r = 1 in Corollary 9.2.3, 
and the theorem does not give any information. 
(c) We apply the Ratio Test to the p-series. Since 

I (n : I )P -7- n
I
p I = 

(n �I )P  
= 

( 1  + �/n)P 
� I , 

the Ratio Test, in the form of Corollary 9.2.5, does not give any information. 
(d) Finally, we apply the Integral Test to the p-series. Let f(t) := l/ tP for t ::: 1 and 
recall that In 

1 
- dt = ln n - ln l , I t 

- dt = -- -- - 1  In 1 1 ( I ) 
I tP 1 - P nP-1 for p i= 1 .  

From these relations we see that the p-series converges if p > 1 and diverges if p :s I ,  as 
we have seen before in 3 .7.6(d,e). 0 

Raabe's Test _________________________ _ 

If the limits lim lxn l l/n and lim(lxn+l /xn l )  that are used in Corollaries 9.2.3 and 9.2.5 
equal 1 , we have seen that these tests do not give any information about the convergence or 
divergence of the series. In this case it is often useful to employ a more delicate test. Here 
is one that is frequently useful. 

9.2.8 Raabe's Test Let X := (xn) be a sequence of nonzero real numbers. 
(a) If there exist numbers a > 1 and K E N such that 

( 10) I Xn+1 1 :s 1 - � for n ::: K ,  
xn n 

then L xn is absolutely convergent. 
(b) If there exist real numbers a :s 1 and K E N  such that 

( 1 1 )  I xn+1 I ::: 1 - � for n ::: K ,  
xn n 

then L xn is not absolutely convergent. 

Proof. (a) If the inequality ( 10) holds, then we have (after replacing n by k and multi­
plying) 

klxk+1 1 :s (k - 1 ) lxk l - (a - 1) lxk l 

On reorganizing the inequality, we have 

( 12) 

for k ::: K. 

for k ::: K ,  

from which we deduce that the sequence (k  Ix  k+ I I )  i s  decreasing for k ::: K. If we add (12) 
for k = K ,  . . .  , n and note that the left side telescopes, we get 

(K - 1 ) lxK I - n lxn+1 1 ::: (a - l) ( lxK I + . . .  + IXn l ) . 

This shows (why?) that the partial sums of L IXn I are bounded and establishes the absolute 
convergence of the series. 
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(b) If the relation ( 1 1 )  holds for n � K ,  then since a � 1, we have 

for n � K. 

Therefore the sequence (n Ixn+, I) is increasing for n � K and there exists a number c > 0 
such that Ixn+, I > cln for n � K. But since the harmonic series L l in diverges, the series 
L IXn I also diverges. Q.E.D. 

In the application of Raabe's Test, it is often convenient to use the following limiting 
form. 

9.2.9 Corollary Let X := (xn) be a nonzero sequence in 1R and let 

(13) 

whenever this limit exists. Then L xn is absolutely convergent when a > 1 and is not 
absolutely convergent when a < 1 .  

Proof. Suppose the limit in (13) exists and that a > 1 .  If a, is any number with 
a >  a, > 1 ,  then there exists K E N such that a, < n(1 - Ixn+, lxn l) for n > K .  There­
fore IXn+dxn l < 1 - a,ln for n � K and Raabe's Test 9.2.8(a) applies. 

The case where a < 1 is similar and is left to the reader. Q.E.D. 

Note There is no conclusion when a = 1 ;  either convergence or divergence is possible, 
as the reader can show. 

9.2.10 Examples (a) We reconsider the p-series in the light of Raabe's Test. Applying 
L'Hospital's Rule when p � 1 ,  we obtain (why?) 

a = lim (n [1 - (n �1 )P J) = lim (n [ en � �P
l
� nP J) 

= lim ( I + lln)P - l ) . lim ( 1 
p ) = P . l = P. lin ( 1  + l in) 

We conclude that if p > 1 then the p-series is convergent, and if 0 < p < 1 then the 
series is divergent (since the terms are positive). However, if p = 1 (the harmonic series !), 
Corollary 9.2.9 yields no information. 

00 n 
(b) We now consider L -2-- · n=' n + 1 

An easy calculation shows that lim(xn+dxn) = 1 ,  so that Corollary 9.2.5 does not 
apply. Also, we have lim(n (1 - xn+,lxn» = 1 ,  so that Corollary 9.2.9 does not apply 
either. However, it is an exercise to establish the inequality xn+dxn � (n - 1)ln, whence 
it follows from Raabe's Test 9.2.8(b) that the series is divergent. (Of course, the Integral 
Test, or the Limit Comparison Test with (Yn) = (1ln), can be applied here.) 0 

Although the limiting form 9.2.9 of Rabbe's Test is much easier to apply, Example 
9.2. 1 O(b) shows that the form 9.2.8 is stronger than 9.2.9. 
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Exercises for Section 9.2 

1. Establish the convergence or the divergence of the series whose nth term is: 
1 n 

(a) 
(n + 1 ) (n + 2) ' (b) 

(n + l ) (n + 2) ' 

(c) rlln , 

2. Establish the convergence or divergence of the series whose nth term is: 

(a) (n(n + 1))- 1/2, (b) (n2(n + 1» - 1/2, 
(c) n !/nn , (d) (- I )nn/(n + 1) .  

3. Discuss the convergence or the divergence of the series with nth term (for sufficiently large n) 
given by 
(a) (ln n)-P, 
(c) (ln n) - In n , 
(e) (n ln n)-I , 

(b) (ln n)-n , 
(d) (ln n)- In lnn , 
(f) (n (ln n) (ln ln n)2rl . 

4. Discuss the convergence or the divergence of the series with nth term 
(a) 2n e-n , (b) nne-n , 
(c) e- Inn , (d) (ln n) e-Jn, 
(e) n !e-n , (f) n !e-n 2 

5. Show that the series 1/12 + 1/23 
+ 1/32 

+ 1 /43 
+ . . .  is convergent, but that both the Ratio 

and the Root Tests fail to apply. 

6. If a and b are positive numbers, then �::<an + b)-P converges if p > 1 and diverges if p ::: 1 .  

7 .  Discuss the series whose nth term is 
n !  

(a) 
3 . 5 . 7 . . .  (2n + 1) 

, 

2 · 4 · · ·  (2n) 
3 · 5 ·  . .  (2n + 1) ' (c) 

8. Let 0 < a < 1 and consider the series 

(n !)2 
(b) 

(2n ) ! ' 

2 · 4 · · ·  (2n) 
(d) 

5 . 7 . . .  (2n + 3) 

a2 + a + a4 + a3 + . . .  + a2n + a2n- 1 + . . . . 
Show that the Root Test applies, but that the Ratio Test does not apply. 

9. Ifr E (0, 1) satisfies (2) in the Root Test 9.2.2, show that the partial sums sn of � >n approximate 
its limit S according to the estimate Is - sn I ::: rn+l / ( 1  - r) for n ::::: K. 

1 0. Ifr E (0, 1 )  satisfies (5) in the Ratio Test 9.2.4, show that Is - sn l ::: r IXn l / (1  - r) for n ::::: K. 
1 1 . I f  a > 1 satisfies (10) in Raabe's Test 9.2.8, show that Is - sn I ::: n IXn 1 / (a - 1)  for n ::::: K. 
12.  For each of the series in Exercise 1 .. that converge, estimate the remainder if only four terms are 

taken. If only ten terms are taken. If we wish to determine the sum of the series within 1/ 1000, 
how many terms should be taken? 

13 .  Answer the questions posed in Exercise 12 for the series given in Exercise 2. 

14. Show that the series 1 + � - � + � + k - i + + - . . .  is divergent. 

15.  For n E N, let cn be defined by cn := t + ! + . . .  + l i n  - In n. Show that (cn) is a decreasing 
sequence of positive numbers. The limit C of this sequence is called Euler's Constant and is 
approximately equal to 0.577. Show that if we put 

1 1 1 1 
bn := "1 - 2" + "3 - . . .  -

2n ' 

then the sequence (bn) converges to In 2. [Hint: bn = c2n - cn + In 2.] 
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16. Let {n l , nz , . . . } denote the collection of natural numbers that do not use the digit 6 in their 
decimal expansion. Show that L l ink converges to a number less than 80. If {ml , m2 , . . .  } is 
the collection of numbers that end in 6, then L I/mk diverges. If {PI ' Pz , . . . , } is the collection 
of numbers that do not end in 6, then L 1 I P k diverges. 

17. If P > 0, q > 0, show that the series 

L (p + 1)(p + 2) . . .  (p + n) 
(q + 1 ) (q + 2) . . .  (q + n) 

converges for q > P + 1 and diverges for q :s P + 1 .  
18. Suppose that none of the numbers a ,  b ,  e is a negative integer or zero. Prove that the hyper-

geometric series 
' 

ab a (a + l )b(b + 1) a (a + l) (a + 2)b(b + 1)(b + 2) 
- +  + + . . . l !e 2!e (e + 1) 3 !e(e + 1) (e + 2) 

is absolutely convergent for e > a + b and divergent for e < a + b. 

19. Let an > 0 and suppose that L an converges. Construct a convergent series L bn with bn > 0 
such that lim(anlbn) = 0; hence L bn converges less rapidly than L an ' [Hint: Let (An ) be the 
partial sums of L an and A its limit. Define bl := JA - JA - A l and bn := JA - An_1 -
JA - An for n ::: 1 .] 

20. Let (an) be a decreasing sequence of real numbers converging to 0 and suppose that L an 
diverges. Construct a divergent series L bn with bn > 0 such that lim(bnlan) = 0; hence L bn 
diverges less rapidly than L an ' [Hint: Let bn := an l/A:. where An is the nth partial sum of 
L an '] 

Section 9.3 Tests for Nonabsolute Convergence 

The convergence tests that were discussed in the preceding section were primarily directed 
to establishing the absolute convergence of a series. Since there are many series, such as 

(1) f (_ I )n+1
, 

n n=1 

f (_ I )n+1
, 

n=1 ..jii 
that are convergent but not absolutely convergent, it is desirable to have some tests for this 
phenomenon. In this short section we shall present first the test for alternating series and 
then tests for more general series due to Dirichlet and Abel. 

Alternating Series 

The most familiar test for nonabsolutely convergent series is the one due to Leibniz that is 
applicable to series that are "alternating" in the following sense. 

9.3.1 Definition A sequence X := (xn) of nonzero real numbers is said to be alternating 
ifthe terms (_1)"+1 xn' n E N, are all positive (or all negative) real numbers. If the sequence 
X = (xn) is alternating, we say that the series L xn it generates is an alternating series. 

In the case of an alternating series, it is useful to setxn = (_ 1 )
n+1 zn [or xn = (_ I )

n 
zn] ' 

where zn > 0 for all n E N. 

9.3.2 Alternating Series Test Let Z := (zn) be a decreasing sequence of strictly positive 
numbers with lim(zn) = O. Then the alternating series L:t _ 1)"+1 zn is convergent. 
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Proof. Since we have 

S2n = (ZI - Z2) + (Z3 - Z4) + . . .  + (Z2n- l - z2n) '  
and since zk - Zk+ 1 :::: 0 ,  it follows that the subsequence (s2n) of partial sums i s  increasing. 
Since 

it also follows that s2n :::: zl for all n E N. It follows from the Monotone Convergence 
Theorem 3.3.2 that the subsequence (s2n) converges to some number S E R 

We now show that the entire sequence (sn) converges to s . Indeed, if e > 0, let K be 
such that if n :::: K then I S2n - S I :::: !e and I Z2n+l l :::: !e. It follows that if n :::: K then 

I S2n+l - S I = I S2n + z2n+l - S I 
:::: I S2n - s l + I Z2n+l l :::: !e + !e = e. 

Therefore every partial sum of an odd number of terms is also within e of S if n is large 
enough. Since e > ° is arbitrary, the convergence of (sn) and hence of L (_ l)n+l zn is 
established. Q.E.D. 

Note It is an exercise to show that if S is the sum of the alternating series and if sn is its 
nth partial sum, then 

(2) 

It is clear that this Alternating Series Test establishes the convergence of the two series 
already mentioned, in (1 ) . 

The Dirichlet and Abel Tests 

We will now present two other tests of wide applicability. They are based on the following 
lemma, which is sometimes called the partial summation formula, since it corresponds 
to the familiar formula for integration by parts. 

9.3.3 Abel's Lemma Let X := (xn) and Y := (Yn) be sequences in IR and let the partial 
sums of L Yn be denoted by (sn) with So :=  0. If m > n, then 

m m-l 
(3) L xkYk = (xmsm - xn+1sn) + L (xk - xk+l )sk ' k=n+l k=n+l 
Proof. Since Yk = sk - sk_l for k = 1 , 2, " ' , the left side of (3) is seen to be equal to L;=n+l xk (sk - sk_l ) ' If we collect the terms multiplying sn ' sn+l ' " ' , sm ' we obtain the 
right side of (3). Q.E.D. 

We now apply Abel's Lemma to obtain tests for convergence of series of the form 
L XnYn · 
9.3.4 Dirichlet's Test If X := (xn) is a decreasing sequence with limxn = 0, and if the 
partial sums (sn) of L Yn are bounded, then the series L XnYn is convergent. 
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Proof. Let ISn I :::: B for all n E N. If m > n, it follows from Abel's Lemma 9.3.3 and the 
fact that xk - xk+1 ::: ° that 

Ik;l 
XkYk l :::: (xm + xn+1 )B + 

k� l 
(xk - xk+1 )B 

= [(xm + xn+1 ) + (xn+1 - xm)]B 
= 2xn+lB .  

Since lim(xk) = 0 ,  the convergence of I>kYk follows from the Cauchy Convergence 
Criterion 3.7.4. Q.E.D. 

9.3.5 Abel's Test If X := (xn) is a convergent monotone sequence and the series L Yn 
is convergent, then the series L xnYn is also convergent. 

Proof. If (xn) is decreasing with limit x, let un : =  Xn - x, n E N, so that (un) decreases 
to 0. Then xn = x + un ' whence xnYn = xYn + unYn ' It follows from the Dirichlet Test 
9.3.4 that L un Y n is convergent and, since L x Y n converges (because of the assumed 
convergence of the series L Yn), we conclude that L XnYn is convergent. 

If (xn) is increasing with limit x, let vn := x - xn ' n E N, so that (vn) decreases to 0. 
Here xn = x - vn ' whence xnYn = xYn - vnYn ' and the argument proceeds as before. 

9.3.6 Examples (a) Since we have 
2 (sin ! x ) (cos x + . . .  + cos nx) = sin (n + D x - sin ! x ,  

it follows that if x =1= 2k1r (k E N), then 
I sin (n + !) x - sin !x l 1 Icos x + . . .  + cos nx I = 

2 2 < ,..-----;-, 1 2 sin !x l I sin !x l ' 

Q.E.D. 

Hence Dirichlet's Test implies that if (an )  is decreasing with lim (an) = 0, then the series 
L:l an cos nx converges provided x i= 2k1r. 
(b) Since we have 

2 (sin ! x) (sin x + . . .  + sin nx) = cos ! x - cos (n + D x ,  
it follows that if x =1= 2k1r (k E N), then 

1 I sinx + . . .  + sinnx i :::: ..---;-, 
I sin !x l ' 

As before, if (an) is decreasing and iflim(an )  = 0, then the series L:l an sin nx converges 
for x =1= 2kn (and it also converges for these values). D 

Exercises for Section 9.3 

1 .  Test the following series for convergence and for absolute convergence. 
00 (_1)n+l 00 (_ 1)n+l 

(a) L -2 - , (b) L --1-' n=1 n + 1 n= 1 ,. + 
00 (_1)n+1 n 

(c) L , n= 1 n + 2 
(d) I: (_ 1)n+l 1n n . 

n=1 n 
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2. If sn is the nth partial sum of the alternating series I::1 (_1)n+ 1 zn ' and if S denotes the sum 
of this series, show that I s  - sn I ::: zn+1 ' 

3. Give an example to show that the Alternating Series Test 9.3.2 may fail if (zn )  is not a decreasing 
sequence. 

4. Show that the Alternating Series Test is a consequence of Dirichlet's Test 9.3.4. 
5. Consider the series 

1 1 1  1 1 1 1 - 2: - 3 + 4 + 5 - 6 - 7 + + - - " " 
where the signs come in pairs. Does it converge? 

6. Let an E lR for n E N and let p < q. If the series I: an I nP is convergent, show that the series 
I: anlnq is also convergent. 

7. If p and q are positive numbers, show that I:( -1 )n (lnn)P Inq is a convergent series. 

8. Discuss the series whose nth term is: 
nn nn 

(a) (_ I)
n 

(n + l)
n+1 ' (b) 

(n + 1)n+ 1 ' 

(c) (_ I)n (n + 1)" (d) 
(n + l)

n 

nn ' nn+ 1 
9. If the partial sums of I: an are bounded, show that the series I::I ane-

nt converges for t > O. 
10. If the partial sums sn of I::I an are bounded, show that the series I::, anln converges to 

I::, snln(n + 1) . 
1 1 .  Can Dirichlet's Test be applied to establish the convergence of 

1 1 1 1 1  1 - 2: - 3 + 4 + 5 + 6 - ' " 
where the number of signs increases by one in each "block"? If not, use another method to 
establish the convergence of this series. 

12. Show that the hypotheses that the sequence X := (xn ) is decreasing in Dirichlet's Test 9.3.4 can 
be replaced by the hypothesis that I::, IXn - xn+ , 1  is convergent. 

13 .  If (aJ is a bounded decreasing sequence and (bn ) is a bounded increasing sequence and if 
xn := an + bn for n E N, show that I::1 IXn - xn+ , 1  is convergent. 

14. Show that if the partial sums sn of the series I:�, ak satisfy ISn I ::: Mnr for sume r < 1, then 
the series I:�=, anln converges. 

15. Suppose that I: an is a convergent series of real numbers. Either prove that I: bn converges or 
give a counter-example, when we define bn by 
(a) anln, 
(c) an sin n, 
(e) n '/

nan , 

Section 9.4 Series of Functions 

(b) F,,/n (an � 0), 
(d) Janln (an � 0), 
(f) ani (1 + Ian I ) .  

Because of their frequent appearance and importance, we now present a discussion of infinite 
series of functions. Since the convergence of an infinite series is handled by examining 
the sequence of partial sums, questions concerning series of functions are answered by 
examining corresponding questions for sequences of functions. For this reason, a portion 
of the present section is merely a translation of facts already established for sequences 
of functions into series terminology. However, in the second part of the section, where 
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we discuss power series, some new features arise because of the special character of the 
functions involved. 

9.4.1 Definition If Un) is a sequence of functions defined on a subset D of JR with values 
in JR, the sequence of partial sums (sn) of the infinite series L In is defined for x in D by 

SI (X) := /1 (x), s2 (x) := sl (x) + 12(x) 

In case the sequence (sn) of functions converges on D to a function I, we say that the 
infinite series of functions L In converges to I on D. We will often write 

or 

to denote either the series or the limit function, when it exists. 

If the series L I In (x) I converges for each x in D, we say that L In is absolutely 
convergent on D. If the sequence (sn) of partial sums is uniformly convergent on D to 
I, we say that L In is uniformly convergent on D, or that it converges to I uniformly 
on D. 

One of the main reasons for the interest in uniformly convergent series of functions is 
the validity of the following results which give conditions justifying the change of order of 
the summation and other limiting operations. 

9.4.2 Theorem If In is continuous on D � JR to JR for each n E N and if L In converges 
to I uniformly on D, then I is continuous on D. 

This is a direct translation of Theorem 8.2.2 for series. The next result is a translation 
of Theorem 8.2.4. 

9.4.3 Theorem Suppose that the real-valued functions In ' n E N, are Riemann integrable 
on the interval J := [a , b]. If the series L In converges to I uniformly on J, then I is 
Riemann integrable and 

( 1) 
lb 00 lb 

a 
I = � a 

In ' 

Next we tum to the corresponding theorem pertaining to differentiation. Here we 
assume the uniform convergence of the series obtained after term-by-term differentiation 
of the given series. This result is an immediate consequence of Theorem 8.2.3. 

9.4.4 Theorem For each n E N, let In be a real-valued function on J := [a, b] that has 
a derivative I� on J. Suppose that the series L In converges for at least one point of J and 
that the series of derivatives L I� converges uniformly on J. 

Then there exists a real-valued function I on J such that L In converges uniformly 
on J to I . In addition, I has a derivative on J and I' = L I�. 
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Tests for Uniform Convergence 

Since we have stated some consequences of unifonn convergence of series, we shall now 
present a few tests that can be used to establish unifonn convergence. 

9.4.5 Cauchy Criterion Let (fn) be a sequence offunctions on D � � to R The series 
L In is unifonnly convergent on D if and only if for every e > 0 there exists an M (e) such 
that ifm > n 2: M(e), then 

for all x E D. 

9.4.6 Weierstrass M-Test Let (Mn) be a sequence of positive real numbers such that 
I In (x) I :::: Mn for x E D, n E N. If the series L Mn is convergent, then L In is unifonnly 
convergent on D. 

Proof. If m > n, we have the relation 

I f. (x) + . . .  + f. (x) I < M + . . .  + M n+l m - n+l m 

Now apply 3.7.4, 9.4.5, and the convergence of L Mn '  
for x E D. 

Q.E.D. 

In Appendix E we will use the Weierstrass M -Test to construct two interesting exam­
ples. 

Power Series 

We shall now tum to a discussion of power series. This is an important class of series of 
functions and enjoys properties that are not valid for general series of functions. 

9.4.7 Definition A series of real functions L In is said to be a power series around 
x = c if the function In has the fonn 

In (x) = an (x - c)n , 

where an and c belong to � and where n = 0, 1 , 2, . . . . 

For the sake of simplicity of our notation, we shall treat only the case where c = O. 
This is no loss of generality, however, since the translation x' = x - c reduces a power 
series around c to a power series around O. Thus, whenever we refer to a power series, we 
shall mean a series of the fonn 

(2) 
00 

L anxn 
= ao + a1x + . . .  + anx

n + . . . . 
n=O 

Even though the functions appearing in (2) are defined over all of �, it is not to be 
expected that the series (2) will converge for all x in �. For example, by using the Ratio 
Test 9.2.4, we can show that the series 

converge for x in the sets 

{O}, {x E �: Ix l  < I } ,  
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respectively. Thus, the set on which a power series converges may be small, medium, or 
large. However, an arbitrary subset of IR cannot be the precise set on which a power series 
converges, as we shall show. 

If (bn) is a bounded sequence of nonnegative real numbers, then we define the limit 
superior of (bn) to be the infimum of those numbers v such that bn :::: v for all sufficiently 
large n E N. This infimum is uniquely detennined and is denoted by lim sup(bn) .  The only 
facts we need to know are (i) that if v > lim sup(bn),  then bn :::: v for all sufficiently large 
n E N, and (ii) that if w < lim sup(bn),  then w :::: bn for infinitely many n E N. 

9.4.8 Definition Let L anxn be a power series. If the sequence ( Ian I
lln) is bounded, we 

set p := lim sup(lan I ll
n
) ;  if this sequence is not bounded we set p = +00. We define the 

radius of convergence of L anx
n to be given by 

R := { �/P 
+00 

if p = +00, 
if 0 < p < +00, 
if p = o. 

The interval of convergence is the open interval ( -R, R). 

We shall now justify the term "radius of convergence". 

9.4.9 Cauchy-Hadamard Theorem If R is the radius of convergence of the power series 
L anxn , then the series is absolutely convergent if Ix I < R and is divergent if Ix I > R. 

Proof. We shall treat only the case where 0 < R < +00, leaving the cases R = 0 and 
R = +00 as exercises. If 0 < Ix l < R, then there exists a positive number c < 1 such 
that Ix l < cR . Therefore p < cl Ix l and so it follows that if n is sufficiently large, then 
Ian I l l

n 
:::: c I Ix I .  This is equivalent to the statement that 

(3) 

for all sufficiently large n. Since c < 1 ,  the absolute convergence of L anx
n follows from 

the Comparison Test 3.7.7. 
If Ix l > R = lip, then there are infinitely many n E N  for which lan i l in > l/ ix i .  

Therefore, lanxn I > 1 for infinitely many n, so  that the sequence (anx
n
) does not converge 

to zero. Q.E.D. 

Remark It will be noted that the Cauchy-Hadamard Theorem makes no statement as to 
whether the power series converges when Ix l  = R. Indeed, anything can happen, as the 
examples 

show. Since lim(n li
n
) = 1 ,  each of these power series has radius of convergence equal to 1 .  

The first power series converges at neither of the points x = -1  and x = + 1 ;  the second 
series converges at x = - 1 but diverges at x = + 1 ;  and the third power series converges at 
both x = - 1  and x = + 1 .  (Find a power series with R = 1 that converges at x = + 1 but 
diverges at x = - 1 .) 
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It is an exercise to show that the radius of convergence of the series L anxn is also 
given by 

(4) lim l� I ' an+l 
provided this limit exists. Frequently, it is more convenient to use (4) than Definition 9.4.8. 

The argument used in the proof of the Cauchy-Hadamard Theorem yields the uniform 
convergence of the power series on any fixed closed and bounded interval in the interval of 
convergence (-R, R). 

9.4.10 Theorem Let R be the radius of convergence of L anxn and let K be a closed 
and bounded interval contained in the interval of convergence (- R, R). Then the power 
series converges uniformly on K .  

Proof. The hypothesis on K � (-R ,  R) implies that there exists a positive constant 
c < 1 such that Ix l < cR for all x E K .  (Why?) By the argument in 9.4.9, we infer that 
for sufficiently large n ,  the estimate (3) holds for all x E K .  Since c < 1 ,  the uniform 
convergence of L anxn on K is a direct consequence of the Weierstrass M -test with 
Mn : =  cn . Q.E.D. 

9.4.1 1  Theorem The limit of a power series is continuous on the interval of convergence. 
A power series can be integrated tenn-by-tenn over any closed and bounded interval 
contained in the interval of convergence. 

Proof. If Ixo I < R, then the preceding result asserts that L anxn converges uniformly on 
any closed and bounded neighborhood of Xo contained in (-R, R). The continuity at Xo 
then follows from Theorem 9.4.2, and the term-by-term integration is justified by Theorem 
9.4.3. Q.E.D. 

We now show that a power series can be differentiated term-by-term. Unlike the 
situation for general series, we do not need to assume that the differentiated series is 
uniformly convergent. Hence this result is stronger than Theorem 9.4.4. 

9.4.12 Differentiation Theorem A power series can be differentiated tenn-by-tenn 
within the interval of convergence. In fact, if 

00 00 
f(x) == L anxn , then f'ex) = L nanxn-l for Ix l < R. 

n=O n=l 
Both series have the same radius of convergence. 

Proof. Since lim(n l/n) = 1 ,  the sequence ( Inan I l/n) is bounded if and only ifthe sequence 
( Ian I l/n ) is bounded. Moreover, it is easily seen that 

lim sup ( Inan I l/
n) = lim sup ( Ian I l/

n) . 
Therefore, the radius of convergence of the two series is the same, so the formally differen­
tiated series is uniformly convergent on each closed and bounded interval contained in the 
interval of convergence. We can then apply Theorem 9.4.4 to conclude that the formally 
differentiated series converges to the derivative of the given series. Q.E.D. 
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Remark It is to be observed that the theorem makes no assertion about the endpoints of 
the interval of convergence. If a series is convergent at an endpoint, then the differentiated 
series may or may not be convergent at this point. For example, the series L::::l x

n 
In2 

converges at both endpoints x = - 1  and x = + 1 .  However, the differentiated series given 
by L::::l x

n-1 
In converges at x = - 1  but diverges at x = + 1 .  

By  repeated application of the preceding result, we conclude that if k E N  then 
L::::o anxn can be differentiated term-by-term k times to obtain 

(5) Loo n !  ' k 
---a xn- .  

n=k (n - k) ! 
n 

Moreover, this series converges absolutely to I(k) (x) for Ix I < R and uniformly over any 
closed and bounded interval in the interval of convergence. If we substitute x = 0 in (5), 
we obtain the important formula 

9.4.13 Uniqueness Theorem If L: anxn 
and L: bnxn 

converge on some interval 
(-r, r) ,  r > 0, to the same function I, then 

for al1 n E N. 

Proof. Our preceding remarks show that n !an = I(n) (0) = n !bn for all n E N. Q.E.D. 

Taylor Series __________________________ _ 

If a function I has derivatives of all orders at a point c in JR, then we can calculate the 
Taylorcoefficientsbyao := I(c), an := l(n) (c)ln ! forn E N and in this way obtain a power 
series with these coefficients. However, it is not necessarily true that the resulting power 
series converges to the function I in an interval about c. (See Exercise 1 2  for an example.) 
The issue of convergence is resolved by the remainder term Rn in Taylor's Theorem 6.4. 1 .  
We will write 

(6) 
00 I(n) (c) I (x) = L -- (x - c)n 
n=O n !  

for Ix - c l  < R if and only if the sequence (Rn (x)) of remainders converges to 0 for each 
x in some interval {x : Ix - c l  < R}. In this case we say that the power series (6) is the 
Taylor expansion of I at c. We observe that the Taylor polynomials for I discussed in 
Section 6.4 are just the partial sums of the Taylor expansion (6) of I .  (Recall that O! := 1 .) 

9.4.14 Examples (a) If I (x) := sinx, x E JR, we have 1(2n) (x) = (_1 )n sin x and 
f.(2n+l) (x) = (- It cosx for n E N, x E R Evaluating at c = 0, we get the Taylor coeffi­
cients a2n = 0 and a2n+1 = (_ I )n 1(2n + I ) !  for n E N. Since I sinx l  :::: 1 and Icosx l  :::: 1 

for all x, then I Rn (x) 1  :::: Ix ln In ! for n E N  and x E JR. Since lim(Rn (x)) = 0 for each 
x E JR, we obtain the Taylor expansion 

00 (- It sinx = L x2n+l 
n=O (2n + I ) !  for all x E R 
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An application of Theorem 9.4. 12  gives us the Taylor expansion 

00 (- It 
cos x = L __ x2n 

n=O (2n) !  
for all x E R 

(b) If g(x) := eX , x E JR, then g(nl (x) = eX for all n E N, and hence the Taylor coefficients 
are given by an = lin ! for n E N. For a given x E JR, we have I Rn (x) I � e 1x I Ix ln In ! and 
therefore (Rn (x)) tends to 0 as n � 00. Therefore, we obtain the Taylor expansion 

(7) 
00 I 

eX = L _xn 
n=O n !  

for all x E R 

We can obtain the Taylor expansion at an arbitrary C E JR by the device of replacing x by 
x - c in (7) and noting that 

for x E R D 

Exercises for Section 9.4 

1 .  Discuss the convergence and the uniform convergence of the series L fn ' where fn (x) is given 
by: 
(a) (x2 + n2)- 1 , 
(c) sin(xln2) ,  
(e) xn I(x

n + 1 )  (x ::: 0) , 

(b) (nx)-2 (x oF 0) , 
(d) (x

n + 1 ) - 1 (x oF 0) , 
(f) (_1)n (n + x) -1 (x ::: 0) . 

2. If L an is an absolutely convergent series, then the series L an sin nx is absolutely and uni­
formly convergent. 

3. Let (cn ) be a decreasing sequence of positive numbers. If L cn sin nx is uniformly convergent, 
then lim(nc

n
) = O. 

4. Discuss the cases R = 0, R = +00 in the Cauchy-Hadamard Theorem 9.4.9. 

5. Show that the radius of convergence R of the power series L anx
n 

is given by lim ( lanlan+1 1 ) 
whenever this limit exists. Give an example of a power series where this limit does not exist. 

6. Determine the radius of convergence of the series L anxn , where an is given by: 
(a) linn,  (b) nOt In! ,  
(c) nn  I n ! ,  (d) (ln n)- l , n ::: 2, 
(e) (n ! )2 / (2n) ! ,  (f) n-fo. 

7. If a := 1 when n is the square of a natural number and a := 0 otherwise, find the radius of 
con�erge!1ce of L anXn . If bn := l when n = m !  for m E

n
N and bn := 0 otherwise, find the 

radius of convergence of the series L b nxn . 

8. Prove in detail that lim sup( lnan 1 1/
n
) = lim sup( lan 1 1/n ) . 

9. If 0 < p ::; I an I ::; q for all n E N, find the radius of convergence of L anxn . 
10. Let f(x) = L anXn 

for Ix l < R. If f(x) = f(-x) for all lx l < R, show that an = 0 for all 
odd n .  

1 1 .  Prove that if f i s  defined for Ix I < r and i f  there exists a constant B such that I f(n) (x) I ::s B for 
all Ix I < r and n E N, then the Taylor series expansion 

00 f (n) (0) L - x
n 

n=O n !  

converges to f (x) for I x  I < r. 
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2 
12. Prove by Induction that the function given by f(x) := e-I /x for x #- 0, f(O) := 0, has deriva-

tives of all orders at every point and that all of these derivatives vanish at x = O. Hence this 
function is not given by its Taylor expansion about x = O. 

13. Give an example of a function which is equal to its Taylor series expansion about x = 0 for 
x 2: 0, but which is not equal to this expansion for x < O. 

14. Use the Lagrange form of the remainder to justify the general Binomial Expansion 

for O :'S  x < 1 .  

15 .  (Geometric series) Show directly that if Ix l  < l , then l / ( l - x) =  2::o xn . 
16. Show by integrating the series for 1/(1  + x) that if Ix l  < 1 ,  then 

00 (_ 1)n+1 
In ( 1  + x) = L ___ xn . 

n=1 n 
00 (- It 17. Show that if lx l  < 1, then Arctan x = 2: __ x2n+l . n=O 2n + 1 

00 1 . 3 . . .  (2n - 1) X2n+1 
18. Show that if Ix l  < 1 ,  then Arcsin x = 2: 2 · -2 1 · n=O 2 · 4 · · ·  n n + 

19. Find a series expansion for 1x e-t2 dt for x E R. 

20. If ex E R and Ikl < 1, the integral F (ex, k) := 1'" (1 - k2(sinx)2r l /2 dx is called an elliptic 

integral of the first kind. Show that 

F (� . k) = � f ( 1 . 3 · · ·  (2n _ 1) ) 2 
k2n for Ik l  < 1 .  2 2 n=O 2 . 4 . . .  2n . 



CHAPTER 1 0  

THE GENERALIZED 
RIEMANN INTEGRAL 

In Chapter 7 we gave a rather complete discussion of the Riemann integral of a function 
on a closed bounded interval, defining the integral as the limit of Riemann sums of the 
function. This is the integral (and the approach) that the reader met in calculus courses; it is 
also the integral that is most frequently used in applications to engineering and other areas. 
We have seen that continuous and monotone functions on [a , b] are Riemann integrable, so 
most of the functions arising in calculus are included in its scope. 

However, by the end of the 19th century, some inadequacies in the Riemann the­
ory of integration had become apparent. These failings came primarily from the fact that 
the collection of Riemann integrable functions became inconveniently small as mathe­
matics developed. For example, the set of functions for which the Newton-Leibniz for­
mula: 

lb F' = F(b) - F(a) 

holds, does not include all differentiable functions. Also, limits of sequences of Riemann 
integrable functions are not necessarily Riemann integrable. These inadequacies led others 
to invent other integration theories, the best known of which was due to Henri Lebesgue 
( 1875-1941)  and was developed at the very beginning of the 20th century. (For an account 
of the history of the development of the Lebesgue integral, the reader should consult the 
book of Hawkins given in the References.) 

Indeed, the Lebesgue theory of integration has become pre-eminent in contemporary 
mathematical research, since it enables one to integrate a much larger collection of functions, 
and to take limits of integrals more freely. However, the Lebesgue integral also has several 
inadequacies and difficulties: ( 1 )  There exist functions F that are differentiable on [a, b] 
but such that pi is not Lebesgue integrable. (2) Some "improper integrals", such as the 
important Dirichlet integral: 

100 sinx 
-- dx , 

o x 
do not exist as Lebesgue integrals. (3) Most treatments of the Lebesgue integral have 
considerable prerequisites and are not easily within the reach of an undergraduate student 
of mathematics. 

As important as the Lebesgue integral is, there are even more inclusive theories of 
integration. One of these was developed independently in the late 1950s by the Czech 
mathematician Jaroslav Kurzweil (b. 1926) and the English mathematician Ralph Henstock 
(b. 1923). Surprisingly, their approach is only slightly different from that used by Riemann, 
yet it yields an integral (which we will call the generalized Riemann integral) that includes 
both the Riemann and the Lebesgue integrals as special cases. Since the approach is so 

274 
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Ralph Henstock and Jaroslav Kurzweil 

Ralph Henstock (pictured on the left) was born on 
June 2, 1923, in Nottinghamshire, England, the son of 
a mineworker. At an early age he showed that he was a 
gifted scholar in mathematics and science. He entered 
St. John's College, Cambridge, in 1941,  studying with 
J. D. Bernal, G. H. Hardy, and J. C. Burkhill and was 
classified Wrangler in Part II of the Tripos Exams in 
1943. He earned his B.A. at Cambridge in 1944 and his 
Ph.D. at the University of London in 1948. His resear�h 
is in the theory of summability, linear analysis, and inte­
gration theory. Most of his teaching has been in Northern 
Ireland. He is presently an Emeritus Professor at the Coleraine Campus of the University of Ulster. 

Jaroslav Kurzweil (pictured on the right) was born on May 7; 1926, in Prague. A student of 
V. Jarnik, he has done a considerable amount of research in the theory of differential equations and 
the theory of integration, and also has had a serious interest in mathematical education. In 1964 he 
was awarded the Klement Gottwald State Prize, and in 1981 he was awarded the Bolzano medal 
of the Czechoslovak Academy of Sciences. Since 1989 he has been Director of the Mathematical 
Institute of the Czech Academy of Sciences in Prague and has had a profound influence on the 
mathematicians there. 

similar to that of Riemann, it is technically much simpler than the usual Lebesgue integral­
yet its scope is considerably greater; in particular, it includes functions that are derivatives, 
and also includes all "improper integrals". 

In this chapter, we give an exposition of the generalized Riemann integral. In Sec­
tion 1 0. 1 ,  it will be seen that the basic theory is almost exactly the same as for the ordinary 
Riemann integral. However, we have omitted the proofs of a few results when their proofs 
are unduly complicated. In the short Section 10.2, we indicate that improper integrals on 
[a , b] are included in the generalized theory. We will introduce the class of Lebesgue in­
tegrable functions as those generalized integrable functions f whose absolute value I f I is 
also generalized integrable; this is a very different approach to the Lebesgue integral than 
is usual, but it gives the same class offunctions. In Section 10.3, we will integrate functions 
on unbounded closed intervals. In the final section, we discuss the limit theorems that hold 
for the generalized Riemann and Lebesgue integrals, and we will give some interesting ap­
plications of these theorems. We will also define what is meant by a "measurable function" 
and relate that notion to generalized integrability. 

Readers wishing to study the proofs that are omitted here, should consult the first 
author's book, A Modern Theory of Integration, which we refer to as [MTI] , or the books 
of DePree and Swartz, Gordon, and McLeod listed in the References. 

Section 10.1 Definition and Main Properties 

In Definition 5 .5.2, we defined a gauge on [a , b] to be a strictly positive function a : [a , b] � 
(0, (0). Further, a tagged partition P := {(Ii '  ti ) }7=1 of [a , b] ,  where Ii := [Xi_ l ' Xi ]' is said 
to be a-fine in case 

( 1 )  for i = 1 ,  . . .  , n . 
This is shown in Figure 5.5 . 1 .  Note that (i) only a tagged partition can be a-fine, and (ii) 
the a-fineness of a tagged partition depends on the choice of the tags ti and the values a (t). 
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In Examples 5.5.4, we gave some specific examples of gauges, and in Theorem 5.5.5 
we showed that if 8 is any gauge on [a , b], then there exist 8-fine tagged partitions of [a, b]. 

We will define the generalized Riemann (or the "Henstock-Kurzweil") integral. It 
will be seen that the definition is very similar to that of the ordinary Riemann integral, 
and that many of the proofs are essentially the same. Indeed, the only difference between 
the definitions of these integrals is that the notion of smallness of a tagged partition is 
specified by a gauge, rather than its norm. It will be seen that this-apparently minor­
difference results in a very much larger class of integrable functions. In order to avoid some 
complications, a few proofs will be omitted; they can be found in [MTI]. 

Before we begin our study, it is appropriate that we ask: Why are gauges more useful 
than norms? Briefly, the reason is that the norm of a partition is a rather coarse measure 
of the fineness of the partition, since it is merely the length of the largest subinterval in the 
partition. On the other hand, gauges can give one more delicate control of the subintervals 
in the partitions, by requiring the use of small subinterals when the function is varying 
rapidly but permitting the use of larger subintervals when the function is nearly constant. 
Moreover, gauges can be used to force specific points to be tags; this is often useful when 
unusual behavior takes place at such a point. Since gauges are more flexible than norms, 
their use permits a larger class of functions to become integrable. 

10.1.1 Definition A function f : [a , b] --+ � is said to be generalized Riemann inte­
grable on [a , b] if there exists a number L E � such that for every 8 > 0 there exists a 
gauge 8£ on [a , b] such that if P is any 8£ -fine partition of [a , b], then 

j S(f; p) - L I < 8. 
The collection of all generalized Riemann integrable functions will usually be denoted by 
'R.* [a, b]. 

It will be shown that if f E 'R.*[a, b], then the number L is uniquely determined; it will 
be called the generalized Riemann integral of f over [a , b]. It will also be shown that if 
f E 'R.[a, b], then f E 'R.*[a, b] and the value of the two integrals is the same. Therefore, 
it will not cause any ambiguity if we also denote the generalized Riemann integral of 
f E 'R.*[a, b] by the symbols 

or lb f(x) dx .  

Our first result gives the uniqueness of the value of  the generalized Riemann integral. 
Although its proof is almost identical to that of Theorem 7 . 1 .2, we will write it out to show 
how gauges are used instead of norms of partitions. 

10.1.2 Uniqueness Theorem If f  E 'R.*[a, b], 'then the value of the integral is uniquely 
determined. 

Proof. Assume that L' and L" both satisfy the definition and let 8 > O. Thus there exists 
a gauge 8�/2 such that if PI is any 8�/2-fine partition, then 

I S(f; PI ) - L' I < 8/2 . 

Also there exists a gauge 8�/2 such that if P 2 is any 8�/2 -fine partition, then 

I S(f; P2) - L"I  < 8/2 . 
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We define 88 by 8/t) := min{8;/2 (t) , 8�/2 (t)} for t E [a , b], so that 88 is a gauge on [a , b] . 
If P is a 88 -fine partition, then the partition P is both 8;/2-fine and 8�/2-fine, so that 

I S(f; p) - L' I < 8/2 and I S(f; p) - L"I < 8/2, 
whence it follows that 

IL' - L"I � IL' - S(f; P) I + I S(f; P) - L" I 
< 8/2 + 8/2 = 8. 

Since 8 > ° is arbitrary, it follows that L' = L". Q.E.D. 

We now show that every Riemann integrable function f is also generalized Riemann 
integrable, and with the same value for the integral. This is done by using a gauge that is a 
constant function. 

10.1.3 Consistency Theorem If f E R[a, b] with integral L, then also f E R*[a, b] 
with integral L. 

Proof. Given 8 > 0, we need to construct an appropriate gauge on [a , b]. Since 
f E R[a, b], there exists a number 88 > ° such that if P is any tagged partition with 
I IPI I < 88 , then I S(f; p) - L I < 8. We define the function 8; (t) := �88 for t E [a , b], so 
that 8; is a gauge on [a, b]. 

If P = {(Ii '  ti )}7=I ' where Ii := [Xi_I ' Xi ] ' is a 8;-fine partition, then since 

Ii � [ti - 8; (ti) ' ti + 8; (t)] = [ti - �88 ' ti + �88] , 
it i s  readily seen that ° < Xi - Xi-I � !88 < 88  for all i = 1 ,  . . .  , n. Therefore this partition 
also satisfies I IP II < 88 and consequently I S(f; p) - L I < 8. 

Thus every 8;-fine partition P also satisfies I S(f; p) - L I < 8. Since 8 > ° is arbi-
trary, it follows that f is generalized Riemann integrable to L. Q.E.D. 

From Theorems 7.2.5, 7.2.6 and 7.2.7, we conclude that: Every step function, every 
continuous function and every monotone function belongs to R* [a , b]. We will now show 
that Dirichlet's function, which was shown not to be Riemann integrable in 7.2.2(b) and 
7.3. 13(d), is generalized Riemann integrable. 

10.1.4 Examples (a) The Dirichlet function f belongs to R*[O, 1] and has integral 0. 
We enumerate the rational numbers in [0, 1 ] as {rk}�I . Given 8 > ° we define 

8/rk) := 8/2k+2 and 88(x) := 1 when X is irrational. Thus 88 is a gauge on [0, 1 ] and 
if the partition P := {(Ii '  ti )}7=1 is 88 -fine, then we have Xi - Xi-I � 28/t). Since the only 
nonzero contributions to S(f; p) come from rational tags ti = rk , where 

28 8 ° < f(rk) (xi - Xi_I) = 1 . (Xi - Xi_I ) � 
2k+2 = 2k+ 1 ' 

and since each such tag can occur in at most two subintervals, we have 

• 00 28 00 8 ° � S(f; P) < L k+1 = L k = 8. k=1 2 k=1 2 

Since 8 >  ° is arbitrary, then f E R* [O, 1 ] and 1 1 
f = 0. 
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(b) Let H :  [0, 1 ] -+ JR be defined by H(l/k) := k for k E N  and H(x) := ° elsewhere 
on [0, 1 ] . 

Since H is not bounded on [0, 1 ] , it follows from the Boundedness Theorem 7 . 1 .5 that 
it is not Riemann integrable on [0, 1 ] . We will now show that H is generalized Riemann 
integrable to 0. 

In fact, given 8 > 0, we defin� 8/11 k) := 81(k2k+2) and set 8e (x) := 1 elsewhere on 
[0, 1 ] , so 8e is a gauge on [0, 1 ] . If P is a 8e -fine partition of [0, 1] then Xi - Xi_I :::; 28e (t). 
Since the only nonzero contributions to S(H; p) come from tags ti = II  k, where 

28 8 0 <  H(11 k)(xi - Xi-I ) = k · (Xi - Xi_I) :::; k ·  k2k+2 = 2k+I ' 
and since each such tag can occur in at most two subintervals, we have 

. 00 8 0 :::; S(H; P) < L k = 8. 
k=1 2 

Since 8 > ° is arbitrary, then H E  R* [O, 1] and 10 1 H = 0. 

The next result is exactly similar to Theorem 7 . 1 .4. 

10.1.5 Theorem Suppose that f and g are in R*[a, b]. Then: 

(a) Ifk E JR, the function kf is in R*[a, b] and 

lb kf = k lb f. 
(b) Thefunction f + g is in R*[a, b] and 

lb (f + g) = lb f +  lb g . 
(c) If f(x) :::; g(x)for all x E [a , b], then 

lb 
f :::; lb 

g . 

D 

Proof. (b) Given 8 > 0, we can use the argument in the proof of the Uniqueness Theorem 
10. 1 .2 to construct a gauge oe on [a, b] such that if P is any 0e -fine partition of [a , b], then 

and 

Since S(f + g; p) = S(f; p) + S(g; p), it follows as in the proof of Theorem 7. 1 .4(b) 
that 

IS(f + g; p) - (lb f +  lb g) l :::; IS(f; p) - lb f l + IS(g; p) - lb g l 
< 812 + 812 = 8. 

Since 8 >  ° is arbitrary, then f + g E R*[a, b] and its integral is the sum of the integrals 
of f and g. 

The proofs of (a) and (c) are analogous and are left to the reader. Q.E.D. 



10. 1 DEFINITION AND MAIN PROPERTIES 279 

It might be expected that an argument similar to that given in Theorem 7. 1 .5 can be 
used to show that a function in R*[a , b] is necessarily bounded. However, that is not the 
case; indeed, we have already seen an unbounded function in R*[O, 1 ] in Example 1O. 1 .4(b) 
and will encounter more later. However, it is a profitable exercise for the reader to determine 
exactly where the proof of Theorem 7 . 1 .5 breaks down for a function in R*[a , b]. 

The Cauchy Criterion ______________________ _ 

There is an analogous form for the Cauchy Criterion for functions in R* [a , b]. It is important 
because it eliminates the need to know the value of the integral. Its proof is essentially the 
same as that of 7.2. 1 .  

10.1.6 Cauchy Criterion A function f : [a , b] --+ JR. belongs to R*[a , b] if and only if 
for every 8 > 0 there exist a gauge rye on [a , b] such that if P and Q are any partitions of 
[a , b] that are r] e -fine, then 

I S(f; p) - S(f; Q) I < 8. 

Proof. (::::}) If f E R* [a, b] with integral L, let 8e/2 be a gauge on [a , b] such that if P 
and Q are 8e/2-fine partitions of [a , b], then 

I S(f; p) - L I < 8/2 and I S(f; Q) - L I  < 8/2. 

We set r]e (t) := 8e/2(t) for t E [a , b], so if P and Q are rye-fine, then 

I S(f; p) - S(f; Q) I :s I S(f; p) - L I  + IL - S(f; Q) I < 8/2 + 8/2 = 8. 

(�) For each n E N, let 8n be a gauge on [a , b] such that if P and Q are partitions 
that are 8n -fine, then 

I S(f; p) - S(f; Q) I < lin . 
We may assume that 8n (t) � 8n+] (t) for all t E [a , b] and n E N; otherwise, we replace 8n 
by the gauge 8� (t) := min{8] (t) , . . .  , 8n (t)} for all t E [a , b] . 

For each n E N, let 'P" be a partition that is 8n -fine. Clearly, if m > n then both Pm and 
'P" are 8n -fine, so that 

(2) I S(f; 'P,,) - S(f; Pm) 1 < l/n for m > n . 
Consequently, the sequence (S(f ; Pm»�=] is a Cauchy sequence in JR., so it converges to 
some number A. Passing to the limit in (2) as m --+ 00, we have 

I S(f; 'P,,) - A I :s l /n for all n E N. 
Tu see that A is the generalized Riemann integral of f, given 8 > 0, let K E N  satisfy 
K > 2/8. If Q is a 8K-fine partition, then 

I S(f; Q) - A I :s I S(f; Q) - S(f; PK) I + I S(f; PK) - A I 
:s 1/ K + 1/  K < 8. 

Since 8 > 0 is arbitrary, then f E R*[a, b] with integral A. Q.E.D. 
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10.1.7 Squeeze Theorem Let ! : [a , b] ---+ R Then ! E R*[a, b] ifandonlyifforevery 
8 > 0 there exist functions ae and we in R* [a , b] with 

!or all x E [a , b] ,  
and such that 

The proof of this result is exactly similar to the proof of Theorem 7.2.3, and will be 
left to the reader. 

The Additivity Theorem ____________________ _ 

We now present a result quite analogous to Theorem 7.2.8 . Its proof is a modification of 
the proof of that theorem, but since it is somewhat technical, the reader may choose to omit 
the proof on a first reading. 

10.1.8 Additivity Theorem Let ! :  [a, b] ---+ lR. and let c E (a , b). Then ! E R*[a, b] 
if and only if its restrictions to [a , c] and [c, b] are both generalized Riemann integrable. 
In this case 

(3) 

Proof. ({=) Suppose that the restriction !I of ! to [a , c], and the restriction !2 of 
! to [c, b] are generalized Riemann integrable to L I and L2, respectively. Then, given 
8 >  0 there exists a gauge 8' on [a , c] such that if PI is a 8'-fine partition of [a , c] then 
ISUI ; PI) - LI I < 8/2. Also there exists a gauge 8// on [c, b] such that if P2 is a 8//-fine 
partition of [c, b] then ISU2; P2) - L2 1 < 8/2. 

We now define a gauge 8e on [a , b] by {min{8'(t) ,  ! (c - t)} 
8e (t) := min{8'(c) , 8//(c)} 

min{8// (t) , ! (t - c)} 

for t E [a , c), 
for t = c, 
for t E (c, b]. 

(This gauge has the property that any 8 e -fine partition must have c as a tag for any subinterval 
containing the point c.) 

We will show that if Q is any 8e -fine partition of [a, b], then there exist a 8'-fine 
partition QI of [a , c] and a 8//-fine partition Q2 of [c, b] such that 

(4) 
Case (i) If c is a partition point of Q, then it belongs to two subintervals of Q and is 

the tag for both of these subintervals. If QI consists of the part of Q having subintervals in 
[a , c], then QI is 8'-fine. Similarly, if Q2 consists of the part of Q having subintervals in 
[c, b], then Q2 is 8//-fine. The relation (4) is now clear. 

Case (ii) If c is not a partition point in Q = {(Ii ' ti ) }�=I ' then it is the tag for some 
subinterval, say [Xk_l , xk] . We replace the pair ([Xk_l , xk] ,  c) by the two pairs ([Xk_l , c] , c) 
and ([c, xk] ,  c), and let QI and Q2 be the tagged partitions of [a , c] and [c, b] that result. 
Since !(c) (xk - xk_l) = !(c) (c - xk_l) + !(c)(xk - c), it is seen that the relation (4) 
also holds. 
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In either case, equation (4) and the Triangle Inequality imply that 

I S(f; Q) - (LI + L2) 1 = I (S(f; QI ) + S(f; Q2») - (L I + L2) 1 
:s I S(f; QI) - LI I + I S(f; Q2) - L2 1 ·  

Since Q I is 8' -fine and Q2 is 8" -fine, we conclude that 

I S(f; Q) - (LI + L2) 1 < e.  

Since e > 0 is arbitrary, we infer that f 'E R* [a , b] and that (3) holds. 
(�) Suppose that f E R* [a , b] and, given e > 0, let the gauge 'fie satisfy the Cauchy 

Criterion. Let fl be the restriction of f to [a , c] arid let PI ' Q I be 'fie -fine partitions of 
[a, c]. By adding additional partition points and tags from [c, b], we can extend PI and 
Q I to 'fie -fine partitions P and Q of [a , b] . If we use the same additional points and tags in 
[c, b] for both P and Q, then 

S(f; P) - S(f; Q) = S(fl ; PI ) - S(fl ; QI) ' 
Since both P and Q are 'fie-fine, then I S(fI ; PI ) - S(fl ; QI) I  < e also holds. Therefore 
the Cauchy Condition shows that the restriction fl of f to [a , c] is in R*[a, c]. Similarly, 
the restriction f2 of f to [c, d] is in R*[c, d]. 

The equality (3) now follows from the first part of the theorem. Q.E.D. 

It is easy to see that results exactly similar to 7.2.9-7.2. 12 hold for the generalized 
Riemann integral. We leave their statements to the reader, but will use these results freely. 
The Fundamental Theorem (First Form) 

We will now give versions of the Fundamental Theorems for the generalized Riemann 
integral. It will be seen that the First Form is significantly stronger than for the (ordinary) 
Riemann integral; indeed, we will show that the derivative of any function automatically 
belongs to R*[a , b], so the integrability of the function becomes a conclusion, rather than 
a hypothesis. 
10.1.9 The Fundamental Theorem of Calculus (First Form) Suppose there exists a 
countable set E in [a, b], and functions f, F : [a, b] -+ IR such that: 

(a) F is continuous on [a , b] . 
(b) F'(x) = f(x) for all x E [a , b] \ E. 

Then f belongs to R*[a, b] and 

(5) lb f = F(b) - F(a). 

Proof. We will prove the theorem in the case where E = 0, leaving the general case to 
be handled in the Exercises. 

Thus, we assume that (b) holds for all x E [a, b]. Since we wish to show that f E 
R*[a , b], given e > 0, we need to construct a gauge 8e ; this will be done by using the 
differentiability of F on [a , b]. If t E /, since the derivative f(t) = F'(t) exists, there 
exists 8/t) > 0 such that if 0 < Iz - t l  :s 8/t) , z E [a , b], then 

I F(z) - F(t) 
- f(t) 1 < !e.  z - t 2 

If we multiply this inequality by 1 z - t I , we obtain 

!F(z) - F(t) - f(t)(z - t) 1 :s !e lz - t l  
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whenever Z E [t - 8e (t), t + 8/t)] n [a , b] . The function 8e is our desired gauge. 
Now let u ,  v E [a, b] with u < v satisfy t E [u , v] S; [t - 8/t), t + 8e (t)]. If we sub­

tract and add the tenn F(t) - f(t) . t and use the Triangle Inequality and the fact that 
v - t :::: 0 and t - u :::: 0, we get 

IF(v) - F(u) - f(t)(v - u) 1  
::: IF(v) - F(t) - f(t)(v - t) 1  + I F(t) - F(u) - f(t)(t - u) 1  

::: 48 (v - t) + 48(t - u) = 48(v - u) . 
Therefore, if t E [u, v] S; [ t - De (t), t + 8/t)], then we have 

(6) 

(7) 

IF (v) - F(u) - f(t)(v - u) 1  ::: 48(v - u). 
We will show that f E R* [a , b] with integral given by the telescoping sum 

n 

F(b) - F(a) = I:{F(xi) - F(xi_I ) } . i=1 

for i = 1 ,  . . .  , n ,  

and so  we can use (7), the Triangle Inequality, and (6) to obtain 
n 

I F(b) - F(a) - S(f; P) I  = II: { F(xi ) - F(xi_l ) - f(ti ) (xi - xi-! ) }  I i=1 
n :::: I: I F(x) - F(xi_l ) - f(tyxi - Xi_I ) 1 i=1 
n ::: I: 48(Xi - Xi_I ) < 8(b - a). i=1 

Since 8 > 0 is arbitrary, we conclude that f E R*[a , b] and (5) holds. Q.E.D. 

10.1.10 Examples (a) If H(x) := 2,JX for X E [0, b], then H is continuous on [0, b] 
and H'(x) = 1/,JX for x E (0, b]. We define h ex) := H' (x) for x E (0, b] and h(O) := O. 
It follows from the Fundamental Theorem 10. 1 .9 with E := {O} that h belongs to R*[O, b] 
and that f: h = H(b) - H(O) = H(b), which we write as 

rb _1_ dx = 2../b. 
Jo ,JX 

(b) More generally, if et > 0, let H,/x) := x" let = e" lnx let for x E (0, b] and let 
H,,(O) := 0 so that H" is continuous on [0, b] and H� (x) = x,,-I for all x E (0, b]; see 
8.3 . 10 and 8.3. 13 .  We define h,, (x) := H� (x) for x E (0, b] and h,, (O) := O. 

Then Theorem 10. 1 .9 implies that her E R*[O, b] and that f: her = H,,(b) - H,, (O) = 
H,, (b), which we write as 

rb X,,-I dx = b
" 

. 
Jo et 

(c) Let L(x) := x ln x - x for x E (0, b] and L(O) := O. Then L is continuous on [0, b] 
(use l' Hospital's Rule at x = 0), and it is seen that L' (x) = In x for x E (0, b] . 
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It follows from Theorem 10. 1 .9 with E = {O} that the unbounded function l ex) := lnx 
for x E (0, b] and 1 (0) := 0 belongs to R*[O, b] and that f: 1 =  L(b) - L (O) , which we 
write as 

fob lnx dx = b lnb - b . 

(d) Let A(x) := Arcsinx for x E [- 1 ,  1] so that A is continuous on [- 1 , 1 ] and 
A'(X) = III1="? for x E (- 1 , 1 ) .  We define s ex) := A'(x) for x E (- 1 ,  1 )  and let 
s(- I) = s(I) := O. 

Then Theorem 10. 1 .9 with E = {- I ,  1 }  implies that s E R*[ -1 ,  1 ]  and that f�1 s = 
A(l) - A(-I) = Jr ,  which we write as /1 dx � = Arcsin 1 - Arcsin(- I )  = Jr. 

-I '11 1 - x-
The Fundamental Theorem (Second Form) 

D 

We now tum to the Second Form of the Fundamental Theorem, in which we wish to 
differentiate the indefinite integral F of f, defined by: 

(8) F(z) := lz f(x) dx for z E [a , b] . 

10.1.11 Fundamental Theorem of Calculus (Second Form) Let f belong to R*[a, b] 
and let F be the indefinite integral of f. Then we have: 

(a) F is continuous on [a , b] . 
(b) There exists a null set Z such that if x E [a , b] \ Z, then F is differentiable at x and 
F'(x) = f(x). 
(c) Iff is continuous at e E [a , b], then F'(e) = fee). 

Proof. The proofs of (a) and (b) can be found in [MTI] . The proof of (c) is exactly as the 
proof of Theorem 7.3.5 except that we use Theorems 10. 1 .8 and 1O. 1 .5(c). Q.E.D. 

We can restate conclusion (b) as: The indefinite integral F of f is differentiable to f 
almost everywhere on [a , b]. 

Substitution Theorem _____________________ _ 

In view of the simplicity of the Fundamental Theorem 10. 1 .9, we can improve the theorem 
justifying the "substitution formula". The next result is a considerable strengthening of 
Theorem 7.3.8. The reader should write out the hypotheses in the case Ej = Erp = E = 0. 

10.1.12 Substitution Theorem (a) Let I := [a , b] and J := [a, .8], and let F : I -+ lR. 
and cp : J -+ lR. be continuous functions with cp (J) � I . 
(b) Suppose there exist sets Ej C I and Erp C J such that f(x) = F'(x) for x E 1 \  Ej , 
that cp' (t) exists for t E J \ Erp ' and that E := cp- l (Ej) U Erp is countable. 

(c) Set f(x) := 0 for x E Ej and cp'(t) := 0 for t E Erp . 
We conclude that f E R*(cp(J», that (f 0 cp) . cp' E R*(J) and that 

IfJ [fJ lrp(fJ) (9) (f 0 cp) . cp' = F 0 cp = f. a a rp(a) 
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Proof. Since f[J is continuous on J, Theorem 5 .3.9 implies that f[J(J) is a closed interval 
in I . Also f[J-\Ef) is countable, whence Ef n f[J(J) = f[J(f[J-I (Ef» is also countable. 
Since f (x) = F'(x) for all x E f[J(J) \ Ef, the Fundamental Theorem 10. 1 .9 implies that 
f E R*(f[J(J)) and that 

l<P(fJ) I <p(fJ) f = F = F(f[J(fJ») - F (f[J(a)) . 
<p(a) <p(a) 

If t E J \ E, then t E J \ E<p and f[J(t) E 1 \  Er Hence the Chain Rule 6. 1 .6 implies 
that 

(F 0 f[J)' (t) = f(f[J(t)) . f[J'(t) for t E J \ E. 
Since E is countable, the Fundamental Theorem implies that (f 0 f[J) . f[J' E R* (J) and that 

lfJ (f 0 f[J) . f[J' = F 0 f[J 1: = F(f[J(fJ») - F(f[J(a») . 

The conclusion follows by equating these two terms. 

. t cos 0 
10.1.13 Examples (a) ConsIder the integral 10 0 

dt. 

Q.E.D. 

Since the integrand is unbounded as t --* 0+, there is some doubt about the existence 
of the integral. Also, we have seen in Exercise 7.3 . 19(b) that Theorem 7.3.8 does not apply 
with f[J(t) : =  0. However, Theorem 10. 1 . 12 applies. 

Indeed, this substitution gives f[J'(t) = 1 /(20) for t E (0, 4] and we set f[J(0) := O. If 
we put F(x) := 2 sinx, then f(x) = F'(x) = 2 cos x and the integrand has the form 

f (f[J(t» ' f[J' (t) = (2 cos 0) (
2
�) for t =f:. O. 

Thus, the Substitution Theorem 10. 1 . 12 with E<p := {OJ, Ef := 0, E := {OJ implies that 1t=4 cos 0 [X=2 
--r;- dt = 2 cosx dx = 2 sin 2. t=O '\I t x=o 

(b) Consider the integral [ I � = [ I r. �. 
10 v t - t2 10 '\It'\l l - t 

Note that this integrand is unbounded as t --* 0+ and as t --* 1 -. As in (a), we let 
x = f[J(t) := 0 for t E [0, 1 ]  so that f[J'(t) = 1 /(20) for t E (0, 1 ] .  Since vT-=t = 

�, the {ntegrand takes the form 
2 1 2 , 

VI '-- t 
. 
20 

= � .  f[J (t) , 

which suggests f(x) = 2/� for x =f:. 1 .  Therefore, we are led to choose F(x) := 

2 Arcsin x for x E [0, 1], since 
2 . � = F'(x) = (2Arcsmx)' for x E [0, 1 ) .  

l - x2 
Consequently, we have E<p = {OJ and Ef = { I } , so that E = {O, I } ,  and the Substitution 
Theorem yields 1t=1 dt r=1 � = 2ArCSinx i i = 2 Arcsin 1 = 7r. 0 t=O 0vT-=t - 1x=0 1 - x2 0 
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Other formulations of the Substitution Theorem are given in [MTI] . 

The Multiplication Theorem 

In Theorem 7.3 . 16 we saw that the product of two Riemann integrable functions is Rie­
mann integrable. That result is not true for generalized Riemann integrable functions; see 
Exercises 1 8  and 20. However, we will state a theorem in this direction that is often useful. 
Its proof will be found in [MTI] . 

10.1.14 Multiplication Theorem If f E R*[a, b] and if g is a monotone function on 
[a , b], then the product f . g belongs to R*[a, b]. 
Integration by Parts 

The following version of the formula for integration by parts is useful. 

10.1.15 Integration by Parts Theorem Let F and G be differentiable on [a , b] . Then 
F'G belongs to R*[a, b] if and only if FG' belongs to R*[a, b] . In this case we have 

( 10) 1b b Ib 
F'G = FG I - FG'. 

a a a 

The proof uses Theorem 6. 1 .3( c); it will be left to the reader. In applications, we usually 
have F' (x) = f (x) and G' (x) = g (x) for all x E [a, b]. It will be noted that we need to 
assume that one of the functions fG = F'G and Fg = FG' belongs to R*[a , b]. 

The reader should contrast the next result with Theorem 7.3. 1 8. Note that we do not 
need to assume the integrability of f(n+l) .  
10.1.16 Taylor's Theorem Suppose that f, f', f", " ' , f(n) and f(n+l) exist on [a, b]. 
Then we have 

( 1 1 )  f'(a) f(n) (a) feb) = f(a) + --(b - a) + . . .  + -- (b - a)n + R 1 !  n !  n ' 
where the remainder is given by 

( 12) 1 Ib R = - f(n+l) (t) . (b - t)n dt. n n !  a 

Proof. Since f(n+l) is a derivative, it belongs to R*[a, b] . Moreover, since t f-+ (b - tt 
is monotone on [a , b], the Multiplication Theorem 10. 1 . 14 implies the integral in ( 12) 
exists. Integrating by parts repeatedly, we obtain ( 1) .  Q.E.D. 

Exercises for Section 10.1 

1. Let 8 be a gauge on [a, b] and let P = { ([Xi_ I ' Xi ] ' t)}7=1 be a 8-fine partition of [a, b]. 
(a) Show that 0 < Xi - xi_ I ::::: 28 (t) for i = 1 ,  " ' , n. 

(b) If 8' := sup{8(t) : t E [a, b]} < 00, show that I IPII ::::: 28*. 
(c) If 8, := inf{8(t) : t E [a, b]} satisfies 8, > 0, and if Q is a tagged partition of [a, b] such 

that we have II Q II ::::: 8* , show that Q is 8-fine. 
(d) If e = 1, show that the gauge 81 in Example 1O. 1 .4(a) has the property that inf{81 (t) : t E 

[0, I ] }  = o. 
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2. (a) IfP is a tagged partition of [a, b], show that each tag can belong to at most two subintervals 
in P. 

(b) Are there tagged partitions in which every tag belongs to exactly two subintervals? 

3. Let 0 be a gauge on [a, b] and let P be a o-fine partition of [a , b]. 
(a) Show that there exists a o-fine partition Qj such that (i) no tag belongs to two subintervals 

in Q j '  and (ii) S(f; Q I ) = S(f; p) for any function 1 on [a , b]. 
(b) Does there exist a o-fine partition Q2 such that (j) every tag belongs to two subintervals in 

Q2' and (jj) S(f; Q2) = S(f; p) for any function 1 on [a , b]? 
(c) Show that there exists a o-fine partition Q3 such that (k) every tag is an endpoint of its 

subinterval, and (kk) S(f; Q3) = S(f; p) for any function 1 on [a, b]. 
4. If 0 is defined on [0, 2] by o Ct) := � It - 11 for x 1= 1 and 0( 1 )  := 0.01 ,  show that every o-fine 

partition P of [0, 2] has t = 1 as a tag for at least one subinterval, and that the total length of 
the subintervals in P having 1 as a tag is � 0.02. 

5. (a) Construct a gauge 0 on [0, 4] that will force the numbers 1 , 2, 3  to be tags of any o-fine 
partition of this interval. 

(b) Given a gauge OJ on [0, 4], construct a gauge O2 such that every 02-fine partition of [0, 4] 
will (i) have the numbers 1 ,  2, 3 in its collection of tags, and (ii) be oj -fine. 

6. Show that 1 E n*[a , b] with integral L if and only if for every 8 > 0 there exists a gauge y 
on [a , b] such that if P = { ([xi_I ' xi ] ,  t) }?=j is any tagged partition such that 0 < xi - xi_1 � 
Ys (t) for i = 1 , · · · ,  n, then IS(f; p) - L I  < 8. (This provides an alternate-but equivalent­
way of defining the generalized Riemann integral.) 

7. Show that the following functions belong to n* [0, 1 ]  by finding a function Fk that is continuous 
on [0, 1 ]  and such that F�(x) = Ik (x) for x E [0, 1 ]  \ Ek, for some finite set Ek • 
(a) II (x) := (x + 1)/ Jx for x E (0, 1 ]  and 11 (0) := O. 
(b) 12 (x) := x/.JI=X for x E [0, 1) and 12(1) := o. 
(c) 13 (x) := Jx lnx for x E (0, 1] and 13 (0) := O. 
(d) 14 (x) := (ln x)/Jx for x E (0, 1 ]  and 14(0) := o. 
(e) 15 (x) := �(1 + x)/(1 - x) for x E [0, 1) anf' ' 1 ) := O. 
(f) 16(x) := 1 /(Jx�2 - x) for x E (0, 1 ]  and 16 , / := O. 

8. Explain why the argument in Theorem 7 . 1 .5 does not apply to show that a function in n*[a, b] 
is bounded. 

9. Let l(x) := l /x for x E (0, 1 ]  and 1(0) := 0; then 1 is continuous except at x = O. Show that 
1 does not belong to n*[O, 1] .  [Hint; Compare 1 with sn(x) := 1 on (1/2, 1] , sn (x) := 2 on 
( 1/3, 1 /2], sn(x) := 3 on ( 1/4, 1/3], · · · ,  sn (x) := n on [0, l /n].] 

10. Let k : [0, 1 ]  � lR be defined by k(x) := 0 if x E [0, 1 ]  is 0 or is irrational, and k(m/n) := n 
if m,  n E N  have no common integer factors other than 1 .  Show that k E n* [O, 1] with integral 
equal to o. Also show that k is not continuous at any point, and not bounded on any subinterval 
[c, d] with c < d. 

1 1 .  Let 1 be Dirichlet's function on [0, 1 ]  and F(x) :=; 0 for all x E [0, 1]. Since F' (x) = l(x) for 
all x E [0, 1 ]  \ Q, show that the Fundamental Theorem 10. 1 .9 implies that 1 E n*[O, 1 ] .  

1 2. Let M(x) := In Ix l  for x 1= 0 and M(O) := O. Show that M'(x) = l/x for all x 1= O .  Explain 
why it does not follow that f�2 ( 1/x) dx = In 1 - 2 1 - ln 2 = O. 

13 .  Let LI (x) := x ln lx l - x for x 1= O and L 1 (0) := O, and let ll (x) := ln lx l ifx 1= o and II (0) := 
O. If [a , b] is any interval, show that II E n* [a , b] and that 1: In Ix l  dx = L I (b) - Lj (a). 

14. Let E := {c1 , c2 , · · · } and let F be continuous on [a, b] and F'(x) = l(x) for x E [a , b] \ E 
and l(ck) := o. We want to show that 1 E n*[a , b] and that equation (5) holds. 
(a) Given 8 > 0 and t E [a, b] \ E, let 0s (t) be defined as in the proof of 10. 1 .9. Choose 

o/ck) > 0 such that if Iz - ck l < 0s(ck) and Z E [a, b], then W(z) - F(ck) 1  < 8/2k+2 . 
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(b) Show that if the partition P is 8, -fine and has a tag ti = ck ' then we have 
I F(x) - F(xi_ l ) - f(Ck) (xi - Xi_ I ) 1  < e/2k+' . 

(c) Use the argument in 10. 1 .9 to get I S(f; p) - (F(b) - F(a» 1 < e(b - a + 1) .  

15. Show that the function g, (x) := x-'/2 sin(1/x) for x E (0, 1] and g, (0) := ° belongs to 
R*[O, 1] .  [Hint: Differentiate C, (x) := x3/2 cos( 1/x) for x E (0, 1] and C, (0) := 0.] 

16. Show that the function g2(x) := ( l /x) sin(1/x) for x E (0, 1 ]  and g2(0) := ° belongs to 
R*[O, 1 ] .  [Hint: Differentiate Cz Cx) := x cos(l/x) for x E (0, 1 ]  and Cz C0) := 0, and use the 
result for the cosine function that corresponds to Exercise 7.2. 12.] 

17. Use the Substitution Theorem 10. 1 . 12 to evaluate the following integrals. 13 14 .jidt 
(a) (2t + l )sgn(t2 + t - 2) dt = 6, (b) -----r. ' 

-3 0 1 + 'It  

(c) r5 � = 2 Arctan 2, (d) r ' �dt. 
1, tvt - l  10 

18. Give an example of a function f E R*[O, 1] whose square f2 does not belong to R*[O, 1] .  

19. Let F(x) := x cos(JT /x) for x E (0, 1 ]  and F(O) := 0. It will be seen that f := F' E R*[O, 1] 
but that its absolute value If  I = IF' I  ¢:. R*[O, 1] .  (Here f(O) := 0.) 
(a) Show that F' and I F' I  are continuous on any interval [c, 1 ] ,  ° < C < 1 and f E R* [O, 1 ] .  
(b) If  ak := 2/(2k + 1)  andbk := 1/  k for k E N, then the intervals [ak , bk] are non-overlapping 

and 1/  k :::: I:k If l .  k (c) Since the series 'E:, 1/ k diverges, then If  I ¢:. R*[O, 1 ] .  

20. Let f be as in Exercise 19 and let m(x) := (_ I)k for x E [ak , bk] (k E N) ,  and m(x) := ° 
elsewhere in [0, 1 ] .  Show that m . f = 1m · fl .  Use Exercise 7.2. 1 1  to show that the bounded 
functions m and Iml  belong to R[O, 1 ] .  Conclude that the product of a function in R*[O, 1 ]  and 
a bounded function in R[O, 1] may not belong to R*[O, 1] .  

21 .  Let <I> (x) := x I cos(JT /x) 1  for x E (0, 1 ]  and let <1>(0) := 0. Then <I> is continuous on [0, 1 ]  and 
<I>'(x) exists for x ¢:.  E := {O} U {ak : k E N} ,  where ak := 2/(2k + 1) .  Let rp(x) := <I>'(x) for 
x ¢:. E and rp(x) := ° for x E E. Show that rp is not bounded on [0, 1 ] .  Using the Fundamental 
Theorem 10. 1 .9 with E countable, conclude that rp E R*[O, 1 ]  and that J: rp = <I>(b) - <I>(a) 
for a, b E [0, 1]. As in Exercise 19, show that Irpl ¢:. R*[O, 1 ] .  

22. Let \II (x) := x2 1 cos(JT/x) I  for x E (0, 1 ]  and \11 (0) := 0.  Then \II i s  continuous on [0, 1 ]  and 
\II'(x) exists for x ¢:.  E, := {ak } . Let l/f(x) := \II'(x) for x ¢:.  E, and l/f(x) := ° for x E E,. 
Show that l/f is  bounded on [0, 1 ]  and (using Exercise 7.2. 1 1) that l/f E R[O, 1 ] .  Show that 
I: l/f = \II (b) - \II (a) for a ,  b E  [0, 1 ] .  Also show that Il/f l  E R[O, 1 ] .  

23. If f :  [a ,  b] -4 R is continuous and if P E R*[a , b] does not change sign on [a ,  b] ,  and if  fp E 
R*[a, b], then there exists � E [a, b] such that J: fp = f(�) J: p. (This is a generalization of 
Exercise 7.2. 16; it is called the First Mean Value Theorem for integrals.) 

24. Let f E R*[a, b], let g be monotone on [a, b] and suppose that f 2: 0. Then there exists 
� E [a, b] such that I: fg = g(a) II f + g(b) I: f. (This is a form of the Second Mean Value 
Theorem for integrals.) 

Section 10.2 Improper and Lebesgue Integrals 

We have seen in Theorem 7 . 1 .5 that a function f in R[a ,  b] must be bounded on [a , b] 
(although this need not be the case for a function in R* [a, bD. In order to integrate certain 
functions that have infinite limits at a point c in [a , b], or which are highly oscillatory 
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at such a point, one learns in calculus to take limits of integrals over subintervals, as the 
endpoints of these subintervals tend to the point c. 

For example, the function h(x) := 1/.jX for x E (0, 1 ]  and h(O) := ° is unbounded on 
a neighborhood of the left endpoint of [0, 1 ] .  However, it does belong to R[y, 1] for every 
y E (0, 1 ]  and we define the "improper Riemann integral" of h on [0, 1] to be the limit 

11 
1 11 

1 
Iv dx := lim Iv dx . 

o "Ix y->O+ y "Ix 
We would treat the oscillatory function k(x) := sin(1 /x) for x E (0, 1] and k(O) := ° in 
the same way. 

One handles a function that becomes unbounded, or is highly oscillatory, at the right 
endpoint of the interval in a similar fashion. Furthermore, if a function g is unbounded, or 
is highly oscillatory, near some c E (a , b), then we define the "improper Riemann integral" 
to be 

( 1 )  1b g := lim 1" 
g + lim {b g. 

a ,,->c- a {3->c+ J {3 

These limiting processes are not necessary when one deals with the generalized 
Riemann integral. 

For example, we have seen in Example 1O. 1 . 10(a) that if H (x) := 2.jX for x E [0, 1 ]  
then H'(x) = 1/.jX =: h (x) for x E (0, 1 ]  and the Fundamental Theorem 10. 1 .9 asserts 
that h E R*[O, 1 ]  and that 

11 � dX = H(1 )  - H(O) = 2. 

This example is an instance of a remarkable theorem due to Heinrich Hake, which we now 
state in the case where the function becomes unbounded or is oscillatory near the right 
endpoint of the interval. 

10.2.1 Hake's Theorem If f : [a , b] -+ JR., then f E R* [a , b] if and only if for every 
y E (a , b) the restriction of f to [a , y] belongs to R*[a, y] and 

(2) 

In this case lb f = A. 

lim 1Y 
f = A E JR.. 

y->b- a 

The idea of the proof of the (¢::) part of this result is to take an increasing sequence 
(Yn) converging to b so that / E R*[a , Yn] anq limn J:

n f = A. In order to show that 
f E R* [a, b], we need to construct gauges on [a , b]. This is done by carefully "piecing 
together" gauges that work for the intervals [Yi-l ' Yi ] to obtain a gauge on [a , b] .  Since the 
details of this construction are somewhat delicate and not particularly informative, we will 
not go through them here but refer the reader to [MTI] . 

It is important to understand the significance of Hake's Theorem. 
• It implies that the generalized Riemann integral cannot be extended by taking limits as 

in (2). Indeed, if a function f has the property that its restriction to every subinterval 
[a , Y], where Y E (a , b), is generalized Riemann integrable and such that (2) holds, then 
f already belongs to R* [a, b]. 
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An alternative way of expressing this fact is that the generalized Riemann integral does 
not need to be extended by taking such limits. 

• One can test a function for integrability on [a , b] by examining its behavior on subin­
tervals [a, y] with y < b. Since it is usually difficult to establish that a function is in 
R*[a, b] by using Definition 10. 1 . 1 ,  this fact gives us another tool for showing that a 
function is generalized Riemann integrable on [a , b]. 

• It is often useful to evaluate the integral of a function by using (2). 
We will use these observations to give an important example that provides insight into 

the set of generalized Riemann integrable functions. .. 
. 

10.2.2 Example (a) Let L�l ak be any series of real numbers converging to A E R 
We will construct a function cp E R* [O, 1 ]  such that 

Indeed, we define cp : [0, 1 ]  ---+ lR to be the function that takes the values 2ap 2zaz '  
23a3 , • • •  on the intervals [0, &) , [& ' � ) ,  [ � ,  �) , . . . . (See Figure 10.2. 1 .) For convenience, 
let ck := 1 - 1/2k for k = 0, 1 ,  . . . , then 

o 

for ck-1 � x < ck (k E N) ,  
for x = 1 . 

1 
"2 

Figure 10.2.1 The graph of rp. 

Clearly the restriction of cp to each interval [0, y] for y E (0, 1) , is a step function and 
therefore is integrable. In fact, if y E [cn , cn+1) then 

foY cp = (2a1 ) ·  (�) + (2zaz) ·  (;z) + . . .  + (2nan) · (;n ) + ry 
= a1 + az + . . .  + an + ry ' 

where I r y I � lan+1 1 .  But since the series i s  convergent, then r y ---+ ° and so 

ly n 
lim cp = lim I:ak = A .  y-->l- 0 n-->oo k=l 
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(b) If the series L:: 1 ak is absolutely convergent in the sense of Definition 9. 1 . 1 ,  then it 
follows as in (a) that the function lep l also belongs to R*[O, 1 ] and that 

However, if the series L::l lak I is not convergent, then the function lep I does not belong to 
R* [O, l ] .  

Since there are many convergent series that are not absolutely convergent (for example, 
L::l (_ l )k / k), we have examples of Junctions that belong to R*[O, 1] but whose absolute 
values do not belong to R*[O, 1] . We have already encountered such functions in Exercises 
10. 1 . 19 and 10. 1 .2 1 . 0 

The fact that there are generalized Riemann integrable functions whose absolute value 
is not generalized Riemann integrable is often summarized by saying that the generalized 
Riemann integral is not an "absolute integral". Thus, in passing to the generalized Riemann 
integral we lose an important property of the (ordinary) Riemann integral. But that is the 
price that one must pay in order to be able to integrate a much larger class of functions. 

Lebesgue Integrable Functions 

In view of the importance of the subset of functions in R* [a, b] whose absolute values also 
belong to R* [a , b], we will introduce the following definition. 

10.2.3 Definition A function f E R* [a , b] such that I f  I E R*[a, b] i s  said to be 
Lebesgue integrable on [a , b]. The collection of all Lebesgue integrable functions on 
[a , b] is denoted by C[a, b]. 

Note The collection of all Lebesgue integrable functions is usually introduced in a 
totally different manner. One of the advantages of the generalized Riemann integral is 
that it includes the collection of Lebesgue integrable functions as a special-and easily 
identifiable---collection of functions. 

It is clear that if f E R*[a, b] and if f(x)  ::::: ° for all x E [a , b], then we have I f I = f E R*[a, b], so that f E C[a, b]. That is, a nonnegative function f E R* [a, b] 
belongs to C[a ,  b]. The next result gives a more powerful test for a function in R*[a, b] to 
belong to C[a, b]. 

10.2.4 Comp�rison Test If f, (J) E R*[a , b] and If (x) 1 :::: w(x) for all x E [a , b], then f E C[a, b] and 

(3) 

Partial Proof. The fact that I f I E R* [a , b] is proved in [MTI] . Since I f I ::::: 0, this implies 
that f E C[a, b]. 

To establish (3) , we note that - If I :::: f :::: I f I and 10. 1 .5 (c) imply that 

-lb I f  I :::: lb f :::: lb I f I ,  
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whence the first inequality in (3) follows. The second inequality follows from another 
application of 1O. 1 .5( c). Q.E.D. 

The next result shows that constant multiples and sums of functions in C[a, b] also 
belong to C[a ,  b] . 

10.2.5 Theorem If f, g E C[a ,  b] andife E JR, then ef and f + g also belong toC[a , b] . 
Moreover 

(4) and 

Proof. Since lef(x) 1  = l e l lf (x) 1 for all x E [a , b], the hypothesis that If  I belongs to 
R*[a , b] implies that ef and lef l  also belong to R*[a , b], whence ef E C[a ,  b] . 

The Triangle Inequality implies that If (x) + g(x) 1 s I f (x) 1 + I g (x) 1 for all x E 
[a , b] . But since w := I f  I + Ig l  belongs to R*[a ,  b], the Comparison Test 10.2.4 implies 
that f + g belongs to C[a, b] and that 

lab If + g l  s lab ( If  I + Ig i) = lab I f  I + lab I g l .  Q.E.D. 

The next result asserts that one only needs to establish a one-sided inequality in order 
to show that a function f E R*[a , b] actually belongs to C[a ,  b] . 

10.2.6 Theorem Iff E R*[a , b], the following assertions are equivalent: 

(a) f E C[a, b] . 

(b) There exists W E  C[a, b] such that f(x) s w(x) for all x E [a, b]. 

(c) There exists a E C[a, b] such that a (x) S f(x) for all x E [a , b] . 

Proof. (a) =} (b) Let w := f. 
(b) =} (a) Note that f = w - (w - f). Since w - f :::: 0 and since w - f belongs 

to R*[a, b], it follows that w - f E C[a, b] . Now apply Theorem 10.2.5. 

We leave the proof that (a) {:::::::} (c) to the reader. Q.E.D. 

10.2.7 Theorem Iff, g E C[a ,  b], then the functions max{j, g} and min{j, g} also be­
long to C[a , b] . 

Proof. It follows from Exercise 2.2. 16 that if x E [a , b], then 

max{j(x) ,  g (x)} = � (f(x) + g(x) + I f (x) - g(x) i ) ,  
min{j(x), g(x)} = � (f(x) + g(x) - If (x) - g(x) l ) .  

The assertions follow from these equations and Theorem 10.2.5 . Q.E.D. 

In fact, the preceding result gives a useful conclusion about the maximum and the 
minimum of two functions in R * [a , b] . 

10.2.8 Theorem Suppose that f, g ,  a and w belong to R* [a , b] . If 

f s w, g S w or if a S f, a S g ,  
then max{j, g} and min{j, g} also belong to R* [a , b] . 
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Proof. Suppose that f ::::: ev and g ::::: ev; then max{j, g} ::::: ev. It follows from the first 
equality in the proof of Theorem 10.2.7 that 

0 ::::: I f - g l = 2 max{j, g} - f - g ::::: 2ev - f - g.  

Since 2ev - f - g :::; 0, this function belongs to .e[a, b] .  The Comparison Test 1O.t:4 
implies that 2 max{j, g} - f - g belongs to .e[a, b], and so max{j, g} belongs to R*[a , b]. 

The second part of the assertion is proved similarly. Q.E.D. 

The Seminorm in .e[a ,  b] 

We will now define the "seminorm" of a function in .e[a ,  b] and the "distance between" 
two such functions. 

10.2.9 Definition If f E .e[a, b], we define the seminorm of f to be 

I I f ll := lb I f l .  
If f, g E .e[a, b], we define the distance between f and g to be 

dist(j, g) := I I f - g il = lb I f  - g l · 

We now establish a few properties of the seminorm and distance functions. 

10.2.10 Theorem The seminonn function satisfies: 

(i) l l i ll :::; 0 for all f E .e[a ,  b] . 

(ii) If f (x) = 0 forx E [a , b], then I I f ll = o. 

(iii) Iff E .e[a ,  b] and c E JR, then l l ef ll = Ic l · l l f li . 
(iv) Iff, g E .e[a, b], then I l f + g il ::::: I I f ll + I I g ll · 

Proof. Parts (i)-(iii) are easily seen. Part (iv) follows from the fact that I f + g l ::::: If I + 

Ig l and Theorem 1O.1 .5(c). Q.E.D. 

10.2.11 Theorem The distance function satisfies: 

(j) dist(j, g) :::; O for all f, g E .e[a , b] .  

(jj) If f(x) ::::: g (x) for x E [a , b], then dist(j, g) = o. 

(jjj) dist(j, g) = dist(g, f) for all!, g E .e[a ,  b] .  
(jv) dist(j, h) ::::: dist(j, g) + dist(g, h) for all f, g ,  h E .e[a, b]. 

These assertions follow from the corresponding ones in Theorem 10.2. 10. Their proofs 
will be left as exercises. 

Using the seminorm (or the distance function) we can define what we mean for a 
sequence of f unctions (jn) in .e[a ,  b] to converge to a function f E .e[a ,  b] ; namely, given 
any 8 > 0 there exists K (8) such that if n :::; K (8) then 

I I fn - f II = dist(jn ' f) < 8. 
This notion of convergence can be used exactly as we have used the distance function in JR 
for the convergence of sequences of real numbers. 
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We will conclude this section with a statement of the Completeness Theorem for 
£[a, b] (also called the Riesz-Fischer Theorem). It plays the same role in the space £[a, b] 
that the Completeness Property plays in JR. 

10.2.12 Completeness Theorem A sequence Un) of functions in £[a, b] converges to 
a function I E £[a, b] if and only if it has the property that for every s > 0 there exists 
H(s) such that ifm, n ::: H(s) then 

1 1 1m - In II = distUm , In) < s. 
The direction (=» is very easy to prove and is left as an exercise. A proof of 

the direction ({=:) is more involved, but can be based on the following idea: Find a 
subsequence (gk) := Un) of Un) such that I I gk+1 - gk ll < 1/2k and define I(x) := 

gl (x) + L�l (gk+l (x) - gk(x)), where this series is absolutely convergent, and I(x) : =  0 
elsewhere. It can then be shown that I E £[a, b] and that I I /n - ! I I -+ o. (The details are 
given in [MTI] .) 

Exercises for Section 10.2 

1 .  Show that Hake's Theorem 10.2.1 can be given the following sequential formulation: A function 
1 E nora, b] if and only if there exists A E lR such that for any increasing sequence (cn) in (a, b) 
with cn -+ b, then 1 E nora, cn] and J:n 1 -+ A. 

2.  (a) Apply Hake's Theorem to conclude that g(x) := l /x2/3 forx E (0, l ] and g(O) := o belongs 
to nOlO, 1] .  

(b) Explain why Hake's Theorem does not apply to I(x) := l /x for x E (0, 1] and 1(0) := 0 
(which does not belong to nOlO, 1]). 

3. Apply Hake's Theorem to g(x) := ( 1  - X)-1/2 for x E [0, 1)  and g( l )  := O. 

4. Suppose that 1 E nora, c] for all c E (a, b) and that there exists y E (a, b) and w E .e[y, b] such 
that I/(x) 1  ::::: w (x) for x E [y, b]. Show that 1 E nora, b]. 

5. Show that the function gl (x) := x-1/2 sin(1/x) for x E (0, 1 ]  and gl (0) := 0 belongs to .e[0, 1 ] .  
(This function was also considered in Exercise 10. 1 . 15.) 

6. Show that the following functions (properly defined when necessary) are in .e[0, 1] .  
x ln x  sin Jrx 

(a) 
l + x2 ' (b) �' 

(c) (ln x)(ln(1 - x» , (d) 
ln x 

� . 

7. Determine whether the following integrals are convergent or divergent. (Define the integrands to 
be 0 where they are not already defined.) 1 1 sinx dx 
(a) 

o X3/2 ' 1 1 ln x dx 
(c) 

o x� ' 

(e) l\lnx) (sin(l /x» dX, 

8. If 1 E n[a , b], show that 1 E .e[a, b]. 

(b) 
t cos x dx 

10 x3/2 '  1 1 lnx dx 
(d) 

o I - x ' 
t dx 

(f) 10 JX(1 - x) · 

9. If 1 E .e[a, b], show that 12 is not necessarily in .e[a, b]. 
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10. If I, g E era, b] and if g is bounded and monotone, show that Ig E era, b]. More exactly, if 
Ig(x) 1 :::: B, show that I Ilgll :::: B III II · 

1 1 .  (a) Give an example of a function I E n*[O, 1 ]  such that max{j, O} does not belong to 
n*[O, I] . 

(b) Can you give an example of I E £[0, 1 ]  such that max{j, O} Ii/: £[0, I ]? 
12. Write out the details of the proof that min{j, g} E n* [a, b] in Theorem 10.2.8 when ex :::: I and 

ex :::: g .  
13 .  Write out the details of the proofs of Theorem 10.2. 1 1 . 
14. Give an I E  era , b] with I not identically 0, but such that 11 1 11 = 0. 
15. If I, g E era ,  b], show that 1 11 / 11 - lIg ll l :::: I II ± g il .  
16. Establish the easy part of the Completeness Theorem 10.2. 12 . 
17. If In (x) := xn for n E N, show that In E £[0, 1] and that II In II --+ 0. Thus II /n - g il --+ 0, 

where g denotes the function identically equal to 0. 
1 8. Let gn(x) := - 1  for x E [- 1 ,  -lin) , let gn(x) := nx for x E [- lin, lin] and let gn(x) := 1 

for x E ( l In, 1 ] .  Show that II gm - gn II --+ ° as m ,  n --+ 00, so that the Completeness Theorem 
10.2. 1 2  implies that there exists g E £[- 1 ,  1 ]  such that (gn) converges to g in £[- 1 , 1 ] .  Find 
such a function g .  

19 .  Let hn (x) := n for x E (0, lin) and hn (x) := ° elsewhere in  [0, 1] . Does there exist h E £[0, 1 ]  
such that I lhn - h I I  --+ O? 

20. Let kn (x) := n for x E (0, I/n2) and kn (x) := ° elsewhere in [0, 1] .  Does there exist k E £[0, 1 ]  
such that I l kn - kl l --+ O? 

Section 10.3 Infinite Intervals 

In the preceding two sections, we have discussed the integration of functions defined 
on bounded closed intervals [a , b] . However, in applications we often want to integrate 
functions defined on unbounded closed intervals, such as 

[a , (0), (-oo , b] , or (-00, (0). 

In calculus, the standard approach is to define an integral over [a , (0) as a limit: 100 1 := lim 1Y I, 
a y�oo a 

and to define integrals over the other infinite intervals similarly. In this section, we will 
treat the generalized Riemann integrable (and Lebesgue integrable) functions defined on 
infinite intervals. 

In defining the generalized Riemann integral of a function 1 on [a , (0), we will adopt a 
somewhat different procedure from that in calculus. We note that if Q := {([xo ' xd, tl ) , . . .  , 
([xn_l , xn] , tn) , ([xn , 00], tn+l ) }  is a tagged partition of [a , 00], then Xo = a and xn+1 = 00 
and the Riemann sum corresponding to Q has the form: 
( 1 )  l(t1 ) (Xl - xo) + . . .  + I(tn) (xn - xn_1 ) + l(tn+I ) (oo - xn) · 
Since the final term l(tn+I) (oo - xn) in ( 1 )  is not meaningful, we wish to suppress this 
term. We can do this in two different ways: (i) define the Riemann sum to contain only the 
first n terms, or (ii) have a procedure that will enable us to deal with the symbols ± 00 in 
calculations in such a way that we eliminate the final term in ( 1 ) .  
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We choose to adopt method (i): instead of dealing with partitions of [a, (0) into a 
finite number of non-overlapping intervals (one of which must necessarily have infinite 
length), we deal with certain subpartitions of [a , (0), which are finite collections of 
non-overlapping intervals of finite length whose union is properly contained in [a , (0). 

We define a gauge on [a , 00] to be an ordered pair consisting of a strictly positive 
function 8 defined on [a , (0) and a number d* > O. When we say that a tagged subpartition 
P := { ([xo ' xI ] ' tl ) , . . .  , ([xn_l , xn] ,  tn) } is (8 , d*)-fine, we mean that 

(2) 

that 
(3) 
and that 
(4) 

or, equivalently, that 
(4') 

n 
[a , (0) = U [xi-l ' xj ] U [xn , (0), 

j=1 

for i = 1 ,  . . .  , n ,  

[Xn ' (0) £ [ l jd*, (0) 

Note Ordinarily we consider a gauge on [a , 00] to be a strictly positive function 8 with 
domain [a, 00] := [a , (0) U {oo} where 8 (00) := d*. 

We will now define the generalized Riemann integral over [a , (0). 

10.3.1 Definition (a) A function I : [a , (0) --+ IR is said to be generalized Riemann 
integrable if there exists A E IR such that for every e > 0 there exists a gauge 8 e on [a , 00] 
such that if P is any 8e-fine tagged subpartition of [a , (0) , then I S(f; p) - A I :::: e. In this 
case we write I E  R*[a, (0) and 

100 1 := A .  
(b) A function I : [a , (0) --+ IR is said to be Lebesgue integrable if both I and II I belong 
to R*[a, (0). In this case we write I E £[a, (0) . 

Of particular importance is the version of Hake's Theorem for functions in R * [a , (0) . 
Other results for functions in £[a, (0) will be given in the exercises. 

10.3.2 Hake's Theorem If I :  [a, (0) --+ JR, then I E  R*[a, (0) ifand only iffor every 
Y E (a, (0) the restriction of I to [a , y ] belongs to R*[a, y] and 

(5) lim r I = A E R y-->oo Ja 
In this case 100 I = A. 

The idea of the proof of Hake's theorem is as before; the details are given in [MTI]. 
The generalized Riemann integral on the unbounded interval [a , (0) has the same 

properties as this integral on a bounded interval [a , b] that were demonstrated in Section 
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10. 1 .  They can be obtained by either modifying the proofs given there, or by using Hake's 
Theorem. We will give two examples. 

10.3.3 Examples (a) If I, g E R*[a , 00), then I + g E R* [a , 00) and 

If 8 > 0 is given let OJ be a gauge on [a , 00] such that ifi' is oj-fine, then I S(f; i') -
laoo I I .:::: 812, and there exists a gauge 8g such that ifi' is Og -fine, then I S(g; i') - laoo gl .:::: 812. Now let o/t) := min{Oj (t) ,  O/t)} for t E [a , 00] and argue as in the proof of lO . l .5(b). 
(b) Let I : [a, 00) -+ IR and let c E (a , 00). Then I E R* [a , 00) if and only if its restric­
tions to [a , c] and [c, 00) are integrable. In this case, 

(6) 

We will prove ({=) using Hake's Theorem. By hypothesis, the restriction of I to 
[c, oo) is integrable. Therefore, Hake's Theorem implies that for every y E (c, 00), the 
restriction of I to [c, y] is integrable and that 

100 I = lim r f. 
c y->oo Jc 

If we apply the Additivity Theorem 10. 1 .8 to the interval [a , y] = [a , c] U [c, y], we 
conclude that the restriction of I to [a , y] is integrable and that 

whence it follows that 

lim r I = t I + lim 1Y I = t I + 100 I. Y->OO Ja Ja Y->OO c Ja c 
Another application of Hake's Theorem establishes (6). o 

10.3.4 Examples (a) Let a > 1 and let la (x) := l/xa for x E [ 1 , 00). We will show 
that la E R* [ I ,  00). 

Indeed, if y E (1, 00) then the restriction of la to [ 1 ,  y] is continuous and therefore 
belongs to R * [ 1 ,  y] . Moreover, we have 

fy � dx = � . x l-a I Y = _1_ . [1 - :-I J .  I X I - a I a - I y 
But since the last term tends to I/(a - 1) as y � 00, Hake's Theorem implies that la E 
R* [ 1 ,  00) and that 

foo � dx = _I_ I xa a - I when a >  1 .  

(b) Let L�I ak be a series of real numbers that converges to A E R We will construct a 
function S E R*[O, 00) such that 

roo 00 Jo S = L ak = A . 
a k=1 
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Indeed, we define s ex) := ak for x E [k - 1 ,  k) , k E N. It is clear that the restriction of 
s to every subinterval [0, y] is a step function, and therefore belongs to R*[O, y] .  Moreover, 
if y E [n , n + 1) , then 

foY S = a! + . . . + an + ry ' 

where Ir y I :5 lan+! I . But since the series is convergent, then r y � ° and so Hake's Theorem 
10.3 .2 implies that 

ly n 
lim s = lim L ak = A . y--+oo 0 n--+oo k=! . 

(c) If the function s is defined as in (b), then ls i has the value lak l on the interval 
[k - 1 ,  k), k E N. Thus s belongs to £[0, 00) if and only if the series L:%:! lak l is conver­
gent; that is, if and only if L:%:! ak is absolutely convergent. 
(d) Let D(x) := (sinx)/x for x E (0 , 00) and let D(O) := 1 .  We will consider the impor­
tant Dirichlet integral: 

roo D(x) dx = roo sinx 
dx . 

Jo Jo x 
Since the restriction of D to every interval [0, y] is continuous, this restriction belongs 

to R* [0, y]. To see that J; D (x) dx has a limit as y � 00, we let ° < f3 < y .  An integration 
by parts shows that 

ly lP lY �x D(x) dx - D(x) dx = - dx o 0 P x 

= _ cos x I Y - r co�x dx . x p Jp x 
But since I cos x l  :5 1, it is an exercise to show that the above terms approach ° as f3 < y 
tend to 00. Therefore the Cauchy Condition applies and Hake's Theorem implies that 
D E R*[O, 00). 

However, it will be seen in Exercise 13 that I D I does not belong to R*[O, 00) . Thus 
the function D does not belong to £[0, 00) . 0 

We close this discussion of integrals over [a , 00) with a version of the Fundamental 
Theorem (First Form). 

10.3.5 Fundamental Theorem Suppose that E is a countable subset of [a , 00) and that 
I, F : [a, 00) � lR are such that: 

(a) F is continuous on [a , 00) and lim F(x) exists. x--+oo (b) F'(X) = I(x) for all x E (a , 00) , x � E.  

Then I belongs to R* [a , 00) and 

(1) 100 I = lim F(x)  - F (a) . 
a X-HX) 

Proof. If y is any number in (a , 00) , we can apply the Fundamental Theorem 10. 1 .9 to 
the interval [a, y] to conclude that I belongs to R*[a , y] and 

lY 
I = F(y) - F(a) . 
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Letting y -+ 00, we conclude from Hake's Theorem that f E R*[a, 00) and that equation 
(7) holds. Q.E.D. 

Integrals over (-00, b] 
We now discuss integration over closed intervals that are unbounded below. 

Let b E IR and g : (-00, b] -+ IR be a function that is to be integrated over the infinite 
interval (-00, b]. By a gauge on [-00, b] we mean an ordered pair consisting of a number 
�* > 0 and a strictly positive function 0 on (-00, b) . We say that a tagged subpartition 
P := { ([XO' xl ], t1 ) , ([Xl ' x2], t2) , . . .  , ([Xn_l ' b], tn) }  of (-00, b] is (d* , o)-fine in case 
that 

that 

and that 

or, equivalently, that 

n 
(-00, b] = (-00, xo] U U [xi_I ' Xi ] ' i=l 

for i = l , · · · , n , 

Note Ordinarily we consider a gauge on [ -00, b] to be a strictly positive function 0 with 
domain [-oo, b] := {-oo} U (oo, b] where 0(-00) := d* . . . n 

Here the Riemann sum of g for P is S(g; P) = L g(t) (xi - Xi_I ) ' i=l 
Finally, we say that g : (-00, b] -+ IR is generalized Riemann integrable if there 

exists B E IR such that for every e > 0 there exists a gauge Os on [-00, b] such that if 
P is any os-fine sUbpartition of (-00, b], then I S(g; p) - B I  � e.  In this case we write 
g E R*(-oo, b] and 

lb g = B. 
-00 

Similarly, a function g : (-00, b] -+ IR is said to be Lebesgue integrable if both g and Ig I 
belong to R* (-00, b]. In this case we will write g E ,C( -00, b]. 

The theorems valid for the integral over [a, 00] are obtained in this case as well. Their 
formulation will be left to the reader. 

Integrals over (-00, 00) 
Let h : (-00, 00) -+ IR be a function that we wish to integrate over the infinite interval 
(-00, 00). By a gauge on (-00, 00) we mean a triple consisting of a strictly positive 
function ° on (-00, 00) and two strictly positive numbers d* , d* . We say that a tagged sub­
partition P := { ([xo ' xd, t1 ) , ([Xl ' x2] , t2) , " " ([Xn-1 , xn] , tn) }  is (d* , 0, d*)-fine in case 
that n 

(-00, 00) = (-00, xo] U U [Xi_I ' Xi ]  U [Xn ' 00), 
i=l 
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for i = 1 ,  . . . , n ,  

and that 

(-00, xo] � (-00, - ljd*] 
or, equivalently, that 

and [Xn ' 00) � [ ljd*, 00) 

and 

Note Ordinarily we consider a gauge on [-00, 00] to be a strictly positive function 8 with 
domain [-00, 00] := {-(X)} U (00, 00) U {(X)} where 8(-00) := d* and 8(00) := d* . 

. . n 
Here the Riemann sum of h for P is S(h ;  P) = L h(t) (Xi - Xi_I) ' i=1 
Finally, we say that h : (-00, 00) --* JR is generalized Riemann integrable if there 

exists C E JR such that for every e > 0 there exists a gauge 88 on [-00, 00] such that if 
P is any 88-fine subpartition of (-00, 00), then I S(h; p) - C I ::: e . In this case we write 
h E R*( -00, 00) and 

foo 
h = C. 

- 00  

Similarly, a function h : (-00, 00) --* JR is said to be Lebesgue integrable if both h and 
I h l  belong to R*( -00, 00). In this case we write h E £(-00, 00). 

In view of its importance, we will state the version of Hake's Theorem that is valid for 
the integral over (-00, 00). 
10.3.6 Hake's Theorem Ifh : (-00, 00) --* JR, then h E R*(-oo, 00) ifand only iffor 
every fJ < y in (-00, 00), the restriction of h to [fJ, y] is in R*[fJ, y] and 

In this case i: h = C. 

lim r h = C E JR. 
�::::;:� l/J 

As before, most of the theorems valid for the finite interval [a , b] remain true. They 
are proved as before, or by using Hake's Theorem. We also state the first form of the 
Fundamental Theorem for this case. 

10.3.7 Fundamental Theorem Suppose that E is a countable subset of (-00, 00) and 
that h , H : (-00, 00) --* JR satisfy: 

(a) H is continuous on (-00, 00) and the limits lim H (x) exist. 
x---+±oo 

(b) H'(x) = h(x) for all x E (-00, 00), x ¢ E. 

(8) 

Then h belongs to R*( -00, 00) and 

foo 
h = lim H(x) - lim H(y) . 

-00 x�oo y�-oo 



300 CHAPTER 10 THE GENERALIZED RIEMANN INTEGRAL 

10.3.8 Examples (a) Let h(x) := 1/(x2 + 1) for x E (-00, 00). If we let H(x) := 
Arctan x, then H' (x) = h (x) for all x E (-00, 00). Further, we have lim H (x) = ! Jr and 

x--+oo 

lim H (x) = - !  Jr. Therefore it follows that 
x ..... -oo /00 1 1 ( 1 ) -00 x2 + 1 dx = 'iJr - - 'iJr = Jr. 

2 2 
(b) Let k(x) := Ix le-x for x E (-00, 00) . If we let K(x) := ! ( 1  - e-x ) for x :::: 0 and 

2 K(x) := - ! (1 - e-X ) for x < 0, then it is seen that K is continuous on (-00, 00) and 
that K'(x) = k(x) for x =1= O. Further, lim K(x) = ! and lim K(x) = -! .  Therefore it 

x-+oo x -+ -oo 

follows that 

o 

Exercises for Section 10.3 

1 .  Let 8 be a gauge on [a, 00]. From Theorem 5.5.5, every bounded subinterval [a , b] has a 8-fine 
partition. Now show that [a, 00] has a 8-fine partition. 

2. Let I E  n*[a, y] for all y � a. Show that I E  n*[a , 00) if and only if for every f > 0 there 
exists K(f) � a such that if q > p � K(f), then I f: I I  < f. 

3. Let I and II I  belong to n*[a, y]  for all y � a .  Show that I E .e[a , 00) if and only if for every 
f > 0 there exists K(f) � a such that if q > p > K(f) then f: I I I  < f. 

4. Let I and II I  belong to n*[a, y]  for every y � a .  Show that I E .e[a , 00) if and only if the 
set V := U: II I  : x � a }  is bounded in R 

5. If I, g E .e[a, 00), show that 1 + g E .e[a , 00) . Moreover, if IIh l l  := fa"" I h l  for any h E  
.e[a, 00), show that III + g il :s 1 1 / 11 + Il g lI · 

6. If I(x) := l /x for x E [ 1 , 00), show that I rt n* [ I ,  00). 
7. If I is continuous on [ 1 ,  00) and if I /(x) 1  :s Klx2 for x E [ 1 , 00), show that I E  .e[I ,  00). 
8. Let I(x) := cos x for x E [0, 00). Show that I ¢. n*[O, 00). 
9. If s > 0, let g(x) := e-sx for x E [0, 00). 

(a) Use Hake's Theorem to show that g E .e[0, 00) and fo"" e-sx dx = lis . 
(b) Use the Fundamental Theorem 10.3.5. 

10. (a) Use Integration by Parts and Hake's Theorem to show that fo"" xe-sx dx = I1s2 for s > O. 
(b) Use the Fundamental Theorem 10.3.5. 

1 1 .  Show that if n E N, s > 0, then fo"" xne-sx dx = n !/sn+ l . 
12. (a) Show that the integral fl"" x-I lnx dx does not converge. 

(b) Show that if a >  1, then fl"" x-a ln x dx = I/(a - 1)2 . 
13.  (a) Show that fn�+I)1C Ix- I sin x l  dx > 1 /4(n + 1 ) .  

(b) Show that ID I ¢. n*[O, 00), where D i s  as  in Example l O.3.4(d). 

14. Show that the integral fo"" (11 JX) sin x dx converges. [Hint: Integrate by Parts.] 

15. Establish the convergence of Fresnel's integral fo"" sin(x2) dx. [Hint: Use the Substitution 
Theorem 10. 1 . 1 2.] 
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16. Establish the convergence or the divergence of the following integrals: 

(a) roo ln x dx 
(b) roo lnx dx 

10 x2 + 1 ' 10 v?+l' 

(c) roo dx 
10 x(x + 1) ' 

(e) roo dx 
10 VI + x3

' 

roo x dx 
(d) 

10 (x + 1)3 ' 

roo Arctan x dx 
(f) 

10 x3/2 + 1 
. 

17. Let I, rp : [a, (0) ---+ JR. Abel's Test asserts that if I E R * [a , (0) and rp is bounded and mono­
tone on [a, (0), then Irp E R* [a , (0). 
(a) Show that Abel's Test does not apply to establish the convergence of fooo (1lx) sin x dx by 

taking rp(x) := l lx .  However, it does apply if we take rp(x) : =  1/.jX and use Exercise 14. 
(b) Use Abel's Test and Exercise 15 to show the convergence of fooo(xl(x + 1»  sin(x2) dx . 

(c) Use Abel's Test and Exercise 14 to show the convergence of fooo x-3/2(x + 1)  sin x dx . 
(d) Use Abel's Test to obtain the convergence of Exercise 16(f). 

18. With the notation as in Exercise 17, the Chartier-Dirichlet Test asserts that if I E  R* [a , y] 
for all y � a, if F(x) := r I is bounded on [a , (0), and if rp is monotone and lim rp(x) = 0, a x--+oo 
then Irp E R* [a, 00]. 
(a) Show that the integral fooo (1lx) sin x dx converges. 
(b) Show that f2°O (1 I In x) sin x dx converges. 
(c) Show that fooo (1  I .jX) cos x dx converges. 
(d) Show that the Chartier-Dirichlet Test does not apply to establish the convergence of 

fooo(xl(x + 1» sin(x2) dx by taking I(x) := sin(x2) .  

19. Show that the integral fooo .jX . sin(x2) dx is convergent, even though the integrand is not 
bounded as x ---+ 00. [Hint: Make a substitution.] 

20. Establish the convergence of the following integrals. 

(a) i: e-1x l dx, 

(c) i: e-x2 dx, 

(b) i: (x - 2)e-1x l dx, 

(d) i: )�de
X
_x ' 

Section 10.4 Convergence Theorems 

We will conclude our discussion of the generalized Riemann integral with an indication of 
the convergence theorems that are available for it. It will be seen that the results are much 
stronger than those presented in Section 8.2 for the (ordinary) Riemann integral. Finally, 
we will introduce a "measurable" function on [a , b] as the almost everywhere limit of a 
sequence of step functions. We will show that every integrable function is measurable, and 
that a measurable function on [a , b] is generalized Riemann integrable if and only if it 
satisfies a two-sided boundedness condition. 

We proved in Example 8.2. I (c) that if (fk) is a sequence in R[a, b] that converges on 
[a, b] to a function f E R[a, b], then it need not happen that 

(1) 1b f = lim 1b fk• 
a k-+oo a 
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However, in Theorem 8.2.4 we saw that uniform convergence of the sequence is sufficient 
to guarantee that this equality holds. In fact, we will now show that this is even true for a 
sequence of generalized Riemann integrable functions. 

10.4.1 Uniform Convergence Theorem Let Uk) be a sequence in R*[a, b] and suppese 
that Uk) converges uniformly on [a , b] to I. Then I E R* [a, b] and ( 1 )  holds. 

Proof. Given e > 0, there exists K (e) such that if k � K (e) and X E [a, b], then we have 
I lk(x) - l(x) 1 < e . Consequently, if h ,  k � K(e) , then 

-2e < Ik(x) - Ih (x) < 2e for x E [a , b]. 
Theorem 10. 1 .5 implies that 

-2e(b - a) < ib Ik - ib Ih < 2e(b - a). 

Since e > 0 is arbitrary, the sequence U: Ik) is a Cauchy sequence in � and therefore 
converges to some number, say A E R We will now show that I E R*[a, b] with integral A. For, if e > 0 is given, let K(e) be as above. If P := { ([xi_I ' Xi ] '  ti )}7=1 is any tagged 
partition of [a , b] and if k � K(e), then 

n 

I Suk ; p) - SU; p) 1 = I L:)lk(t) - I(ti ) } (xi - Xi_I ) 1 i=1 
n 

S L I lk (t) - I(t) I (Xi - Xi-I ) i=1 
n < L e(xi - Xi_I) = e(b - a). i=1 

Now fix r � K(e) such that I I: Ir - A I < e and let 8r" be a gauge on [a , b] such that 
I I: Ir - SUr ; P) I < e whenever P is 8r,,-fine. Then we have 

I Su; p) - A I S I Su; p) - SUr; p) 1 + I SUr ;  p) - ib Ir l + lib Ir - A I < e(b - a) + e + e = e(b - a + 2). 
But since e > 0 is arbitrary, it follows that I E R*[a, b] and I: 1 =  A. Q.E.D. 

It will be seen in Example 1 0.4.6( a) that the conclusion of 10.4. 1 is false for an infinite 
interval. 

Equi-integrability 

The hypothesis of uniform convergence in Theorem 10.4. 1 is a very stringent one and 
restricts the utility of this result. Consequently, we now show that another type of unifonnity 
condition can be used to obtain the desired limit. This notion is due to Jaroslav Kurzweil, 
as is Theorem 10.4.3 . 

10.4.2 Definition A sequence Uk) in R*(l) is said to be equi-integrable if for every 
e > 0 there exists a gauge 8, on I such that if P is any 8, -fine partition of I and k E N, 
then I SUk ;  p) - II Ik l < e. 
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10.4.3 Equi-integrability Theorem If (fk) E R*(l) is equi-integrable on I and if 
f(x) = lim fk (x) for all X E I ,  then f E R*(l) and 

(2) I f =  lim l k I k->oo I 

Proof. We will treat the case I = [a, b]; the general case can be found in [MTI] . 
Given e > 0, by the equi-integrability hypothesis, there exists a gauge De on I such that 

if P := {( [Xi_\ ,  Xi] ' t)}7=1 is a De-fine partition of I, then we have IS(fk ;  p) - II fk l < e 
for all k E N. Since P has only a finite number of tags and since fk (t) -+ f (t) for t E [a , b] ,  
there exists a Ke such that if h , k 2: Ke , then 

n 
(3) I S(fk ;  p) - S(fh ;  p) 1 ::::; L I fk (t) - fh (ti ) I (xi - Xi-I ) ::::; e(b - a). 

i=I 
If we let h -+ 00 in (3), we have 
(4) 

Moreover, if h, k 2: Ke ' then the equi-integrability hypothesis and (3) give 

11 fk - 1 fh l ::::; 11 fk - S(fk ;  p) 1  + I S(fk ;  p) - S(fh ;  p) 1 
+ IS(fh ;  p) - 1 fh l ::::; e + e(b - a) + e = e(2 + b - a). 

Since e > 0 is arbitrary, then cJI fk) is a Cauchy sequence and converges to some A E R 
If we let h -+ 00 in this last inequality, we obtain 

(5) 

We now show that f E R* (l) with integral A. Indeed, given e > 0, if P is a De-fine 
partition of I and k 2: Ke' then 

I S(f; p) - A I ::::; I S(f; p) - S(fk ;  p) 1 + IS(fk ;  p) - 1 fk l + 1 1 fk - A I 
::::; e(b - a) + e + e(2 + b - a) = 8(3 + 2b - 2a) , 

where we used (4) for the first term, the equi-integrability for the second, and (5) for the 
third. Since e > 0 is arbitrary, f E R*(l) with integral A. Q.E.D. 

The Monotone and Dominated Convergence Theorems 

Although the Equi-integrability Theorem is interesting, it is difficult to apply because it is 
not easy to construct the gauges De . We now state two very important theorems summarizing 
the most important convergence theorems for the integral that are often useful. McLeod 
[pp. 96-101] has shown that both of these theorems can be proved by using the Equi­
i�tegrability Theorem. However, those proofs require a delicate construction of the gauge 
functions. Direct proofs of these results are given in [MTI], but these proofs also use results 
not given here; therefore we will omit the proofs of these results. 

We say that a sequence of functions on an interval I S; IR is monotone increasing if it 
satisfies fI (x) ::::; f2(x) ::::; . . .  ::::; fk (x) ::::; fk+I (X) ::::; · · · for all k E N, x E I .  It is said to be 
monotone decreasing if it satisfies the opposite string of inequalities, and to be monotone 
if it is either monotone increasing or decreasing. 
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10.4.4 Monotone Convergence Theorem Let Uk) be a monotone sequence offunctions 
in R*(1) such that f(x) = lim fk (x) almost everywhere on I .  Then f E R*(1) ifand only 
if the sequence of integrals <II fk) is bounded in JR., in which case 

(6) f f = kl!..� f k 

The next result is the most important theorem concerning the convergence of integrable 
functions. It is an extension of the celebrated "Lebesgue Dominated Convergence Theorem" 
from which it can also be proved. 

10.4.5 Dominated Convergence Theorem Let Un) be a sequence in R*(1) and let 
f(x) = lim fk (x) almost everywhere on I .  If there exist functions ex, w in R*(1) such that 

(7) for almost every x E I, 

then f E R*(1) and 

(8) j f = lim j k I k-+oo I 
Moreover, if ex and w belong to £(1), then fk and f belong to £(1) and 

(9) I Ifk - f II = ! Ifk - f l -+ O. 

Note If ex and w belong to £(1), and we put cp := max{ lex l ,  Iw l }, then cp E £(1) and we 
can replace the condition (7) by the condition 
(7') for almost every x E I. 

Some Examples _______________________ _ 

10.4.6 Examples (a) Ifk E N, let fk (x) := l /kforx E [0, k] and fk (x) := Oelsewhere 
in [0, 00). 

Then the sequence converges uniformly on [0, 00) to the O-function. However 1000 fk = 
1 for all k E N, while the integral of the O-function equals 0. It is an exercise to show that 
the function suP{fk (x) : k E N} does not belong to R*[O, 00), so the domination condition 
(7) is not satisfied. 11 Xk + 1 
(b) We have lim -k-- dx = � . - k-+oo 0 X + 3 

For, if gk (x) := (xk + 1 )/(xk + 3), then O s  gk (x) s 1 and gk (x) -+ 1 /3 for x E 
[0, 1) .  Thus-the Dominated Convergence Theorem 10.4.5 applies. 

(c) We have lim r
k (1 + �)k e-ax dx = _1 _ if a > 1 . k-+ooJo k a - I  

Let hk (x) := ( 1  + xl kle-ax for x E [0, k] and hk (x) := ° elsewhere on [0, 00) . The 
argument in Example 3.3.6 shows that (hk) is an increasing sequence and converges to 
eXe-ax = e(l-a)x on [0, 00) . If a > 1 this limit function belongs to £[0, 00). Moreover, if 
F(x) := e(l-a)x 1( 1  - a), then F'(x) = e(l-a)x so that the Monotone Convergence Theorem 
10.4.4 and the Fundamental Theorem 10.3.5 imply that 

lim hk = e(l-a)x dx = F(x) = -- . 100 100 100 1 
k-+oo 0 0 0 a - I  



10.4 CONVERGENCE THEOREMS 305 

(d) If f is bounded and continuous on [0, (0) and if a > 0, then the function defined by 
L(t) := It e-tx f(x) dx is continuous for t E fa := (a , (0). 

Since le-tx f(x) 1 :s Me-ax for t E fa ' if (tk) is any sequence in fa converging to 
to E fa ' the Dominated Convergence Theorem implies that L(tk) � L(to) . But since the 
sequence (tk) � to is arbitrary, then L is continuous at to. 
(e) The integral in (d) is differentiable for t > a and 

(10) L' (t) = 1°O
(-x)e-tx f (x) dx , 

which is the result obtained by "differentiating under the integral sign" with respect to t. 
Fix a number to E fa . If t E fa ' then by the Mean Value Theorem applied to the 

function t 1-+ e-tx , there exists a point tx between to and t such that we have e-tx - e-tox = 
-xe-txx (t - to) ' whence 

I e-tx - e-tox I :s xe-txx :s xe-ax . t - to 

Since w(x) := xe-ax f(x) belongs to £[0, (0), then for any sequence (tk) in fa with 
to 1= tk � to' the Dominated Convergence Theorem implies that 

hm k a = hm f(x) dx . [L(t ) - L(t ) ] 100 • [e-tkx - e-toX ] k--->oo tk - to a k--->oo tk - to 

= 100 (_x)e-tox f(x) dx . 

Since (tk) is an arbitrary sequence, then L' (to) exists and ( 10) is proved. 

(f) Let Dk (t) := 1k 
e-tx ( Si:X ) dx for k E N, t ::::: O. 

Since I (e-tx sinx)/x l :s e-tx :s 1 for t ::::: 0, x ::::: 0, the integral defining Dk exists. In 
particular, we have 

1k sinx Dk (O) = - dx . 
a x 

We want to show that Dk (O) � in as k � 00. By Example 10.3.4(d), this will show 
that It (sinx)/x dx = in. The argument is rather complex, and uses the Dominated 
Convergence Theorem several times. 

Since the partial derivative satisfies I :t 
(e -tx :in X ) I = I - e -tx sin x I :s 1 for t ::::: 0, 

x ::::: 0, an argument as in (e) and the Dominated Convergence Theorem imply that 

D� (t) = _1k 
e-tx sin x dx for k E N, t ::::: O. 

. a (e-tX (t sinx + coSx» ) . Since a routine calculation shows that - 2 = _e-tx smx,  then an 
ax t + 1 

application of the Fundamental Theorem gives 

1 I e-tk (t sin k + cos k) Dk(t) = 
t2 + 1 - t2 + 1 · 
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e-tk (t sink + cos k) Ifweput gk (t) := 2 1 
for O S t S k andgk (t) := O for t > k, then another 

t + 
application of the Fundamental Theorem gives 

( 1 1) 10k 10k 10k dt Dk (k) - Dk (O) = D�(t) dt = gk (t) dt - -2-

o 0 o t + 1 

= 100 gk (t) dt - Arctank. 

If we note that gk (t) --+ 0 for t > 0 as k --+ 00 and that (since k ::: 1 )  
e-tk (t + 1) Igk (t) 1 s 2 1 

S 2e-t for t ::: 0, t + 
then the Dominated Convergence Theorem gives Jooo gk (t) dt --+ O. 

In addition, since I (sinx)/x l S 1 ,  we have 

I Dk(k) 1 = / rk 
e-kx sin x dX / S r

k 
e-kx dx = e�kx /X=k 

10 x 10 k x=o 
1 - e-k2 1 = < - --+ O. k - k 

Therefore, as k --+ 00, formula ( 1 1 )  becomes 
0 - lim Dk (O) = 0 - lim Arctank = -!:rr. k--->oo k--->oo 

As we have noted before, this gives an evaluation of Dirichlet's Integral: 

( 1 2) 

Measurable Functions 

1000 sinx d _ 1 
-- X - 2:rr. o x o 

We wish to characterize the collection of functions in R * (/). In order to bypass a few minor 
details, we will limit our discussion to the case I := [a , b]. We need to introduce the notion 
of a "measurable function"; this class of functions contains all the functions the reader is 
ever likely to encounter. Measurable functions are often defined in terms of the notion of 
a "measurable set". However, the approach we will use is somewhat simpler and does not 
require a theory of measurable sets to have been developed first. (In fact, the theory of 
measure can be derived from properties of the integral; see Exercises 15 and 16.) 

We recall from Definition 5.4.9 that a function S : [a , b] --+ IR is a step function if 
it has only a finite number of values, each value being assumed on a finite number of 
subintervals of [a , b]. 

10.4.7 Definition A function I : [a , b] --+ IR is said to be (Lebesgue) measurable if 
there exists a sequence (s k) of step functions on [a , b] such that 
( 13) I (x) = lim sk (x) k--->oo for almost every x E [a, b]. 
We denote the collection of all measurable functions on [a , b] by M[a, b]. 

We can reformulate the definition as: A function I is in M [a , b] if there exists a null 
set Z C [a , b] and a sequence (sk) of step functions such that 
( 14) I (x) = lim sk (x) k--->oo for all x E [a , b] \ Z.  
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It is trivial that every step function on [a , b] is a measurable function. By Theorem 
5.4. 10, a continuous function on [a , b] is a uniform limit of a sequence of step functions; 
therefore, every continuous function on an interval [a , b] is measurable. Similarly, every 
monotone function on [a , b] is a uniform limit of step functions (see the proof of Theorem 
7.2.7); therefore, every monotone function on an interval is measurable. 

At first glance, it might seem that the collection of measurable functions might not be 
so very large. However, the requirement that the limit ( 13) is required to hold only almost 
everywhere (and not everywhere), enables one to obtain much more general functions. We 
now give a few examples. 

10.4.8 Examples (a) The Dirichlet function, f (x) := 1 for x E [0, 1] rational and 
f(x) := ° for x E [0, 1 ] irrational, is a measurable function. 

Since Q n [0, 1] is a null set, we can take each sk to be the O-function. We then obtain 
Sk(X) -+ f(x) for x E [0, 1 ] \ Q. 
(b) Thomae's function h (see Examples 5. 1 .5 (h) and 7 . 1 .6) is a measurable function. 

Again, take sk to be the O-function. Then sk (x) -+ h ex) for x E [0, 1] \ Q. 
(c) The function g(x) := l /x for x E (0, 1] and g (O) := ° is a measurable function. 

This can be seen by taking a step function sk(x) := ° for x E [0, II k) and (using 
5.4. 10) such that Isk (x) - l/x l  < 11k for x E [ 11k , 1 ] . Then Sk(X) -+ g(x) for all x E 
[0, 1 ] . 
(d) If f E M[a , b] and if 1/1 : [a , b] -+ lR. is such that 1/I (x) = f(x) a.e., then 1/1 E 
M[a, b]. 

For, if f (x) = lim sk(x) for x E [a , b] \ Z\ and if 1/1 (x) = f(x) for all x E [a , b] \ Z2' 
then 1/I (x) = limsk (x) for all x E [a , b] \ (Z\ U Z2) ' Since Z\ U Z2 is a null set when Z\ 
and Z2 are, the conclusion follows. 0 

The next result shows that elementary combinations of measurable functions lead to 
measurable functions. 

10.4.9 Theorem Let f and g belong to M[a, b] and let C E R 

(a) Then the functions cf, If I ,  f + g, f - g and f . g also belong to M[a, b] . 
(b) Ifep : lR. -+ lR. is continuous, then the composition ep 0 f E M[a , b] . 
(c) If (fn) is a sequence in M[a ,  b] and f(x) = lim fn (x) almost everywhere on I, then 
f E M[a , b] . 

Proof. (a) We will prove that I f  I is measurable. Let Z C [a , b] be a null set such that 
(14) holds. Since Isk l is a step function, the Triangle Inequality implies that 

° � I l f (x) l - Isk (x) 1 1 � If(x) - sk (x) l -+ ° 
for all x E [a , b] \ Z. Therefore I f  I E M[a, b). 

The other assertions in (a) follow from the basic properties of limits. 
(b) If sk is a step function on [a , b] , it is easily seen that ep 0 sk is also a step function 

on [a , b]. Since ep is continuous on lR. and f(x) = lim sk (x) for all x E [a , b] \ Z, it follows 
that (ep 0 f)(x) = ep(f(x)) = limep(sk (x)) = lim(ep 0 sk) (x) for all x E [a , b] \ Z. There­
fore ep 0 f is measurable. 

(c) This conclusion is not obvious; a proof is outlined in Exercise 14. Q.E.D. 
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The next result is that we can replace the step functions in Definition 10.4.7 by 
continuous functions. Since we will use only one part of this result, we content ourselves 
with a sketch of the proof of the other part. 

10.4.10 Theorem A function I :  [a , b] ---+ ffi. is in M[a, b] if and only if there exists a 
sequence (gk) of continuous functions such that 

( 15) I (x) = lim gk (x) k-+oo for almost every x E [a , b]. 

Proof. ({=) Let Z C [a , b] be a null set and (gk) be a sequence of continuous functions 
such that I (x) = limgk (x) for x E [a , b] \ Z. Since gk is continuous, by 5.4. 10 there exists 
a step function S k such that 

Therefore we have 
for all x E [a , b]. 

0 ::: I/(x) - Sk(X) I ::: I/(x) - gk(X) I + I gk(x) - sk (x) 1 
::: I/(x) - gk (x) 1 + l /k, 

whence it follows that I (x) = limgk (x) for all x E [a , b] \ Z. 
Sketch of (:::}) Let Z be a null set and (s k) be a sequence of step functions such that 

I (x) = limsk (x) for all x E [a , b] \ Z. Without loss of generality, we may assume that 
each sk is continuous at the endpoints a , b. Since sk is discontinuous at only a finite number 
of points in (a , b), which can be enclosed in a finite union Jk of intervals with total length 
::: 1 /  k, we can construct a piecewise linear and continuous function gk which coincides 
with sk on [a , b] \ Jk . It can be shown that gk (x) ---+ I(x) a.e. on I . (See [MTI] for the 
details.) Q.E.D. 

Functions in R * [a , b] are Measurable 

We now show that a generalized Riemann integrable function is measurable. 

10.4.11 Measurability Theorem If I E R* [a , b] , then I E M[a ,  b] . 

Proof. Let F : [a , b + 1] ---+ ffi. be the indefinite integral 

F(x) := lx I if x E [a , b] , 
and let F(x) := F(b) for x E (b, b + 1 ] .  It follows from the Fundamental Theorem (Second 
Form) 1 0. 1 . 1 1(a) that F is continuous on [a , b]. From 10. 1 . 1 1  (c), there exists a null set Z 
such that the derivative pi (x) = I(x) exists for x E [a , b] \ Z. Therefore, if we introduce 
the difference quotient functions 

F(x + 1 /  k) - F(x) gk (x) := 1/ k for x E [a , b) , k E N, 
then g k (x) ---+ I (x) for all x E [a , b] \ Z. Since the g k are continuous, it follows from the 
part of Theorem 10.4. 10 we have proved that I E M[a , b]. Q.E.D. 

Are Measurable Functions Integrable? 

Not every measurable function is generalized Riemann integrable. For example, the function 
g (x) := l /x for x E (0, 1 ]  and g (O) := 0 was seen in Example 1O.4.8(c) to be measurable; 



10.4 CONVERGENCE THEOREMS 309 

however it is not in R*[a, b] because it is "too large" (as x � 0+). However, ifthe graph of 
a measurable function on [a, b] lies between two functions in R* [a , b], then it also belongs 
to R*[a , b]. 

10.4.12 Integrability Theorem Letl E M[a, b] . Then I E R* [a , b] ifandonlyifthere 
exist functions a, w E  R* [a, b] such that 

(16) a(x) S I(x) s w (x) lor almost every x E [a , b] . 

Moreover, if either a or w belongs to £[a ,  b], then I E £[a, b]. 

Proof, (=» This implication is trivial, since one can take a = w = I. 
({:::) Since I E  M[a, b], there exists a sequence (sk) of step functions on [a, b] such 

that ( 13) holds. We define Sk := mid{a , sk ' w} for k E N, so that sk (x) is the middle of the 
numbers a(x), sk (x) and w(x) for each x E [a, b] . 1t follows from Theorem 10.2.8 and the 
facts 

mid{a , b,  e} = min{max{a, b}, max{b, e}, max{e, an, 
min{a' , b' , e' } = min{min{a' ,  b' } ,  e' l , 

that sk E R* [a , b] and that a S sk S w. Since 1 =  limsk = lim sk a.e., the Dominated 
Convergence Theorem now implies that I E R* [a , b]. 

If either a or w belongs to £[a, b], then we can apply Theorem 10.2.6 to conclude that 
I belongs to £[a, b]. Q.E.D. 

A Final Word 

In this chapter we have made frequent reference to Lebesgue integrable functions on an 
interval /, which we have introduced as functions in R*(I) whose absolute value also 
belongs to R*(I) . While there is no single "standard approach" to the Lebesgue integral, 
our approach is very different from any that are customary. A critic might say that our 
approach is not useful because our definition of a function in £(I) is not standard, but that 
would be wrong. 

After all, one seldom uses the definition to confirm that a specific function is Lebesgue 
integrable. Instead, one uses the fact that certain simpler functions (such as step functions, 
polynomials, continuous functions, bounded measurable functions) belong to £(I), and 
that more complicated functions belong to £(I) by taking algebraic combinations or vari­
ous limiting operations (e.g., Hake's Theorem or the Dominated Convergence Theorem). 
A famous analyst once said, "No one ever calculates a Lebesgue integral; instead, one 
calculates Riemann integrals and takes limits". 

It is the same as with real numbers: we listed certain properties as axioms for lR and 
then derived consequences of these properties which enable us to work quite effectively 
with the real numbers, often by taking limits. 

Exercises for Section 10.4 

1 .  Consider the following sequences of functions with the indicated domains. Does the sequence 
converge? If so, to what? Is the convergence uniform? Is it bounded? If not bounded, is it 
dominated? Is it monotone? Evaluate the limit of the sequence of integrals. 
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(a) 
kx 

1 + kx 
[0, 1 ] ,  

xk 
(b) 

1 + xk [0, 2], 

(c) 
1 

1 + Xk [0, 1 ] ,  
1 

(d) 
1 + xk [0, 2] . 

2. Answer the questions posed in Exercise 1 for the following sequences (when properly defined). h 1 
(a) [0, 1], (b) � k [0, 1] ,  

1 + k.jX yx(1  + x  ) 
1 1 

(c) k [ 1 ,  2], (d) k [0, 1] . 
.jX(1 + x ) .jX(2 - x ) 

3. Discuss the following sequences of functions and their integrals on [0, 1 ] .  Evaluate the limit of 
the integrals, when possible. 

(b) e-kx lx, 
(c) kxe-kx ,  (d) k2xe-kx ,  
(e) he-k2x2 , (f) he-kx2 . 1 1 Xk dx 1 1 kxk dx 

4. (a) Show that lim 2 = 0. (b) Show that lim -- = � .  k-+oo 0 (1 + x) k-+oo 0 1 + x  
5. If fk (x) := k for x E [II k, 21 k] and fk (x) := ° elsewhere on [0, 2], show that fk (x) � ° but 

that f� fk = 1 .  

6. Let Uk) be a sequence on [a, b ]  such that each fk i s  differentiable on [a, b ]  and fi(x) � g(x) 
with I fi(x) 1  .::: K for all x E [a, b]. Show that the sequence Uk(x» either converges for all 
x E [a, b] or it diverges for all x E [a, b]. 

7. If fk are the functions in Example 1O.4.6(a), show that suP{fk} does not belong to R*[O, (0). 
8. Show directly that fooo e-tx dx = lit and fooo xe-tx dx = I/t2 for t > 0, thus confirming the 

results in Examples 1O.4.6(d,e) when f(x) := 1 .  

9 .  Use the differentiation formula in 1O.4.6(f) to obtain fooo e-tx sin x dx = I/(t2 + 1) .  

10. If t > 0, define E(t) := fooo [(e-tx sinx)lx] dx . 
(a) Show that E exists and is continuous for t > a > 0. Moreover, E(t) � ° as t � 00. 

(b) Since 1 � ( e-tx sin x ) I .::: e-ax for t � a > 0, show that E' (t) = --z=..!- for t > 0. at x t + 1 
(c) Deduce that E(t) = �n - Arctan t for t > 0. 
(d) . Explain why we cannot use the formula in (c) to obtain equation (12). 

1 1 .  In this exercise we will establish the important formula: 

(17) rOO _x2 1 
Jo e dx = z ../ii· 

(a) Let' G(t) := fOI [e-t2(X2+1) l(x2 + 1)] dx for t � 0. Since the integrand is dominated by 
I/ (x2 + 1) for t � 0, then (T is continuous on [0, (0). Moreover, G(O) = Arctan 1 = in 
and it follows from the Dominated Convergence Theorem that G(t) � ° as t � 00. 

(b) The partial derivative of the integrand with respect to t is bounded for t � 0, X E [0, 1] ,  
2 1 2 2  2 t 2 so G'(t) = -2te-t fo e-t x dx = -2e-t fo e-U duo 

(c) If we set F(t) := [f� e-x2 dx r. then the Fundamental Theorem 10. 1 . 1 1  yields F' (t) = 

2e-t2 f� e-x2 dx for t � 0, whence F'(t) + G'(t) = ° for all t � 0. Therefore, F(t) + 
G(t) = C for all t � 0. 

(d) Using F(O) = 0, G(O) = in and liml-+
oo 

G(t) = 0, we conclude that liml-+
oo 

F(t) = in, 
so that formula (17) holds. 

12. Suppose I S; R is a closed interval and that f : [a, b] x I --+ R is such that af/at ex­
ists on [a, b] x I, and for each t E [a, b] the function x � f(t ,  x) is in R*(l) and there 
exist a, W E  R*(l) such that the partial derivative satisfies a(x) .::: af(t, x)/at .::: w(x) for 
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a.e. x E I.  If F(t) := JI f(t . x ) dx ,  show that F is differentiable on [a , b] and that F'(t) = JI af(t, x)/at dx. 
13. (a) If f, g E M[a,  b], show that max{f, g} and min{f, g} belong to M[a,  b]. 

(b) If f, g, h E  M[a, b], show that mid{f, g, h}  E M[a,  b]. 

14. (a) If Uk) is a bounded sequence in M[a,  b] and fk -)0 f a.e., show that f E M[a,  b]. [Hint: 
Use the Dominated Convergence Theorem.] 

(b) If (gk) is any sequence in M[a,  b] and if fk := Arctan 0 gk ' show that Uk) is a bounded 
sequence in M[a,  b]. 

(c) If (gk ) is a sequence in M[a,  b] and if gk -)0 g a.e., show that g E M[a,  b]. 

15. A set E in [a , b] is said to be (Lebesgue) measurable if its characteristic function IE (defined 
by 1E (x) := 1 if x E E and 1E (x) := 0 if x E [a , b] \ E) belongs to M[a, b]. We will denote 
the collection of measurable sets in [a, b] by M[a,  b]. In this exercise, we develop a number of 
properties of M[a, b]. 
(a) Show that E E M[a, b] if and only if IE belongs to R*[a , b]. 
(b) Show that 0 E M[a,  b] and that if [c, d] S; [a, b], then the intervals [c, d], [c, d) , (c, d] 

and (c, d) are in M[a, b]. 
(c) Show that E E M[a, b] if and only if E' := [a, b] \ E is in M[a,  b]. 
(d) If E and F are in M[a, b], then E U F, E n  F and E \ F are also in M[a, b]. [Hint: Show 

that 1EUF = max{lE , lF},  etc.] 
(e) If (Ek) is an increasing sequence in M[a,  b], show that E := U:l Ek is in M[a, b]. Also, 

if (Fk) is a decreasing sequence in M[a, b] show that F := n:l Fk is in M[a ,  b]. [Hint: 
Apply Theorem lOA.9(c).] 

(f) If (Ek) is any sequence in M[a,  b], show that U:l Ek and n:l Ek are in M[a, b]. 

16. If E E M[a, b], we define the (Lebesgue) measure of E to be the number m(E) := t IE ' In 
this exercise, we develop a number of properties of the measure function m : M[a , b] -)0 R 
(a) Show that m(0) = 0 and 0 :::s m(E) :::s b - a .  
(b) Show that m([c, d]) = m([c, d»  = m« c, d]) = m« c, d»  = d - c. 
(c) Show that m(E') = (b - a) - m(E). 
(d) Show that m(E U F) + m(E n F) = m(E) + m(F). 
(e) If E n  F = 0, show that m(E U F) = m(E) + m(F). (This is the additivity property of 

the measure function.) 
(f) If (Ek) is an increasing sequence in M[a, b], show that m(U: l Ek) = limk meek)' [Hint: 

Use the Monotone Convergence Theorem.] 
(g) If (Ck) is a sequence in M[a, b] that is pairwise disjoint (in the sense that Cj n Ck = 0 

whenever j =f. k), show that 

( 18) m (Q ck) = f; m(ck) .  

(This i s  the countable additivity property of the measure function.) 



CHAPTER 1 1  

A GLIMPSE INTO TOPOLOG Y 

For the most part, we have considered only functions that were defined on intervals. Ipdeed, 
for certain important results on continuous functions, the intervals were also assumed to 
be closed and bounded. We shall now examine functions defined on more general types 
of sets, with the goal of establishing certain important properties of continuous functions 
in a more general setting. For example, we proved in Section 5 .3 that a function that is 
continuous on a closed and bounded interval attains a maximum value. However, we will 
see that the hypothesis that the set is an interval is not essential, and in the proper context 
it can be dropped. 

In Section 1 1 . 1 we define the notions of an open set, and a closed set. The study 
of open sets and the concepts that can be defined in terms of open sets is the study of 
point-set topology, so we are in fact discussing certain aspects of the topology of R (The 
mathematical area called "topology" is very abstract and goes far beyond the study of 
the real line, but the key ideas are to be found in real analysis. In fact, it is the study of 
continuous functions on lR that motivated many of the concepts developed in topology.) 

The notion of compact set is defined in Section 1 1 .2 in terms of open coverings. 
In advanced analysis, compactness is a powerful and widely used concept. The compact 
subsets of lR are fully characterized by the Heine-Borel Theorem, so the full strength of the 
idea is not as apparent as it would be in more general settings. Nevertheless, as we establish 
the basic properties of continuous functions on compact sets in Section 1 1 .3, the reader 
should begin to appreciate how compactness arguments are used. 

In Section 1 1 .4 we take the essential features of distance on the real line and introduce 
a generalization of distance called a "metric". The much-used triangle inequality is the key 
property in this general concept of distance. We present examples and show how theorems 
on the real line can be extended to the context of a metric space. 

The ideas in this chapter are somewhat more abstract than those in earlier chapters; 
however, abstraction can often lead to a deeper and more refined understanding. In this 
case, it leads to a more general setting for the study of analysis. 

Section 11.1 Open and Closed Sets in IR 

There are special types of sets that play a distinguished role in analysis-these are the open 
and the closed sets in R To expedite the discussion, it is convenient to have an extended 
notion of a neighborhood of a point. 

11.1.1 Definition A neighborhood of a point x E lR is any set V that contains an 
e-neighborhood Ve (x) := (x - e, x + e) of x for some e > O. 
312 
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While an e-neighborhood of a point is required to be "symmetric about the point", the 
idea of a (general) neighborhood relaxes this particular feature, but often serves the same 
purpose. 

11.1.2 Definition (i) A subset G of � is open in � if for each x E G there exists a 
neighborhood V of x such that V � G. 
(ii) A subset F of � is closed in � if the complement C(F) := �\F is open in �. 

To show that a set G � � is open, it suffices to show that each point in G has an 
e-neighborhood contained in G. In fact, G is open if and only if for each x E G, there exists 
ex > 0 such that (x - ex ' x + ex> is contained in G. 

To show that a set F � � is closed, it suffices to show that each point y ¢. F has an 
e-neighborhood disjoint from F. In fact, F is closed if and only if for each y ¢. F there 
exists ey > 0 such that F n (y - ey , y + ey) = 0. 

11.1.3 Examples (a) The entire set � = (-00, 00) is open. 
For any x E �, we may take e := 1 .  

(b) The set G : =  {x E R 0 < x < I }  is open. 
For any x E G we may take ex to be the smaller of the numbers x, 1 - x. We leave it 

to the reader to show that if I u - x I < ex then U E G. 
(c) Any open interval I := (a , b) is an open set. 

In fact, if x E I, we can take ex to be the smaller of the numbers x - a , b - x. 
The reader can then show that (x - ex ' x + ex) � I .  Similarly, the intervals (-00 , b) and 
(a, 00) are open sets. 
(d) The set I := [0, 1] is not open. 

This follows since every neighborhood of 0 E I contains points not in I . 
(e) The set I := [0, 1] is closed. 

To see this let y ¢. I ;  then either y < 0 or y > 1 .  If y < 0, we take ey := I y l , and if 
y > 1 we take ey := y - 1 .  We leave it to the reader to show that in either case we have 
I n (y - ey , y + ey) = 0. 
(I) The set H := {x : 0 � x < I }  is neither open nor closed. (Why?) 
(g) The empty set 0 is open in R 

In fact, the empty set contains no points at all, so the requirement in Definition 1 1 . 1 .2(i) 
is vacuously satisfied. The empty set is also closed since its complement � is open, as was 
seen in part (a). 0 

In ordinary parlance, when applied to doors, windows, and minds, the words "open" 
and "closed" are antonyms. However, when applied to subsets of �, these words are not 
antonyms. For example, we noted above that the sets 0, � are both open and closed in �. 
(The reader will 'Probably be relieved to learn that there are no other subsets of � that have 
both properties.) In addition, there are many subsets of � that are neither open nor closed; 
in fact, most subsets of � have this neutral character. 

The following basic result describes the manner in which open sets relate to the 
operations of the union and intersection of sets in R 

11.1.4 Open Set Properties (a) The union of an arbitrary collection of open subsets in 
� is open. 
(b) The intersection of any tinite collection of open sets in � is open. 
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Proof. (a) Let {GA : A E A} be a family of sets in lR that are open, and let G be their 
union. Consider an element x E G; by the definition of union, x must belong to GA for 

o some AD E A. Since GA is open, there exists a neighborhood V of x such that V � GA • o 0 
But G A � G, so that V � G. Since x is an arbitrary element of G, we conclude that Q is 

o 
open in R 

(b) Suppose GI and G2 are open and let G := GI n G2 . To show that G is open, we 
consider any x E G; then x E GI and x E G2. Since GI is open, there exists 81 > O such 
that (x - 8 I '  X + 8 I )  is contained in G I ' Similarly, since G 2 is open, there exists 82 > ° 
such that (x - 82 , X + 82) is contained in G 2 ' If we now take 8 to be the smaller of 8 I 
and 82, then the 8-neighborhood U := (x - 8, X + 6) satisfies both U � GI and U � G2. 
Thus, x E U � G. Since x is an arbitrary element of G, we conclude that G is open in R 

It now follows by an Induction argument (which we leave to the reader to write out) 
that the intersection of any finite collection of open sets is open. Q.E.D. 

The corresponding properties for closed sets will be established by using the general 
De Morgan identities for sets and their components. (See Theorem 1 . 1 .4.) 

11.1.5 Closed Set Properties (a) The intersection of an arbitrary collection of closed 
sets in lR is closed. 
(b) The union of any tinite collection of closed sets in lR is closed. 

Proof. (a) If {FA : A E A} is a family of closed sets in lR and F := n FA' then C(F) = 
AEA 

U C(FJ is the union of open sets. Hence, C(F) is open by Theorem l 1 . 1 .4(a), and 
AEA 
consequently, F is closed. 

(b) Suppose FI , F2 , · · · ,  Fn are closed in lR and let F := FI U F2 U · · ·  U Fn ' By the 
De Morgan identity the complement of F is given by 

Since each set C (F;)  is open, it follows from Theorem 1 1 . 1 .4(b) that C (F) is open. Hence 
F is closed. Q.E.D. 

The finiteness restrictions in 1 1 . 1 .4(b) and 1 1 . 1 .5(b) cannot be removed. Consider the 
following examples: 

11.1.6 Examples (a) Let Gn := (0, 1 + l in) for n E N. Then Gn is open for each 
00 

n E N, by Example l 1 . 1 .3(c). However, the intersection G := n Gn is the interval (0, 1 ]  
'" n= 1  

which is not open. Thus, the intersection of infinitely many open sets in lR need not be open. 
00 

(b) Let Fn := [ l in , 1] for n E N. Each Fn is closed, but the union F := U Fn is the set 
n=1  

(0, 1 ]  which is not closed. Thus, the union of infinitely many closed sets in lR need not be 
closed. D 

The Characterization of Closed Sets 

We shall now give a characterization of closed subsets of lR in terms of sequences. As we 
shall see, closed sets are precisely those sets F that contain the limits of all convergent 
sequences whose elements are taken from F. 
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11.1.7 Characterization of Closed Sets Let F S; �; then the following assertions are 
equivalent. 

(i) F is a closed subset ofR 
(ii) If X = (xn) is any convergent sequence of elements in F, then lim X belongs to F. 

Proof. (i) :::} (ii) Let X = (xn) be a sequence of elements in F and let x := lim X; we 
wish to show that x E F. Suppose, on the contrary, that x 1. F; that is, that x E C(F) 
the complement of F. Since C(F) is open and x E C(F), it follows that there exists an 
e-neighborhood VB of x such that VB is contained in C(F). Since x = lim(xn), it follows 
that there exists a natural number K = K (e) such that x K E VB . Therefore we must have 
xK E C(F) ; but this contradicts the assumption that xn E F for all n E N. Therefore, we 
conclude that x E F. 

(ii) :::} (i) Suppose, on the contrary, that F is not closed, so that G := C(F) is not 
open. Then there exists a point Yo E G such that for each n E N, there is a number Yn E 
C(G) = F such that lYn - Yo l < l/n . It follows that yo := lim(yn), and since Yn E F for all 
n E N, the hypothesis (ii) implies that Yo E F, contrary to the assumption Yo E G = C(F). 
Thus the hypothesis that F is not closed implies that (ii) is not true. Consequently (ii) 
implies (i), as asserted. Q.E.D. 

The next result is closely related to the preceding theorem. It states that a set F is 
closed if and only if it contains all of its cluster points. Recall from Section 4. 1 that a point 
x is a cluster point of a set F if every e-neighborhood of x contains a point of F different 
from x.  Since by Theorem 4. 1 .2 each cluster point of a set F is the limit of a sequence 
of points in F, the result follows immediately from Theorem 1 1 . 1 .7 above. We provide a 
second proof that uses only the relevant definitions. 

11.1.8 Theorem A subset of � is closed if and only if it contains all of its cluster points. 

Proof. Let F be a closed set in � and let x be a cluster point of F;  we will show that 
x E F. If not, then x belongs to the open set C (F). Therefore there exists an e-neighborhood 
VB of x such that VB � C(F). Consequently VB n F = 0, which contradicts the assumption 
that x is a cluster point of F.  

Conversely, let F be a subset of � that contains all of its cluster points; we will show 
that C(F) is open. For if Y E C(F), then Y is not a cluster point of F. It follows that there 
exists an e-neighborhood VB of y that does not contain a point of F (except possibly y). 
But since y E C(F), it follows that VB S; C(F). Since y is an arbitrary element of C(F), we 
deduce that for every point in C(F) there is an e-neighborhood that is entirely contained in 
C(F). But this means that C(F) is open in R Therefore F is closed in R Q.E.D. 

The Characterization of Open Sets 

The idea of an open set in � is a generalization of the notion of an open interval. That this 
generalization does not lead to extremely exotic sets that are open is revealed by the next 
result. 

11.1.9 Theorem A subset of � is open if and only if it is the union of countably many 
disjoint open intervals in R 

Proof. Suppose that G i= 0 is an open set in R For each x E G, let A x : = {a E � : 
(a , x] S; G} and let Bx := {b E � : [x , b) S; G}. Since G is open, it follows that Ax and Bx 
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are not empty. (Why?) If the set Ax is bounded below, we set ax := inf Ax ; if Ax is not 
bounded below, we set a := -00. Note that in either case a ¢. G. If the set B is bounded x 

�' __ " 
x x 

above, we set bx : =  sup Bx ; ifB� l:snotbounded above, we set bx := 00. Note that in either 
case bx ¢. G. 

We now define Ix := (ax ' bx) ;  clearly Ix is an open interval containing x . We cliim 
that Ix S; G. To see this, let y E Ix and suppose that y < x. It follows from the definition 
of ax that there exists a' E Ax with a' < y, whence y E (a' , x] S; G. Similarly, if y E Ix 
and x < y, there exists b' E Bx with y < b', whence it follows that y E [x , b') S; G. Since 
y E Ix is arbitrary, we have that Ix S; G. 

Since x E G is arbitrary, we conclude that U Ix S; G. On the other hand, since for each 
XEG 

X E G there is an open interval Ix with x E Ix S; G, we also have G S; U Ix ' Therefore 
XEG 

we conclude that G = U Ix ' 
XEG 

We claim that if x, y E G and x =f. y, then either Ix = Iy or Ix n Iy = 0. To prove 
this suppose that Z E Ix n Iy ' whence it follows that ax < Z < b

y 
and a

y 
< z < bx ' (Why?) 

We will show that ax = a
y

. If not, it follows from the Trichotomy Property that either (i) 
ax < a

y
' or (ii) ay < ax ' In case (i), then a

y 
E Ix = (ax ' bx) S; G, which contradicts the 

fact that a
y 

¢. G. Similarly, in case (ii), then ax E I
y 

= (a
y

' b
y
) S; G, which contradicts 

the fact that ax ¢. G. Therefore we must have ax = a
y 

and a similar argument implies that 
bx = b

y
. Therefore, we conclude that if Ix n Iy =f. 0, then Ix = Iy . 

It remains to show that the collection of distinct intervals {Ix : x E G} is countable. 
To do this, we enumerate the set Q of rational numbers Q = {rl ' r2 , • • •  , rn , . . •  } (see 
Theorem 1 .3. 1 1) .  It follows from the Density Theorem 2.4.8 that each interval Ix contains 
rational numbers; we select the rational number in Ix that has the smallest index n in 
this enumeration of Q. That is, we choose r ( ) E Q such that I = Ix and n(x) is the n x 

'n(x) 
smallest index n such that I, = Ix ' Thus the set of distinct intervals Ix ' x E G, is put into 
correspondence with a subset of N. Hence this set of distinct intervals is countable. Q.E.D. 

It is left as an exercise to show that the representation of G as a disjoint union of open 
intervals is uniquely determined. 

It does not follow from the preceding theorem that a subset of lR. is closed if and only if 
it is the intersection of a countable collection of closed intervals (why not?). In fact, there 
are closed se(s in lR. that cannot be expressed as the intersection of a countable collection of 
closed intervals in R A set consisting of two points is one example. (Why?) We will now 
describe the construction of a much more interesting example called the Cantor set. 

The Cantor Set 

The Cantor 'set, which we will denote by IF, is a very interesting example of a (somewhat 
complicated) set that is unlike any set we have seen up to this point. It reveals how in­
adequate our intuition can sometimes be in trying to picture subsets of R 

The Cantor set IF can be described by removing a sequence of open intervals from the 
closed unit interval I := [0, 1 ] .  We first remove the open middle third U'  n of [0, 1]  to 
obtain the set 

We next remove the open middle third of each of the two closed intervals in F\ to obtain 
the set 

F2 := [O, ! ]  U [ � , �] U [� , �] U [ � ,  1] . 
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We see that F2 is the union of 22 = 4 closed intervals, each of which is of the fonn 

[k/32 , (k + 1 )/32] . We next remove the open middle thirds of each of these sets to get F3, 
which is union of 23 = 8 closed intervals. We continue in this way. In general, if Fn has 
been constructed and consists of the union of 2n intervals of the fonn [k/3n , (k + l )/3n] ,  
then we obtain the set Fn+l by removing the open middle third of each of these intervals. 
The Cantor set IF is what remains after this process has been carried out for every n E N. 
(See Figure 1 1 . 1 . 1 .) 

o 
Fl �--------�----------------� 

F3 - - - - - - - -

Figure 11.1.1 Construction of the Cantor set. 

11.1.10 Definition The Cantor set IF is the intersection of the sets Fn ' n E N, obtained 
by successive removal of open middle thirds, starting with [0, 1 ] .  

Since it i s  the intersection of closed sets, IF i s  itself a closed set by  1 1 . 1 .5(a). We now 
list some of the properties of IF that make it such an interesting set. 

(1) The total length of the removed intervals is 1 .  
We note that the first middle third has length 1/3, the next two middle thirds have 

lengths that add up to 2/32, the next four middle thirds have lengths that add up to 22/33, 
and so on. The total length L of the removed intervals is given by 

Using the fonnula for the sum of a geometric series, we obtain 

1 
L = - · = 1 . 3 1 - (2/3) 

Thus IF is a subset of the unit interval [0, 1] whose complement in [0, 1] has total length 1 .  
Note also that the total length of the intervals that make up Fn is (2/3t, which has 

limit 0 as n --+ 00. Since IF � Fn for all n E N, we see that if IF can be said to have "length", 
it must have length o. 

(2) The set IF contains no nonempty open interval as a subset. 
Indeed, if IF contains a nonempty open interval J := (a , b), then since J � Fn for all 

n E N, we must have 0 < b - a :s (2/3)n for all n E N. Therefore b - a = 0, whence J is 
empty, a contradiction. 

(3) The Cantor set IF has infinitely (even uncountably) many points. 
The Cantor set contains all of the endpoints of the removed open intervals, and these 

are all points of the fonn 2k /3n where k = 0, I ,  . . . , n for each n E N. There are infinitely 
many points of this fonn. 
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The Cantor set actually contains many more points than those of the fonn 2k /3
n

; in fact, 
F is an uncountable set. We give an outline of the argument. We note that each x E [0, 1 ]  
can be written in a ternary (base 3 )  expansion 

where each an is either 0 or 1 or 2. (See the discussion at the end of Section 2.5.) Indeed, 
each x that lies in one of the removed open intervals has an = 1 for some n; for example, 
each point in G,  D has a1 = 1 .  The endpoints of the removed intervals have two possible 
ternary expansions, one having no I s; for example, 3 = ( . 100 · . ')3 = (.022 · . ')3 '  If we 
choose the expansion without I s  for these points, then F consists of all x E [0, 1 ]  that have 
ternary expansions with no Is;  that is, an is 0 or 2 for all n E N. We now define a mapping 
cp of F onto [0, 1 ]  as follows: 

for x E F. 

That is, cp(( .a1a2 • •  ')3) = (.b1b2 • •  ')2 where bn = an/2 for all n E N  and (.b1b2 • •  ')2 de­
notes the binary representation of a number. Thus cp is a surjection of F onto [0, 1] .  
Assuming that F is countable, Theorem 1 .3 . 10  implies that there exists a surjection 1fr of 
N onto F, so that cp 0 1fr is a surjection of N onto [0, 1 ] .  Another application of Theorem 
1 .3 . 10  implies that [0, 1 ]  is a countable set, which contradicts Theorem 2.5.5. Therefore F 
is an uncountable set. 

Exercises for Section 11.1 

1. if x E (0, 1 ) ,  let ex be as in Example 1 1 . 1 .3(b). Show that if lu - x l < ex, then u E (0, 1). 

2. Show that the inter�als (a , 00) and (-00, a) are open sets, and that the intervals [b, 00) and 
(-00, b] are closed sets. 

3. Write out the Induction argument in the proof of part (b) of the Open Set Properties 1 1 . 1 .4. 

4. Prove that (0, 1] = n�l (0, 1 + lin), as asserted in Example 1 1 . 1 .6(a). 

5.  Show that the set N of natural numbers is a closed set in R 
6. Show that A = { lin: n E N} is not a closed set, but that A U  {O} is a closed set. 

7. Show that the set Q of rational numbers is neither open nor closed. 

8. Show tharif G is an open set and F is a closed set, then G\F is an open set and F\G is a closed 
set. 

9. A point x E lR is said to be an interior point of A S; lR in case there is a neighborhood V of x 

such that V S; A. Show that a set A S; lR is open if and only if every point of A is an interior 
point of A. 

10. A point x E lR is said to be a boundary point of A S; lR in case every neighborhood V of x 
contains points in A and points in C(A). Show that a set A and its complement C(A) have exactly 
the same boundary points. 

1 1 . Show that a set G S; lR is open if and only if it does not contain any of its boundary points. 

12. Show that a set F S; lR is closed if and only if it contains all of its boundary points. ' 

13 .  If A S; R let A 0 be the union of all open sets that are contained in A; the set A 0 is called the 
interior of A. Show that A 0 is an open set, that it is the largest open set contained in A, and that 
a point z belongs to A 0 if and only if z is an interior point of A. 
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14. Using the notation of the preceding exercise, let A, B be sets in R Show that A ° � A, (A or = 

A 0, and that (A n Br = A 0 n BO. Show also that A ° U BO � (A U Br, and give an example 
to show that the inclusion may be proper. 

15. If A � JR, let A- be the intersection of all closed sets containing A; the set A- is called the 
closure of A. Show that A- is a closed set, that it is the smallest closed set containing A, and 
that a point w belongs to A- if and only if w is either an interior point or a boundary point of A. 

16. Using the notation of the preceding exercise, let A ,  B be sets in R Show that we have A � 
A- , (A-)- = r, and that (A U B)- = A- U B-. Show that (A n B)- � A- n B-, and give 
an example to show that the inclusion may be proper. 

17. Give an example of a set A � JR such that A ° = 0 and A - = R 
18. Show that if F � JR is a closed nonempty set that is bounded above, then sUJl F belongs to F. 

" 19. If G is open and x E G, show that the sets A x and B x in the proof of Theorem 1 1 . 1 .9 are not 
empty. 

20. If the set A x in the proof of Theorem 1 1 . 1 .9 is bounded below, show that ax := inf Ax does not 
belong to G. 

2 1 .  If  in  the notation used in  the proof of Theorem 1 1 . 1 .9, we have ax < y < x ,  show that y E G. 
22. If in the notation used in the proof of Theorem 1 1 . 1 .9, we have Ix n Iy i= 0,  show that b x = by . 
23. Show that each point of the Cantor set IF is a cluster point of IF. 
24. Show that each point of the Cantor set IF is a cluster point of C (IF). 

Section 11.2 Compact Sets 

In advanced analysis and topology, the notion of a "compact" set is of enormous importance. 
This is less true in lR because the Heine-Borel Theorem gives a very simple characterization 
of compact sets in R Nevertheless, the definition and the techniques used in connection 
with compactness are very important, and the real line provides an appropriate place to see 
the idea of compactness for the first time. 

The definition of compactness uses the notion of an open cover, which we now define. 

11.2.1 Definition Let A be a subset of R An open cover of A is a collection g = {Ga} 
of open sets in lR whose union contains A; that is, 

a 
If g' is a subcollection of sets from g such that the union of the sets in g' also contains 
A, then g' is called a subcover of g. If g' consists of finitely many sets, then we call g' a 
finite subcover of g. 

There can be many different open covers for a given set. For example, if A := [ 1 , 00), 
then the reader can verify that the following collections of sets are all open covers of A: 

go := {CO, oo)} , 
gl := {(r - 1 ,  r + 1 )  : r E Q, r > O}, 
g2 := {en - 1, n + 1) : n E N}, 
g3 := {(O, n) : n E N}, 
g4 := {(O, n) : n E N, n � 23}. 
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We note that 9 2 is a subcover of 9 I ' and that 9 4 is a subcover of 9 3 .  Of course, many other 
open covers of A can be described. 

11.2.2 Definition A subset K of JR is said to be compact if every open cover of K has a 
finite subcover. 

In other words, a set K is compact if, whenever it is contained in the union of a 
collection 9 = {G a } of open sets in JR, then it is contained in the union of some finite 
number of sets in g. 

It is very important to note that, in order to apply the definition to prove that a set K 
is compact, we must examine an arbitrary collection of open sets whose union contains 
K, and show that K is contained in the union of some finite number of sets in the given 
collection. That is, it must be shown that any open cover of K has a finite subcover. On 
the other hand, to prove that a set H is not compact, it is sufficient to exhibit one specific 
collection 9 of open sets whose union contains H, but such that the union of any finite 
number of sets in 9 fails to contain H. That is, H is not compact if there exists some open 
cover of H that has no finite subcover. 

11.2.3 Examples (a) Let K := {XI ' x2 ' • • •  , xn } be a finite subset of R If 9 = {Ga} is 
an open cover of K, then each Xi is contained in some set Ga. in g. Then the union of the 
sets in the collection {G , G � , . . .  , G � } contains K, so th�t it is a finite subcover of g. a1 �2 �n 
Since 9 was arbitrary, it follows that the finite set K is compact. 

(b) Let H := [0, (0). To prove that H is not compact, we will exhibit an open cover that �. . 00 
has no finite subcover. If we let G n : = (- 1 ,  n) for each n E N, then H S; U G n ' so that 

n=1 
9 :=  {G : n E N} is an open cover of H. However, if {G , G , . . . , G� } is any finite n at a2 ""n 
subcollection of g, and if we let m := sup{n l , n2 , . • •  , nk } , then 

G U G  U · · · U G  = G  = (- l , m) . n 1 n2 nk m 
Evidently� this union fails to contain H = [0, (0). Thus no finite subcollection of 9 will 
have its union contain H, and therefore H is not compact. 

(c) Let J := (0, 1 ) .  If we let Gn := ( lIn , 1 )  for each n E N, then it is readily seen that 
00 

J = U G . Thus 9 : = {G : n E N} is an open cover of J. If {G n ' G n , . . .  , G } is any 
n=l n n I 2 nr 

finite subcollection of g, and if we set s := sup {n l , n2 , . . .  , nr } then 

G U G U · · ·  U G = G = ( lis, 1 ) .  n1 n2 nr s 

Since 1 Is is in J but not in G s ' we see that the union does not contain J. Therefore, J is 
not compact. 0 

We now wish to describe all compact subsets of R First we will establish by rather 
straightforward arguments that any compact set in JR must be both closed and bounded. 
Then we will show that these properties in fact characterize the compact sets in R This is 
the content of the Heine-Borel Theorem. 

11.2.4 Theorem If K is a compact subset of JR, then K is closed and bounded. 
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Proof. We will first show that K is bounded. For each m E N, let Hm := (-m , m). Since 
00 

each Hm is open and since K S; U Hm = �, we see that the collection {Hm : m E N} is an m=1 
open cover of K. Since K i s  compact, this collection has a finite subcover, so  there exists 
M E N  such that 

M 
K �  U Hm = HM = (-M, M). 

m=1 
Therefore K is bounded, since it is contained in the bounded interval ( -M, M). 

We now show that K is closed, by showing that its complement C(K) is open. To do 
so, let U E C(K) be arbitrary and for each n E N, we let Gn := {y E � : I y - u l  > lin} . 

00 
It is an exercise to show that each set G n is open and that � \ {u} = U G n .  Since u <t K, n=1 

00 
we have K � U G n .  Since K is compact, there exists m E N  such that n=1 

m 
K S; U Gn = Gm · n=1 

Now it  follows from this that K n (u - 11m,  u + 1 1m) = 0, so that the interval (u - 11m,  
u + 11m) � C(K). But since u was an arbitrary point in C(K), we infer that C(K) is 
open. Q.E.D. 

We now prove that the conditions of Theorem 1 1 .2.4 are both necessary and sufficient 
for a subset of � to be compact. 

11.2.5 Heine-Borel Theorem A subset K of � is compact if and only if it is closed and 
bounded. 

Proof. We have shown in Theorem 1 1 .2.4 that a compact set in � must be closed and 
bounded. To establish the converse, suppose that K is closed and bounded, and let 9 = {G a }  
be an open cover of K. We wish to show that K must be contained in the union of some 
finite subcollection from g. The proof will be by contradiction. We assume that: 

(1) K is not contained in the union of any finite number of sets in g. 
By hypothesis, K is bounded, so there exists r > 0 such that K � [-r, r] .  We let II := 
[-r, r] and bisect II into two closed subintervals I{ := [-r, 0] and I{' := [0 , r] .  At least 
one of the two subsets K n I{, and K n I{' must be nonvoid and have the property that 
it is not contained in the union of any finite number of sets in g. [For if both of the sets 
K n I{ and K n I{' are contained in the union of some finite number of sets in g, then K 
= (K n I{) U (K n I{') is contained in the union of some finite number of sets in g, con­
trary to the assumption (1).]  If K n I{ is not contained in the union of some finite number 
of sets in g, we let 12 : = I { ;  otherwise K n I {' has this property and we let 12 : = I {' . 

We now bisect 12 into two closed subintervals I� and Ir If K n I� is nonvoid and is 
n6t contained in the union of some finite number of sets in g, we let 13 := I� ; otherwise 
K n I; has this property and we let 13 := I; . 

Continuing this process, we obtain a nested sequence of intervals (In ). By the Nested 
Intervals Property 2.5.2, there is a point z that belongs to all of the In ' n E N. Since each 
interval In contains infinitely many points in K (why?), the point z is a cluster point of K. 
Moreover, since K i s  assumed to be closed, it follows from Theorem 1 1 . 1 .8 that z E K. 
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Therefore there exists a set G). in 9 with z E G).. Since G). is open, there exists s > O such 
that 

(z - s, z + s) £ G).. 

On the other hand, since the intervals In are obtained by repeated bisections of 11, = 
[-r, r], the length of In is r/2

n
-2• It follows that if n is so large that r/2

n
-2 < s, then 

In £ (z - s, z + s) £ G).. But this means that if n is such that r /2
n
-2 < s, then K n In is 

contained in the single set G). in g, contrary to our construction of In . This contradiction 
shows that the assumption (1)  that the closed bounded set K requires an infinite number of 
sets in 9 to cover it is untenable. We conclude that K is compact. Q.E.D. 

Remark It was seen in Example 1 1 .2.3(b) that the closed set H := [0, (0) is not compact; 
note that H is not bounded. It was also seen in Example 1 1 .2.3(c) that the bounded set 
J := (0, 1)  is not compact; note that J is not closed. Thus, we cannot drop either hypothesis 
of the Heine-Borel Theorem. 

We can combine the Heine-Borel Theorem with the Bolzano-Weierstrass Theorem 
3.4.8 to obtain a sequential characterization of the compact subsets of R 

11.2.6 Theorem A subset K offfi. is compact if and only if every sequence in K has a 
subsequence that converges to a point in K. 

Proof. Suppose that K is  compact and let (xn) be a sequence with xn E K for all n E N. By 
the Heine-Borel Theorem, the set K is bounded so that the sequence (xn) is bounded; by the 
Bolzano-Weierstrass Theorem 3.4.8, there exists a subsequence (x ) that converges. Since n

k 
K is closed (by Theorem 1 1 .2.4), the limit x := lim(xn ) is in K. Thus every sequence in 

k 
K has a subsequence that converges to a point of K. 

To establish the converse, we will show that if K is  either not closed or not bounded, 
then there must exist a sequence in K that has no subsequence converging to a point of K. 
First, if K is not closed, then there is a cluster point c of K that does not belong to  K. Since 
c is a cluster point of K, there is a sequence (xn) with xn E K and xn =f. c for all n E N  such 
that lim(xn) = c. Then every subsequence of (xn) also converges to c, and since c i K, 
there is no subsequence that converges to a point of K. 

Second, if K is not bounded, then there exists a sequence (xn) in K such that JXn J > n 
for all n E N. (Why?) Then every subsequence of (xn) is unbounded, so that no subsequence 
of it can con"erge to a point of K. Q.E.D. 

Remark The reader has probably .noticed that there is a similarity between the compact­
ness of the ·interval [a, b] and' the existence of a-fine partitions for [a , b] . In fact, these 
properties are equivalent, each being deducible from the other. However, compactness 
applies to sets that are more general than intervals. 

Exercises for Section 11.2 

1 .  Exhibit an open cover of the interval ( 1 ,  2] that has no finite subcover. 

2. Exhibit an open cover of N that has no finite subcover. 

3. Exhibit an open cover of the set { I  / n: n E N} that has no finite subcover. 
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4. Prove, using Definition 1 1 .2.2, that if F is a closed subset of a compact set K in lR, then F is 
compact. 

5. Prove, using Definition 1 1 .2.2, that if K] and K2 are compact sets in R then their union K] U K2 is compact. 

6. Use the Heine-Borel Theorem to prove the following version of the Bolzano-Weierstrass The­
orem: Every bounded infinite subset of lR has a cluster point in R (Note that if a set has no 
cluster points, then it is closed by Theorem 1 1 . 1 .8.) 

00 
7. Find an infinite collection {Kn : n E N} of compact sets in lR such that the union U Kn is not 

compact. 
I n=l 

8. Prove that the intersection of an arbitrary collection of compact sets in lR is compact. 

9. Let (Kn : n E N) be a sequence of nonempty compact sets in lR such that K] 2 K2 2 . . .  2 
K n 2 . . '. Prove that there exists at least one point x E lR such that x E K n for all n E N; that 

00 
is, the intersection n K n is not empty. n= ] 

10. Let K =f. 0 be a compact set in lR. Show that inf K and sup K exist and belong to K .  

I I  . Let K =f. 0 be compact in lR and let c E R Prove that there exists a point a in K such that 
I e  - a l  = inf{lc - x l  : x E K}.  

12. Let K =f. 0 be compact in lR and let c E R Prove that there exists a point b in K such that 
i ,: - bl  = sup{ lc - x l  : x E K} .  

13. Use the notion of compactness to give an alternative proof of Exercise 5.3. 1 8. 
14. If K1 and K2 are disjoint nonempty compact sets, show that there exist ki E Ki such that 

0 <  Ik] - k2 1 = inf{ lx] - x2 1 : Xi E Ki } 

15 . Give an example of disjoint closed sets F] , F2 such that 0 = inf{ Ix] - x2 1 : Xi E F). 

Section 11.3 Continuous Functions 

In this section we will examine the way in which the concept of continuity of functions can 
be related to the topological ideas of open sets and compact sets. Some of the fundamental 
properties of continuous functions on intervals presented in Section 5.3 will be established 
in this context. Among other things, these new arguments will show that the concept 
of continuity and many of its important properties can be carried to a greater level of 
abstraction. This will be discussed briefly in the next section on metric spaces. 

Continuity 

In Section 5 . 1  we were concerned with continuity at a point, that is, with the "local" 
continuity of functions. We will now be mainly concerned with "global" continuity in the 
sense that we will assume that the functions are continuous on their entire domains. 

The continuity of a function f : A � lR at a point c E A was defined in Section 5 . 1 .  
Theorem 5. 1 .2 stated that f i s  continuous at c if and only if for every e-neighborhood 
Ve (f(c» of f(c) there exists a 8-neighborhood V� (c) of c such that if x E V� (c) n A, then 
f(x) E Ve(f(c». We wish to restate this condition for continuity at a point in terms of 
general neighborhoods. (Recall from 1 1 . 1 . 1  that a neighborhood of a point c is any set U 
that contains an e-neighborhood of c for some e > 0.) 
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11.3.1 Lemma A function f : A -+ JR is continuous at the point c in A if and only iffor 
every neighborhood U of f(c), there exists a neighborhood V ofc such that if x E V n A, 
then f(x) E u. 

Proof. Suppose f satisfies the stated condition. Then given e > 0, we let U = V/f(c)) 
and then obtain a neighborhood V for which x E V n A implies f (x) E U. If we choose 8 > 
° such that V8(c) S; V, then x E V/c) n A implies f(x) E U;  therefore f is continuous at 
c according to Theorem 5 . 1 .2. 

Conversely, if f is continuous at c in the sense of Theorem 5 . 1 .2, then since any 
neighborhood U of f(c) contains an e-neighborhood Ve (f(c)), it follows that taking the 
8-neighborhood V = V8 (c) of c of Theorem 5 . 1 .2 satisfies the condition of the lemma. 

Q.E.D. 

We note that the statement that x E V n A implies f (x) E U is equivalent to the 
statement that f(V n A) S; U;  that is, that the direct image of V n A is contained in U. 
Also from the definition of inverse image, this is  the same as V n A S; f-I (U). (See 
Definition 1 . 1 .7 for the definitions of direct and inverse images.) Using this observation, 
we now obtain a condition for a function to be continuous on its domain in terms of open 
sets. In more advanced courses in topology, part (b) of the next result is often taken as the 
definition of (global) continuity. 

11.3.2 Global Continuity Theorem Let A S; JR and let f : A -+ JR be a function with 
domain A.  Then the following are equivalent: 

(a) f is continuous at every point of A.  

(b) Foreveryopen setG in JR, there exists an open setH in JR such thatH n A = f-I (G). 

Proof. (a) => (b). Assume that f is continuous at every point of A, and let G be a 
given open set in R If c belongs to f-I (G), then f(c) E G, and since G is open, G is a 
neighborhood of f(c). Therefore, by the preceding lemma, it follows from the continuity 
of f that there is an open set V (c) such that x E V (c) implies that f (x) E G; that is, V (c) 
is contained in the inverse image f-I (G) . Select V(c) for each c in f-I (G), and let H be 
the union of all these sets V(c). By the Open Set Properties 1 1 . 1 .4, the set H is open, and 
we haveR n A = f-I (G) . Hence (a) implies (b). 

(b) => (a). Let c be any point"A, and let G be an open neighborhood of f(c). Then 
condition (b) implies that there exists an open set H in JR such that H n A = f-I (G). 
Since f(c). E G, it follows that c E H, so H is a neighborhood of c. If x E H n A, then 
f(c) E G, and therefore f is continuous at c. Thus (b) implies (a). Q.E.D. 

In thtt . .case that A = JR, the preceding result simplifies to some extent. 

11.3.3 Corollary A function f : JR -+ JR is continuous if and only if f-I (G) is open in 
JR whenever G is open. 

It must be emphasized that the Global Continuity Theorem 1 1 .3 .2 does not say that if 
f is a continuous function, then the direct image f (G) of an open set is necessarily open. In 
general, a continuous function will not send open sets to open sets. For example, consider 
the continuous function f : JR -+ JR defined by 

f(x) := x2 + 1  for x E R 
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If G is the open set G := (- 1 ,  1 ) ,  then the direct image under f is f(G) = [ 1 , 2), which 
is not open in lR.. See the exercises for additional examples. 

Preservation of Compactness 

In Section 5.3 we proved that a continuous function takes a closed, bounded interval [a , b] 
onto a closed, bounded interval [m , M], where m and M are the minimum and maximum 
values of f on [a , b], respectively. By the Heine-Borel Theorem, these are compact subsets 
of �, so that Theorem 5.3.8 is a special case of the following theorem.' 

11.3.4 Preservation of Compactness If K is a compact subset of � and if f : K -+ � 
is continuous on K, then f (K) is compact. 

Proof. Let 9 = {G A} be an open cover of the set f (K). We must show that 9 has a finite 
subcover. Since f(K) � U GA , it follows that K � U f-I (GA) . By Theorem 1 1 .3 .2, for 
each GA there is an open set HA such that HA n K = f-I (GA) . Then the collection {HA} 
is an open cover of the set K. Since K is compact, this open cover of K contains a finite 
subcover {HA ' HA ' " ' ,  HA } . Then we have 

I 2 n 

n n U f-I (GAJ = U HAi n K :2 K. i=1 i=1 
n 

From this it follows that U GA. :2 f(K). Hence we have found a finite subcover of g. i=1 I 

Since 9 was an arbitrary open cover of f(K), we conclude that f(K) is compact. Q.E.D. 

11.3.5 Some Applications We will now show how to apply the notion of compactness 
(and the Heine-Borel Theorem) to obtain alternative proofs of some important results that 
we have proved earlier by using the Bolzano-Weierstrass Theorem. In fact, these theorems 
remain true if the intervals are replaced by arbitrary nonempty compact sets in lR.. 
(1) The Boundedness Theorem 5.3.2 is an immediate consequence of Theorem 1 1 .3 .4 
and the Heine-Borel Theorem 1 1 .2.5. Indeed, if K � � is compact and if f: K -+ � is 
continuous on K, then f (K) is compact and hence bounded. 

(2) The Maximum-Minimum Theorem 5.3.4 also is an easy consequence of Theorem 
1 1 .3.4 and the Heine-Borel Theorem. As before, we find that f(K) is compact and hence 
bounded in �, so that s* := sup f(K) exists. If f(K) is a finite set, then s* E f(K). If 
f(K) is an infinite- get, then s* is a:-cIuSterpoini of f(K) [see Exercise 1 1 .2.6] . Since 
i(K) is a closed set, by the Heine-Borel Theorem, it follows from Theorem 1 1 . 1 .8 that 
s* E f(K). We conclude that s* = f(x*) for some x* E K. 
(3) We can also give a proof of the Uniform Continuity Theorem 5.4.3 based on  the notion 
of compactness. To do so, let K � � be compact and let f : K -+ � be continuous on K. 
Then given e > 0 and U E K, there is a number 0u : =  ° Ge, u) > 0 such that if x E K and 
Ix.- u l  < 0u then I f (x) - f(u) 1 < !e. For each u E K, let Gu := (u - !ou '  u + !oJ so 
that G u is open; we consider the collection 9 = {G u : u E K} . Since u E G u for u E K ,  
it is trivial that K � U G u '  Since K is compact, there are a finite number of sets, say 

UEK G u ' • • •  , G u whose union contains K. We now define 
I M 
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so that 8 (s) > O. Now if x, u E K and Ix - u l < 8 (s), then there exists some uk with 
k = 1 " " ,  M such that x E G ; therefore Ix - uk l  < -2' 8  . Since we have 8(s) :s -2' 8 uk uk uk 
it follows that 

But since 8u = 8 Gs, uk) it follows that both 
k 

and 

Therefore we have If(x) - f(u) 1 < s. 
We have shown that if s > 0, then there exists 8 (s) > 0 such that if x, u are any points 

in K with Ix - u l < 8(s), then If(x) - f(u) 1  < s. Since s > 0 is arbitrary, this shows that 
f is uniformly continuous on K, as asserted. 0 

We conclude this section by extending the Continuous Inverse Theorem 5.6.5 to func­
tions whose domains are compact subsets of JR, rather than intervals in R 

11.3.6 Theorem If K is a compact subset of JR and f : K -+ JR is injective and contin­
uous, then f-' is continuous on f(K). 

Proof. Since K is compact, then Theorem 1 1 .3 .4 implies that the image f(K) is compact. 
Since f is injective by hypothesis, the inverse function f-' is defined on f(K) to K. Let 
(Yn) be any convergent sequence in f(K), and let Yo = lim(yn). To establish the continuity 
of f-' , we will show that the sequence (f-' (Yn)) converges to f-' (Yo) ' 

Let xn := f-' (Yn) and, by way of contradiction, assume that (xn) does not converge to 
Xo := f-' (yo)' Then there exists an s > 0 and a subsequence (x�) such that Ix� - xo l ::: s 
for all k. Since K is compact, we conclude from Theorem 1 1 .2.6 that there is a subsequence 
(x;) of the sequence (xD that converges to a point x* of K .  Since Ix* - Xo I ::: s, we 
have x* i= xo' Now since f is continuous, we have lim(f(x;)) = f(x*). Also, since the 
subsequence (y�) of (Yn) that corresponds to the subsequence (x:) of (xn) must converge 
to the same limit as (Yn) does, we have 

lim(f(x;)) = lim(y�) = Yo = f(xo) ' 
Therefore we conclude that f(x*) = f(xo) ' However, since f is injective, this implies that 
x* = xo' which is a contradiction. Thus we conclude that f-' takes convergent sequences 
in f(K) to convergent sequences in K, and hence f-' is continuous. Q.E.D. 

Exercises for Section 11.3 

1. Let f : JR -+ JR be defined by f(x) = x2 for x E JR. 
(a) Show that the inverse image f- 1 (I) of an open interval 1 := (a , b) is either an open interval, 

the union of two open intervals, or empty, depending on a and b. 
(b) Show that if 1 is an open interval containing 0, then the direct image f(l) is not open. 

2. Let f : JR -+ JR be defined by f(x) := I/O + x2) for x E R 
(a) Find an open interval (a, b) whose direct image under f is not open. 
(b) Show that the direct image of the closed interval [0, (0) is not closed. 

3. Let 1 := [ 1 , (0) and let f(x) := JX=l for x E I. For each e-neighborhood G = (-e, +e) of 
0, exhibit an open set H such that H n 1 = f-1 (G). 
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4. Let h : JR � JR be defined by h (x) := 1 if 0 :'S x :'S 1 , h (x) := 0 otherwise. Find an open set G 
such that h - I (G) is not open, and a closed set F such that h - I (F) is not closed. 

5. Show that if I :  JR � JR is continuous, then the set {x E JR : I(x) < ex} is open in JR for each 
ex E JR. 

6. Show that if I: JR � JR is continuous, then the set {x E R I(x) :'S ex} is closed in JR for each 
ex E JR. 

7. Show that if I :  JR � JR is continuous, then the set {x E JR : I(x) = k} .is closed in JR for each 
k E lR. 

8. Give an example of a function I : JR � JR such that the set {x E JR : I(x) = l } is neither open 
nor closed in JR. 

9. Prove that I : JR � JR is continuous if and only if for each closed set F in JR, the inverse image 
I- I (F) is closed. 

10. Let I := [a , b) and let I :  I � JR and g : I � JR be continuous functions on I .  Show that the 
set {x E I :  I(x) = g(x)} is closed in lR. 

Section 11.4 Metric Spaces 

This book has been devoted to a careful study of the real number system and a number of 
different limiting processes that can be defined for functions of a real variable. A central 
topic was the study of continuous functions. At this point, with a strong understanding of 
analysis on the real line, the study of more general spaces and the related limit concepts 
can begin. It is possible to generalize the fundamental concepts of real analysis in several 
different ways, but one of the most fruitful is in the context of metric spaces, where a metric 
is an abstraction of a distance function. 

In this section, we will introduce the idea of metric space and then indicate how certain 
areas of the theory developed in this book can be extended to this new setting. We will 
discuss the concepts of neighborhood of a point, open and closed sets, convergence of 
sequences, and continuity of functions defined on metric spaces. Our purpose in this brief 
discussion is not to develop the theory of metric spaces to any great extent, but to reveal how 
the key ideas and techniques of real analysis can be put into a more abstract and general 
framework. The reader should note how the basic results of analysis on the real line serve 
to motivate and guide the study of analysis in more general contexts. 

Generalization can serve two important purposes. One purpose is that theorems derived 
in general settings can often be applied in many particular cases without the need of a 
separate proof for each special case. A second purpose is that by removing the nonessential 
(and sometimes distracting) features of special situations, it is often possible to understand 
the real significance of a concept or theorem. 

Metrics 

On the real line, basic limit concepts were defined in terms of the distance Ix - y I between 
two points x, y in IR., and many theorems were proved using the absolute value function. 
Actually, a careful study reveals that only a few key properties of the absolute value were 
required to prove many fundamental results, and it happens that these properties can be 
extracted and used to define more general distance functions called "metrics". 
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11.4.1 Definition A metric on a set S is a function d : S x S --+ ]R. that satisfies the 
following properties: 

(a) d(x , y) ::: ° for all x ,  Y E S  (positivity); 
(b) d(x ,  y) = ° if and only if x = y (definiteness); 
(c) d(x , y) = d(y, x) for all x, y E S  (symmetry); 
(d) d(x , y) � d(x ,  z) + d(z, y) for all x ,  y , z E S (triangle inequality). 
A metric space (S, d) is a set S together with a metric d on S. 

We consider several examples of metric spaces. 

11.4.2 Examples (a) The familiar metric on ]R. is defined by 

d(x , y) := Ix - y l for x , y E R 

Property 1 1 .4. 1 (d) for d follows from the Triangle Inequality for absolute value because 
we have 

d(x ,  y) = Ix - y l  = I (x - z) + (z - y) 1 
� Ix - zl + Iz - y l  = d(x , z) + d(z, y) , 

for all x ,  y, Z E R 

(b) The distance function in the plane obtained from the Pythagorean Theorem provides 
one example of a metric in ]R.2. That is, we define the metric d on ]R.2 as follows: if 
PI := (xl ' YI ) and P2 := (x2 ' Y2) are points in ]R.2, then 

d(PI , P2) := j(xI - x2)2 + (YI - Y2)2 

(c) It is possible to define several different metrics on the same set. On ]R.2, we can also 
define the metric dl as follows: 

dl (Pl ' P2) := IXI - x2 1 + IYI - Y2 1 
Still another metric on ]R.2 is doo defined by 

doo(Pl ' P2) := sup { lxI - x2 1 , IYI - Y2 1 } · 
The verifications that dl and doo satisfy the properties of a metric are left as exercises. 

(d) Let qo, 1] denote the set of all continuous functions on the interval [0, 1] to R For 
f, g in C[O, I], we define 

doo(f, g) := sup{ lf(x) - g(x ) l : x E [0, I ] } . 
Then it  can be verified that doo is  a metric on C[O, 1 ] . This metric is  the uniform norm of 
f - g on [0, 1 ]  as defined in Section 8 . 1 ;  that is, doo (f, g) = II f - g il ,  where II f II denotes 
the uniform norm of f on the set [0, 1 ] . 
(e) We again consider qo, 1] , but we now define a different metric dl by 

dl (f, g) := 1 1  If - g l for f, g E qo, 1] . 
The properties of the integral can be used to show that this is  indeed a metric on qo, 1]. 
The details are left as an exercise. 



(I) Let S be any nonempty set. For s , t E S, we define 

d(s , t) := {� if s = t , 
if  s =l t. 
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It is an exercise to show that d is a metric on S. This metric is called the discrete metric 
on the set S. D 

We note that if (S, d) is a metric space, and if T s;: S, then d' defined by d'(x , y) := 
d (x , y) for all x ,  Y E T  gives a metric on T, which we generally denote by d. With this 
understanding, we say that (T, d) is also a metric space. For example, the metric d on JR 
defined by the absolute value is a metric on the set IQ of rational numbers, and thus (IQ, d) 
is also a metric space. 

Neighborhoods and Convergence 

The basic notion needed for the introduction of limit concepts is that of neighborhood, and 
this is defined in metric spaces as follows. 

11.4.3 Definition Let (S, d) be a metric space. Then for 8 > 0, the 8-neighborhood of 
a point Xo in S is the set 

V/xo) := {x E S: d(xo' x) < 8} .  

A neighborhood of Xo is  any set U that contains an 8-neighborhood of Xo for some 8 > O. 

Any notion defined in terms of neighborhoods can now be defined and discussed in 
the context of metric spaces by modifying the language appropriately. We first consider the 
convergence of sequences. 

A sequence in a metric space (S, d) is a function X : N � S with domain N and range 
in S, and the usual notations for sequence are used; we write X = (xn), but now xn E S for 
all n E N. When we replace the absolute value by a metric in the definition of sequential 
convergence, we get the notion of convergence in a metric space. 

11.4.4 Definition Let (xn) be a sequence in the metric space (S, d). The sequence (xn) 
is said to converge to x in S if for any 8 > 0 there exists K E N  such that xn E Vs (x) for 
all n � K. 

Note that since xn E Vs (x) if and only if d(xn , x) < 8, a sequence (xn) converges to x 
if and only if for any 8 > 0 there exists K such that d(xn , x) < 8 for all n � K. In other 
words, a sequence (xn) in (S, d) converges to x if and only if the sequence of real numbers 
(d (xn ' x)) converges to O. 

11.4.5 Examples (a) Consider JR2 with the metric d defined in Example 1 1 .4.2(b). If 
Pn = (xn ' Yn) E JR2 for each n E N, then we claim that the sequence (Pn) converges to 
po = (x , y) with respect to this metric if and only if the sequences of real numbers (xn) and 
(Yn) converge to x and Y, respectively. 

First, we note that the inequality IXn - x l :s d(Pn , P) implies that if (Pn) converges 
to P with respect to the metric d, then the sequence (xn) converges to x ; the convergence 
of (Yn) follows in a similar way. The converse follows from the inequality d(Pn , P) :s 
IXn - x l  + I Yn - Y I , which is readily verified. The details are left to the reader. 
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(b) Let doo be the metric on C[O, 1 ]  defined in Example I I .4.2(d). Then a sequence Un) 
in C[O, 1 ]  converges to f with respect to this metric if and only if Un) converges to f 
uniformly on the set [0, 1 ] .  This is established in Lemma 8. 1 .8 in the discussion of the 
uniform norm. 0 

Cauchy Sequences 

The notion of Cauchy sequence is a significant concept in metric spaces. The definition is 
formulated as expected, with the metric replacing the absolute value. 

11.4.6 Definition Let (S, d) be a metric space. A sequence (xn) in S is said to be a 
Cauchy sequence if for each c > 0, there exists H E N such that d(xn , xm) < c for all 
n, m ::: H. 

The Cauchy Convergence Theorem 3.5.5 for sequences in lR states that a sequence in 
lR is a Cauchy sequence if and only if it converges to a point of R This theorem is not true 
for metric spaces in general, as the examples that follow will reveal. Those metric spaces 
for which Cauchy sequences are convergent have special importance. 

11.4.7 Definition A metric space (S, d) is said to be complete if each Cauchy sequence 
in S converges to a point of S. 

In Section 2.3 the Completeness Property of lR is stated in terms of the order properties 
by requiring that every nonempty subset of lR that is bounded above has a supremum in R 
The convergence of Cauchy sequences is deduced as a theorem. In fact, it is possible to 
reverse the roles of these fundamental properties of lR: the Completeness Property of lR 
can be stated in terms of Cauchy sequences as in 1 1 .4.7, and the Supremum Property can 
then be deduced as a theorem. Since many metric spaces do not have an appropriate order 
structure, a concept of completeness must be described in terms of the metric, and Cauchy 
sequences provide the natural vehicle for this. 

11.4.8 Examples (a) The metric space (Q, d) of rational numbers with the metric 
defined by the absolute value function is not complete. 

For example, if (xn) is a sequence of rational numbers that converges to ../2, then it is 
Cauchy in Q, but it does not converge to a point of Q. Therefore (Q, d) is not a complete 
metric space. 

(b) The spaGe C[O, 1 ]  with the metric doo defined in 1 1 .4.2(d) is complete. 
To prove this, suppose that Un) is a Cauchy sequence in C[O, 1 ]  with respect to the 

metric doo' Then, given c > 0, there exists H such that 

( 1 )  

for all x E [0, 1 ]  and all n ,  m ::: H.  Thus for each x, the sequence Un (x» is Cauchy in lR, 
and therefore converges in lR. We define f to be the pointwise limit of the sequence; that is, 
f(x) := limUn (x» for each X E [0, 1 ] .  It follows from (1 )  that for each X E [0, 1] and each 
n ::: H, we have I f/x) - f(x) I ::: c . Consequently the sequence Un) converges uniformly 
to f on [0, 1 ] .  Since the uniform limit of continuous functions is also continuous (by 8.2.2), 
the function f is in C[O, 1 ] .  Therefore the metric space (C[O, 1 ] ,  doo) is complete. 

(c) If dt is the metric on C[O, 1 ]  defined in 1 1 .4.2(e), then the metric space (C[O, 1 ] ,  dt ) 
is not complete. 
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To prove this statement, it suffices to exhibit a Cauchy sequence that does not have a 
limit in the space. We define the sequence Un) for n ::: 3 as follows (see Figure 1 1 .4 . 1) :  

i.(x) '� U + n/2 - nx 
for O :s  x :s 1/2, 
for 1/2 < x :s 1/2 + l / n ,  
for 1/2 + l/n  < x :s  1 .  

Note that the sequence Un) converges pointwise to the discontinuous function f(x) : =  1 
for 0 :s x :s 1/2 and f(x) := 0 for 1/2 < x :s 1 .  Hence f ¢ C[O, 1] ;  in fact, there is no 
function g E C[O, 1] such that d, Un ' g) -+ O. 0 

Figure 11.4.1 The sequence Un) 

Open Sets and Continuity ___________________ _ 

With the notion of neighborhood defined, the definitions of open set and closed set read the 
same as for sets in R 

11.4.9 Definition Let (S, d) be a metric space. A subset G of S is said to be an open set 
in S if for every point X E S  there is a neighborhood U of x such that U S; G. A subset F 
of S is said to be a closed set in S if the complement S\F is an open set in S. 

Theorems 1 1 . 1 .4 and 1 1 . 1 .5 concerning the unions and intersections of open sets 
and closed sets can be extended to metric spaces without difficulty. In fact, the proofs 
of those theorems carry over to metric spaces with very little change: simply replace the 
t:-neighborhoods (x - t:, X + t:) in lR by t:-neighborhoods Ve (x) in S. 

We now can examine the concept of continuity for functions that map one metric space 
(S" d, ) into another metric space (S2 ' d2) .  Note that we modify the property in 5 . 1 .2 of 
continuity for functions on lR by replacing neighborhoods in lR by neighborhoods in the 
metric spaces. 

11.4.10 Definition Let (S" d, ) and (S2 ' d2) be metric spaces, and let f : S, -+ S2 be a 
function from S, to S2. The function f is said to be continuous at the point c in S, if for 
every t:-neighborhood V/f(c)) of f(c) there exists a a-neighborhood V8 (c) of c such that 
if x E V8 (c), then f(x) E VeU(c)). 

The t:-a formulation of continuity can be stated as follows: f : Sl -+ S2 is continuous 
at c if and only if for each t: > 0 there exists a > 0 such that d, (x , c) < a implies that 
d2U(x) , f(c)) < t:.  
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The Global Continuity Theorem can be established for metric spaces by appropriately 
modifying the argument for functions on R 

11.4.11 Global Continuity Theorem If (Sl ' dl ) and (S2 ' d2) are metric spaces, then a 

function f : SI --+ S2 is continuous on SI if and only if f-I (G) is open in S whenever G 
is open in S2 . 

The notion of compactness extends immediately to metric spaces. A metric space (S, d) 
is said to be compact if each open cover of S has a finite subcover. Then by modifying the 
proof of 1 1 .3 A, we obtain the following result. 

11.4.12 Preservation of Compactness If (S, d) is a compact metric space and if the 
function f : S --+ IR is continuous, then f(S) is compact in R 

The important properties of continuous functions given in 1 1 .3.5 then follow imme­
diately. The Boundedness Theorem, the Maximum-Minimum Theorem, and the Uniform 
Continuity Theorem for real-valued continuous functions on a compact metric space are 
all established by appropriately modifying the language of the proofs given in 1 1 .3.5. 

Semimetrics 

11.4.13 Definition A semimetric on a set S is a function d : S x S --+ IR that satisfies 
all of the conditions in Definition 1 1 04. 1 ,  except that condition (b) is replaced by the weaker 
condition 

(b/) d(x,  y) = 0 if x = y .  
A semimetric space (S, d )  i s  a set S together with a semimetric d on S. 

Thus every metric is a semimetric, and every metric space is a semimetric space. 
However, the converse is not true. For example, if PI :=  (XI ' YI ) and P2 := (x2 , Y2) are 
points in the space IR

2
, the function dl defined by 

dl (PI ' P2) := IXI - x2 1 ,  

i s  easily seen to be  a semimetric, but it i s  not a metric since any two points with the same 
first coordinate have "dl-distance" equal to O. 

Somewhat more interestingly, if f, g are any functions in .c[a, b], we have defined (in 
Definition 10.2.9) the distance function: 

dist(f, g) :=  lb I f - g l .  
Here it is clear that'any two functions that are equal except at a countable set of points will 
have distance equal to 0 from each other (in fact, this is also true when the functions are 
equal almost everywhere). 

The reader can retrace the discussion in the present section and see that most of what 
we have done remains true for semimetrics and semimetric spaces. The main difference 
is that a sequence in a semimetric space does not necessarily converge to a unique limit. 
While this seems to be rather unusual, it is actually not a very serious problem and one 
can learn to adjust to this situation. The other alternative is to "identify" points that have 
distance 0 from each other. This identification procedure is often invoked, but it means one 
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is dealing with "equivalence classes" rather than individual points. Often this cure is worse 
than the malady. 

Exercises for Section 11.4 

1. Show that the functions dj and doo defined in 1 1 .4.2(c) are metrics on ]R2. 
2. Show that the functions doo and dj defined in 1 1 .4.2(d, e) are metrics on e[o, 1 ] .  

3. Verify that the discrete metric on a set S as defined in 1 1 .4.2(f) is  a metric. 

4. If Pn := (xn ' Yn) E ll�? and doo is the metric in 1 1 .4.2(c), show that (Pn) converges to P := (x, Y) 
with respect to this metric if and only if (xn) and (Yn) converge to x and y, respectively. 

5. Verify the conclusion of Exercise 4 if doo is replaced by dj • 
6. Let S be a nonempty set and let d be the discrete metric defined in 1 1 .4.2(f). Show that in the 

metric space (S, d), a sequence (xn) in S converges to x if and only if there is a K E N  such that 
xn = x for all n � K. 

7. Show that if d is  the discrete metric on a set S, then every subset of S is  both open and closed 
in (S, d). 

8. Let P := (x, y) and 0 := (0, 0) in ]R2. Draw the following sets in the plane: 
(a) {P  E ]R2 :  dj (O, P) :s I } ,  
(b) {P E ]R2 : doo(O, P) :s I } .  

9. Prove that in any metric space, an B-neighborhood of a point i s  an open set. 

10. Prove Theorem 1 1 .4. 1 1 .  

1 1 .  Prove Theorem 1 1 .4.12. 

12. If (S, d) is a metric space, a subset A S; S is said to be bounded if there exists Xo E S and a 
number B > 0 such that A S; {x E S: d(x ,  xo) :s B}. Show that if A is a compact subset of S, 
then A is closed and bounded. 



APPENDIX A 

LOGIC AND PROOFS 

Natural science is concerned with collecting facts and organizing these facts into a coherent 
body of knowledge so that one can understand nature. Originally much of science was 
concerned with observation, the collection of information, and its classification. This clas­
sification gradually led to the formation of various "theories" that helped the investigators 
to remember the individual facts and to be able to explain and sometimes predict natural 
phenomena. The ultimate aim of most scientists is to be able to organize their science into 
a coherent collection of general principles and theories so that these principles will enable 
them both to understand nature and to make predictions of the outcome of future experi­
ments. Thus they want to be able to develop a system of general principles (or axioms) for 
their science that will enable them to deduce the individual facts and consequences from 
these general laws. 

Mathematics is different from the other sciences: by its very nature, it is a deductive 
science. That is not to say that mathematicians do not collect facts and make observations 
concerning their investigations. In fact, many mathematicians spend a large amount of time 
performing calculations of special instances of the phenomena they are studying in the 
hopes that they will discover "unifying principles". (The great Gauss did a vast amount of 
calculation and studied much numerical data before he was able to formulate a conjecture 
concerning the distribution of prime numbers.) However, even after these principles and 
conjectures are formulated, the work is far from over, for mathematicians are not satisfied 
until conjectures have been derived (i.e., proved) from the axioms of mathematics, from the 
definitions of the terms, and from results (or theorems) that have previously been proved. 
Thus, a mathematical statement is not a theorem until it has been carefully derived from 
axioms, definitions, and previously proved theorems. 

A few words about the axioms (i.e., postulates, assumptions, etc.) of mathematics are 
in order. There are a few axioms that apply to all of mathematics-the "axioms of set 
theory"-and there are specific axioms within different areas of mathematics. Sometimes 
these axioms are stated fonrtally, and sometimes they are built into definitions. For example, 
we list properties in Chapter 2 that we assume the real number system possesses; they are 
really a set of axioms. As another example, the definition of a "group" in abstract algebra 
is basically a set of axioms that we assume a set of elements to possess, and the study of 
group theory is an investigation of the consequences of these axioms. 

Students studying real analysis for the first time usually do not have much experience 
in understanding (not to mention constructing) proofs. In fact, one of the main purposes 
of this course (and this book) is to help the reader gain experience in the type of critical 
thought that is used in this deductive process. The purpose of this appendix is to help the 
reader gain insight about the techniques of proof. 

Statements and Their Combinations 

All mathematical proofs and arguments are based on statements, which are declarative 
sentences or meaningful strings of symbols that can be classified as being true or false. It is 

334 
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not necessary that we know whether a given statement is actually true or false, but it must 
be one or the other, and it cannot be both. (This is the Principle of the Excluded Middle.) 
For example, the sentence "Chickens are pretty" is a matter of opinion and not a statement 
in the sense of logic. Consider the following sentences: 

• It rained in Kuala Lumpur on June 2, 1988. 
• Thomas Jefferson was shorter than John Adams. 
• There are infinitely many twin primes. 
• This sentence is false. 

The first three are statements: the first is true, the second is false, and the third is either true 
or false, but we are not sure which at this time. The fourth sentence is not a statement; it 
can be neither true nor false since it leads to contradictory conclusions. 

Some statements (such as "1 + 1 = 2") are always true; they are called tautologies. 
Some statements (such as "2 = 3") are always false; they are called contradictions or 
falsities. Some statements (such as "x2 = I") are sometimes true and sometimes false 
(e.g., true when x = 1 and false when x = 3). Or course, for the statement to be completely 
clear, it is necessary that the proper context has been established and the meaning of the 
symbols has been properly defined (e.g., we need to know that we are referring to integer 
arithmetic in the preceding examples). 

1\vo statements P and Q are said to be logically equivalent if P is true exactly when 
Q is true (and hence P is false exactly when Q is false). In this case we often write P == Q. 
For example, we write 

(x is Abraham Lincoln) == (x is the 1 6th president of the United States) . 

There are several different ways of forming new statements from given ones by using 
logical connectives. 

If P is a statement, then its negation is the statement denoted by 

not P 

which is true when P is false, and is false when P is true. (A common notation for the 
negation of P is -'P.) A little thought shows that 

P == not(not P) .  

This is  the Principle of Double Negation. 
If P and Q are statements, then their conjunction is the statement denoted by 

P and Q 
which is true when both P and Q are true, and is false otherwise. (A standard notation for 
the conjunction of P and Q is P /\ Q.) It is evident that 

(P and Q) == (Q and P) .  

Similarly, the disjunction of P and Q is  the statement denoted by 

P or Q 
which is true when at least one of P and Q is true, and false only when they are both false. 
In legal documents "or" is often denoted by "and/or" to make it clear that this disjunction 
is also true when both P and Q are true. (A standard notation for the disjunction of P and 
Q is P V Q.) It is also evident that 

(P or Q) == (Q or P) .  
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To contrast disjunctive and conjunctive statements, note that the statement "2 < .j2 and 
.j2 < 3" is false, but the statement "2 < .j2 or .j2 < 3" is true (since .j2 is approximately 
equal to 1 .4142· . .  ). 

Some thought shows that negation, conjunction, and disjunction are related by DeMor­
gan 's Laws: 

not (P and Q) == (not P) or (not Q), 
not (P or Q) == (not P) and (not Q). 

The first of these equivalencies can be illustrated by considering the statements 

P : x = 2, Q : Y E A . 

The statement (P and Q) is true when both (x = 2) and (y E A) are true, and it is false 
when at least one of (x = 2) and (y E A)  is false; that is, the statement not(P and Q) is 
true when at least one of the statements (x =f. 2) and (y ¢ A) holds. 

Implications _________________________ _ 

A very important way of forming a new statement from given ones is the implication (or 
conditional) statement, denoted by 

(P � Q), (if P then Q), or (P implies Q). 
Here P is called the hypothesis, and Q is called the conclusion of the implication. To help 
understand the truth values of the implication, consider the statement 

If I win the lottery today, then I'll buy Sam a car. 

Clearly this statement is false if I win the lottery and don't buy Sam a car. What if I don't 
win the lottery today? Under this circumstance, I haven't made any promise about buying 
anyone a car, and since the condition of winning the lottery did not materialize, my failing 
to buy Sam a car should not be considered as breaking a promise. Thus the implication is 
regarded as true when the hypothesis is not satisfied. 

In mathematical arguments, we are very much interested in implications when the 
hypothesis is true, but not much interested in them when the hypothesis is false. The 
accepted procedure is to take the statement P .� Q to be false only when P is true and Q 
is false; in all other cases the statement P � Q is true. (Consequently, if P is false, then 
we agree to take the statement P � Q to be true whether or not Q is true or false. That 
may seem str�ge to the reader, but it turns out to be convenient in practice and consistent 
with the other rules of logic.) 

We observe that the definition of P � Q is logically equivalent to 
not (p and (not Q») ,  

because this statement i s  false only when P i s  true and Q i s  false, and it i s  true in all other 
cases. It also follows from the first DeMorgan Law and the Principle of Double Negation 
that P � Q is logically equivalent to the statement 

(not P) or Q, 
since this statement i s  true unless both (not P) and Q are false; that is, unless P is true and 
Q is false. 
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Contrapositive and Converse 

As an exercise, the reader should show that the implication P => Q is logically equivalent 
to the implication 

(not Q) => (not P), 

which is called the contrapositive of the implication P => Q. For example, if P => Q is 
the implication 

If I am in Chicago, then I am in Illinois, 
then the contrapositive (not Q) => (not P) is the implication 

If I am not in Illinois, then I am not in Chicago. 
The equivalence of these two statements is apparent after a bit of thought. In attempting 
to establish an implication, it is sometimes easier to establish the contrapositive, which is 
logically equivalent to it. (This will be discussed in more detail later.) 

If an implication P => Q is given, then one can also form the statement 
Q => P, 

which is called the converse of P => Q. The reader must guard against confusing the 
converse of an implication with its contrapositive, since they are quite different statements. 
While the contrapositive is logically equivalent to the given implication, the converse is 
not. For example, the converse of the statement 

If I am in Chicago, then I am in Illinois, 
is the statement 

If I am in Illinois, then I am in Chicago. 
Since it is possible to be in Illinois but not in Chicago, these two statements are evidently 
not logically equivalent. 

There is one final way of forming statements that we will mention. It is the double 
implication (or the biconditional) statement, which is denoted by 

P {::=:} Q or P if and only if Q, 
and which is defined by 

(P => Q) and (Q => P). 

It is a straightforward exercise to show that P {::=:} Q is true precisely when P and Q are 
both true, or both false. 

Context and Quantifiers 

In any form of communication, it is important that the individuals have an appropriate 
context in mind. Statements such as "I saw Mary today" may not be particularly informative 
if the hearer knows several persons named Mary. Similarly, if one goes into the middle of 
a 'mathematical lecture and sees the equation x2 

= 1 on the blackboard, it is useful for the 
viewer to know what the writer means by the letter x and the symbol 1 .  Is x an integer? A 
function? A matrix? A subgroup of a given group? Does 1 denote a natural number? The 
identity function? The identity matrix? The trivial subgroup of a group? 

Often the context is well understood by the conversants, but it is always a good idea to 
establish it at the start of a discussion. For example, many mathematical statements involve 
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one or more variables whose values usually affect the truth or the falsity of the statement, 
so we should always make clear what the possible values of the variables are. 

Very often mathematical statements involve expressions such as "for all", "for every", 
"for some", "there exists", "there are", and so on. For example, we may have the statements 

For any integer x ,  x2 = 1 

and 

There exists an integer x such that x2 = 1 . 

Clearly the first statement is false, as is seen by taking x = 3; however, the second statement 
is true since we can take either x = 1 or x = - 1 .  

If the context has been established that we are talking about integers, then the above 
statements can safely be abbreviated as 

For any x,  x2 = 1 

and 

There exists an x such that x2 = 1 .  

The first statement involves the universal quantifier "for every", and is making a statement 
(here false) about all integers. The second statement involves the existential quantifier 
"there exists", and is making a statement (here true) about at least one integer. 

These two quantifiers occur so often that mathematicians often use the symbol V to 
stand for the universal quantifier,- and the symbol 3 to stand for the existential quantifier. 
That is, 

V denotes "for every", 

3 denotes "there exists". 

While we do not use these symbols in this book, it is important for the reader to know how 
to read formulas in which they appear. For example, the statement 

(i) (Vx)(3 y) (x + y = 0) 
(understood for integers) can be read 

Similarly the statement 

(ii) 

can be read 

For every integer x ,  there exists 

an integer y such that x + y = o. 

(3 y) (Vx) (x + y = 0) 

There exists an integer y, such that 

for every integer x ,  then x + y = o. 

These two statements are very different; for example, the first one is true and the second one 
is false. The moral is that the order of the appearance of the two different types of quantifiers 
is very important. It must also be stressed that if several variables appear in a mathematical 
expression with quantifiers, the values of the later variables should be assumed to depend on 
all of the values of the variables that are mentioned earlier. Thus in the (true) statement (i) 
above, the value of y depends on that of x;  here if x = 2, then y = -2, while if x = 3, then 
y = -3. 
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It is important that the reader understand how to negate a statement that involves 
quantifiers. In principle, the method is simple. 

(a) To show that it is false that every element x in some set possesses a certain property 
P, it is enough to produce a single counter-example (that is, a particular element in 
the set that does not possess this property); and 

(b) To show that it is false that there exists an element y in some set that satisfies a certain 
property P, we need to show that every element y in the set fails to have that property. 

Therefore, in the process of forming a negation, 

and similarly 

not (Vx)P becomes (3x) not P 

not (3 y)P becomes (Vy) not P. 

When several quantifiers are involved, these changes are repeatedly used. Thus the negation 
of the (true) statement (i) given previously becomes in succession 

not ("Ix) (3 y) (x + y = 0) , 
(3 x) not (3 y) (x + y = 0) , 
(3 x) (Vy) not (x + y = 0) , 
(3 x) (Vy) (x + y =1= 0) . 

The last statement can be rendered in words as: 

There exists an integer x, such that 
for every integer y, then x + y =1= o. 

(This statement is, of course, false.) 
Similarly, the negation of the (false) statement (ii) given previously becomes in suc­

cession 

not (3 y) ("Ix) (x + y = 0) , 
(Vy) not ("Ix) (x + y = 0) , 
(Vy) (3x) not (x + y = 0) , 
(Vy) (3x) (x + y =1= 0) . 

The last statement is rendered in words as 

For every integer y, there exists 
an integer x such that x + y =1= o. 

Note that this statement is true, and that the value (or values) of x that make x + y =1= 0 
depends on y, in general. 

Similarly, the statement 

For every 8 > 0, the interval (-8, 8) 
contains a point belonging to the set A ,  

can be seen to have the negation 

There exists 8 > 0 such that the interval 
(-8, 8) does not contain any point in A .  
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The first statement can be symbolized 

('18 > 0) (3 y E A) (y E (-8 , 8)) , 

and its negation can be symbolized by 

(3 8 ) O) (Vy E A) (y � (-8, 8)) 
or by 

(3 8 ) 0) (A n (-8, 8) = 0). 

It is the strong opinion of the authors that, while the use of this type of symbolism 
is often convenient, it is not a substitute for thought. Indeed, the readers should ordinarily 
reason for themselves what the negation of a statement is and not rely slavishly on symbol­
ism. While good notation and symbolism can often be a useful aid to thought, it can never 
be an adequate replacement for thought and understanding. 

Direct Proofs ____________________________________________________ __ 

Let P and Q be statements. The assertion that the hypothesis P of the implication P ::::} Q 
implies the conclusion Q (or that P ::::} Q is a theorem) is the assertion that whenever the 
hypothesis P is true, then Q is true. 

The construction of a direct proof of P ::::} Q involves the construction of a string of 
statements RI ' R2 , • • •  , Rn such that 

(The Law of the Syllogism states that if RJ ::::} R2 and R2 ::::} R3 are true, then RJ ::::} R3 
is true.) This construction is usually not an easy task; it may take insight, intuition, and 
considerable effort. Often it also requires experience and luck. 

In constructing a direct proof, one often works forward from P and backward from Q. 
We are interested in logical consequences of P ;  that is, statements QI ' . . .  , Qk such that 
P ::::} Qi . And we might also examine statements PI ' . . .  , Pr such that Pj ::::} Q. If we 
can work forward from P and backward from Q so the string "connects" somewhere in 
the middle, then we have a proof. Often in the process of trying to establish P ::::} Q one 
finds that one must strengthen the hypothesis (i.e., add assumptions to P) or weaken the 
conclusion (that is, replace Q by a nonequivalent consequence of Q). 

Most students are familiar with "direct" proofs of the type described above, but we 
will give one elementary example here. Let us prove the following theorem. 

Theorem 1 The square of an odd integer is also an odd integer. 

If we let n stand for an integer, then the hypothesis is: 

P : n is an odd integer. 

The conclusion of the theorem is: 

Q : n2 is an odd integer. 

We need the definition of odd integer, so we introduce the statement 

RJ : n = 2k - 1 for some integer k. 
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Then we have P => RJ • We want to deduce the statement n2 = 2m - 1 for some integer 
m, since this would imply Q. We can obtain this statement by using algebra: 

R2 : n2 = (2k - 1)2 = 4k2 - 4k + 1 ,  
R3 : n2 = (4k2 - 4k + 2) - 1 ,  
R4 : n2 = 2(2k2 - 2k + 1 )  - 1 .  

If we let m = 2k2 - 2k + 1 ,  then m is an integer (why?), and we have deduced the statement 

Rs : n2 = 2m - 1 .  

Thus we have P => RJ => R2 => R3 => R4 => Rs => Q ,  and the theorem i s  proved. 
Of course, this is a clumsy way to present a proof. Normally, the formal logic is 

suppressed and the argument is given in a more conversational style with complete English 
sentences. We can rewrite the preceding proof as follows. 

Proof of Theorem 1. If n is an odd integer, then n = 2k - 1 for some integer k. Then 
the square of n is given by n2 = 4k2 - 4k + 1 = 2(2k2 - 2k + 1)  - 1 .  If we let m = 

2k2 - 2k + 1 ,  then m is an integer (why?) and n2 = 2m - 1 .  Therefore, n2 is an odd 
integer. Q.E.D. 

At this stage, we see that we may want to make a preliminary argument to prove that 
2k2 - 2k + 1 is an integer whenever k is an integer. In this case, we could state and prove 
this fact as a Lemma, which is ordinarily a preliminary result that is needed to prove a 
theorem, but has little interest by itself. 

Incidentally, the letters Q.E.D. stand for quod erat demonstrandum, which is Latin for 
"which was to be demonstrated". 

Indirect Proofs 

There are basically two types of indirect proofs: (i) contrapositive proofs, and (ii) proofs by 
contradiction. Both types start with the assumption that the conclusion Q is false, in other 
words, that the statement "not Q" is true. 

(i) Contrapositive proofs. Instead of proving P => Q, we may prove its logically equiv­
alent contrapositive: not Q => not P .  

Consider the following theorem. 

Theorem 2 If n is an integer and n 2 is even, then n is even. 

The negation of "Q : n is even" is the statement "not Q : n is odd". The hypothesis 
"P : n2 is even" has a similar negation, so that the contrapositive is the implication: If n is 
odd, then n2 is odd. But this is exactly Theorem 1, which was proved above. Therefore this 
provides a proof of Theorem 2. 

• The contrapositive proof is often convenient when the universal quantifier is involved, 
for the contrapositive form will then involve the existential quantifier. The following theo­
rem is an example of this situation. 

Theorem 3 Let a 2: 0 be a real number. If, for every B > 0, we have 0 ::s a < B, then 
a = 0. 



342 APPENDIX A LOGIC AND PROOFS 

Proof. If a = 0 is false, then since a :::: 0, we must have a > O. In this case, if we choose 
80 = ! a, then we have 80 > 0 and 80 < a, so that the hypothesis 0 :::: a < 8 for all 8 > 0 
is false. Q.E.D. 

Here is one more example of a contrapositive proof. 

Theorem 4 If m, n are natural numbers such that m + n :::: 20, then either m :::: 10 or 
n :::: 10. 

Proof. If the conclusion is false, then we have both m < 10 and n < 10. (Recall De­
Morgan's Law.) Then addition gives us m + n < 10 + 10 = 20, so that the hypothesis is 
false. Q.E.D. 

(ii) Proof by contradiction. This method of proof employs the fact that if C is a contra-
diction (i.e., a statement that is always false, such as "1 = 0"), then the two statements 

(p and (not Q») :::} C, 
are logically equivalent. Thus we establish P :::} Q by showing that the statement 
(p and (not Q») implies a contradiction. 

Theorem 5 Let a > 0 be a real number. If a > 0, then 1/  a > O. 
Proof. We suppose that the statement a > 0 is true and that the statement 1/ a > 0 is false. 
Therefore, 1/ a :::: O. But since a > 0 is true, it follows from the order properties of � that 
a ( l/a) :::: O. Since 1 = a ( 1/a) ,  we deduce that 1 :::: O. However, this conclusion contradicts 
the known result that 1 > O. Q.E.D. 

There are several classic proofs by contradiction (also known as reductio ad absurdum) 
in the mathematical literature. One is the proof that there is no rational number r that 
satisfies r2 = 2. (This is Theorem 2. 1 .4 in the text.) Another is the proof of the infinitude 
of primes, found in Euclid's Elements. Recall that a natural number P is prime if its only 
integer divisors are 1 and P itself. We will assume the basic results that each prime number 
is greater than 1 and each natural number greater than 1 is either prime or divisible by a 
prime. 

Theorem 6 (Euclid's Elements, Book IX, Proposition 20.) There are infinitely many 
prime numbers. 

Proof. If we suppose by way of contradiction that there are finitely many prime numbers, 
then we may assume that S = {PI ' " ' , Pn } is the set of all prime numbers. We let m = 

PI . . .  Pn ' the product of all the' primes, and we let q = m + 1 .  Since q > Pi for all i ,  we 
see that q is not in S, and therefore q is not prime. Then there exists a prime P that is a 
divisor of q .  Since p' is prime, then P = Pj for some j, so that P is a divisor of m. But if P 
divides both m and q = m + 1 ,  then P divides the difference q - m = 1 .  However, this is 
impossible, so we have obtained a contradiction. Q.E.D. 
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FINITE AND COUNTABLE SETS 

We will establish the results that were stated in Section 1 .3 without proof. The reader should 
refer to that section for the definitions. 

The first result is sometimes called the "Pigeonhole Principle". It may be interpreted as 
saying that if m pigeons are put into n pigeonholes and if m > n, then at least two pigeons 
must share one of the pigeonholes. This is a frequently-used result in combinatorial analysis. 
It yields many useful consequences. 

B.l Theorem Let m,  n E N with m > n .  Then there does not exist an injection from Nm 
into Nn · 

Proof. We will prove this by induction on n.  
If n = 1 and if  g i s  any map of Nm (m > 1)  into NI , then i t  is  clear that g(1)  = . . .  = 

gem) = 1 ,  so that g is not injective. 
Assume that k > 1 is such that if m > k, there is no injection from Nm into Nk . We 

will show that if m > k + 1 ,  there is no function h : Nm � Nk+1 that is an injection. 

Case 1: If the range h(Nm) � Nk c Nk+I ' then the induction hypothesis implies that h is 
not an injection of Nm into Nk, and therefore into Nk+I ' 

Case 2: Suppose that h(Nm ) is not contained in Nk . If more than one element in Nm 
is mapped into k + 1 ,  then h is not an injection. Therefore, we may assume that a single 
p E Nm is mapped into k + 1 by h. We now define h i  : Nm_ 1 � Nk by 

. _ {h(q) h i (q) .- h(q + 1 )  
if q = 1 ,  " ' , p - 1 ,  
if q = p, . . .  , m - 1 .  

Since the induction hypothesis implies that h i  i s  not an injection into Nk, it i s  easily seen 
that h is not an injection into Nk+l .  Q.E.D. 

We now show that a finite set determines a unique number in N. 

1.3.2 Uniqueness Theorem If S is a finite set, then the number of elements in S is a 
unique number in N. 

Proof. If the set S has m elements, there exists a bijection II of Nm onto S. If S also 
has n elements, there exists a bijection 12 of Nm onto S . If m > n, then (by Exercise 19 

of Section 1 . 1 )  12
-1 

0 II is a bijection of Nm onto Nn, which contradicts Theorem B.1 .  

If n > m, then 11
-1 

0 12 is a bijection of Nn onto Nm, which contradicts Theorem B.1 .  
Taerefore we have m = n.  Q.E.D. 

B.2 Theorem Ifn E N, there does not exist an injection from N into Nn . 

Proof. Assume that I : N � Nn is an injection, and let m := n + 1 .  Then the restriction 
of I to Nm e N  is also in injection into Nn• But this contradicts Theorem B.1 .  Q.E.D. 

343 
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1.3.3 Theorem The set N of natural numbers is an infinite set. 

Proof. If N is a finite set, there exists some n E N and a bijection 1 of Nn onto N. In this 
case the inverse function 1-1 is a bijection (and hence an injection) of N onto Nn . But this 
contradicts Theorem B.2. Q.�.D. 

We will next establish Theorem 1 .3.8 by defining a bijection of N x N onto N. We 
will obtain an explicit formula for the counting procedure of N x N that is displayed in 
Figure 1 .3. 1 ;  the reader should refer to that figure during the ensuing discussion. The set 
N x N is viewed as a collection of diagonals; the first diagonal has 1 point, the second 
has 2 points, . . .  , and the kth diagonal has k points. In view of Example 1 .2.4(a), the total 
number of points in diagonals I through k is therefore given by 

1/I (k) := 1 +  2 + . . .  + k = ! k(k + I ) . 
The fact that 1/1 is  strictly increasing follows from Mathematical Induction and 

( 1 )  1/I (k + 1 )  = 1/I (k) + (k + 1 )  for k E N. 

The point (m , n) in N x N lies in the kth diagonal when k = m + n - I ,  and it is the 
mth point in that diagonal as we move downward from left to right. (For example, the point 
(3, 2) lies in the 4th diagonal (since 3 + 2 - 1 = 4) and is the 3rd point in that diagonal.) 
Therefore, in the counting scheme shown in Figure 1 .3 . 1 ,  we count the point (m , n) by first 
counting the points in the first k - I = m + n - 2 diagonals and then adding m. According 
to this analysis, our counting function h : N x N -+ N is given by 

(2) h em, n) := 1/I (m + n - 2) + m for (m , n) E N  x N. 

(For example, the point (3, 2) is counted as number h (3 , 2) = 1/1 (5 - 2) + 3 = 1/1 (3) + 3 = 

6 + 3 = 9, as in Figure 1 .3. 1 .  Also, the point ( 17, 25) is counted as number h (17, 25) = 

1/1 (40) + 17 = 837.) While this geometric argument has been suggestive and has led to the 
counting formula (2), we must now prove that h is in fact a bijection of N x N onto N. 

1.3.8 Theorem The set N x N is denumerable. 

Proof. We will show that the function h defined in (2) is a bijection. 
(a) We first show that h is injective. If (m, n) =I- (m' , n'), then either (i) m + n =I­

m' + n', or (ii) m + n = m' + n' and m =I- m'. 
In case en, we may suppose m + n < m' + n'

. Then, using formula (1 ), the fact that 1/1 
is increasing, and m' > 0, we have 

h em , n) = 1/J(m + n - 2) + m ::::: 1/I (m + n - 2) + (m + n - 1)  
= 1/I(m + n  - 1 )  ::::: 1/I(m' + n' - 2) < 1/I(m' + n' - 2) + m' = h em', n'). 

In case (ii), if m + n = m' + n' and m =I- m', then 

hem ,  n) - m = 1/I(m + n - 2) = 1/I(m' + n' - 2) = h em', n') - m', 
whence h em ,  n) =I- h em' , n'). 

(b) Next we show that h is surjective. 
Clearly h ( 1 ,  1 )  = 1 .  If p E N  with p ::: 2, we will find a pair (mp ' np) E N  x N with 

h emp ' np) = p. Since p < 1/I (p), then the set Ep := {k E N :  p ::::: 1/I(k)} is nonempty. 
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Using the Well-Ordering Property 1 .2. 1 ,  we let kp > 1 be the least element in Ep ' (This 
means that p lies in the kpth diagonal.) Since p ::: 2, it follows from equation (1)  that 

1/! (kp - 1)  < p :::; 1/! (kp) = 1/! (kp - 1)  + kp ' 

Let mp := p - 1/! (kp - 1)  so that 1 :::; mp :::; kp , and let np := kp - mp + 1 so that 1 :::; 
np :::; kp and mp + np - 1 = kn . Therefore, 

h emp ' np) = 1/! (mp + np - 2) + mp = 1/! (kp - 1)  + mp = p. 

Thus h is  a bijection and N x N is  denumerable. Q.E.D. 

The next result is crucial in proving Theorems 1 .3.9 and 1 .3 . 10. 

B.3 Theorem If A S; N and A is infinite, there exists a function cp : N --* A such that 
cp(n + 1) > cp(n) ::: n for all n E N. Moreover, cp is a bijection of N onto A.  

Proof. Since A i s  infinite, it i s  not empty. We will use the Well-Ordering Property 1 .2. 1 
of N to give a recursive definition of cpo 

Since A i= 0, there is a least element of A, which we define to be cp(I) ;  therefore, 
cp(1) ::: 1 .  

Since A is infinite, the set Al := A \{cp(1 ) }  i s  not empty, and we define cp(2) to be least 
element of AI ' Therefore cp(2) > cp(1 )  ::: 1 ,  so that cp(2) ::: 2. 

Suppose that cp has been defined to satisfy cp(n + 1 )  > cp(n) ::: n for n = 1, . . .  , k - 1 ,  
whence cp(k) > cp(k - 1) ::: k - 1 so that cp(k) ::: k .  Since the set A i s  infinite, the set 

Ak := A\{cp(1 ) , · · · ,  cp (k)} 

is not empty and we define cp(k + 1) to be the least element in Ak . Therefore cp(k + 1) > 

cp(k), and since cp(k) ::: k, we also have cp(k + 1) ::: k + 1 .  Therefore, cp is defined on all 
of N. 

We claim that cp is an injection. If m > n, then m = n + r for some r E N. If 
r = 1, then cp(m) = cp(n + 1) > cp(n) .  Suppose that cp(n + k) > cp(n) ;  we will show that 
cp(n + (k + 1)) > cp(n) .  Indeed, this follows from the fact that cp(n + (k + 1))  = cp« n + 
k) + 1) > cp(n + k) > cp(n) .  Since cp(m) > cp(n) whenever m > n, it follows that cp is an 
injection. 

We claim that cp is a surjection of N onto A. If not, the set A := A \cp(N) is not empty, 
and we let p be the least element in A. We claim that p belongs to the set {cp ( 1 ) ,  . . .  , cp (p)} .  
Indeed, if  this is  not true, then 

p E A  \ {cp(I ) ,  . . .  , cp(p)} = Ap , 

so that cp(p + 1) ,  being the least element in Ap, must satisfy cp(p + 1) :::; p. But this 
contradicts the fact that cp(p + 1 )  > cp(p) ::: p. Therefore A is empty and cp is a surjection 
onto A. Q.E.D. 

B.4 Theorem If A S; N, then A is countable. 

Proof. If A is finite, then it is countable, so it suffices to consider the case that A is infinite. 
In this case, Theorem B.3 implies that there exists a bijection cp of N onto A, so that A is 
denumerable and, therefore, countable. Q.E.D. 
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1.3.9 Theorem Suppose that S and T are sets and that T � S. 

(a) If S is a countable set, then T is a countable set. 
(b) If T is an uncountable set, then S is an uncountable set. 
Proof. (a) If S is a finite set, it follows from Theorem 1 .3.5(a) that T is finite, and 
therefore countable. If S is denumerable, then there exists a bijection 1/1 of S onto No Since 
1/I (S) � N, Theorem BA implies that 1/I (S) is countable. Since the restriction of 1/1 to T is 
a bijection onto 1/I (T) and 1/I (T) � N is countable, it follows that T is also countable. 

(b) This assertion is the contrapositive of the assertion in (a). Q.E.D. 



APPENDIX C 

THE RIEMANN AND 
LEBESGUE CRITERIA 

We will give here proofs of the Riemann and Lebesgue Criteria for a function to be Riemann 
integrable. First we will give the Riemann Criterion, which is interesting in itself, and also 
leads to the more incisive Lebesgue Criterion. 

C.I Riemann Integrability Criterion Let f : [a , b] -+ lR be bounded. Then the follow­
ing assertions are equivalent: 
(a) f E R[a, b]. 
(b) For every 6 > 0 there exists a partition � such that if �,  � are any tagged partitions 
having the same subintervals as �, then 

( 1 )  IS(f; �) - S(f; �) I < 6. 

(e) For every 6 > 0 there exists a partition � = {Ii }?=1 = { [Xi-I ' xi n?=1 such that if 
mi := inf{f(x) : X E Ii } and Mi := sup{f(x) : X E I; l then 

(2) 
n 

L (Mi - m)(xi - xi-I ) < 26. i=1 
Proof. (a) => (b) Given 6 > 0, let Yle > 0 be as in the Cauchy Criterion 7.2. 1 ,  and let 
� be any partition with I I� II < Yle . Then if � ,  � are any tagged partitions with the same 
subintervals as �, then I I� II < Yle and II� II < Yle and so ( 1 )  holds. 

(b) => (c) Given 6 > 0, let � = {Ii }?=I be a partition as in (b) and let mi and Mi be 
as in the statement of (c). Since mi is an infimum and Mi is a supremum, there exist points 
ui and Vi in Ii with 

6 f(ui ) < mi + 
2(b _ a) 

so that we have 

and 6 Mi - 2(b _ a) < f(v), 

for i = 1 ,  . . .  , n . 

If we multiply these inequalities by (Xi - Xi_I ) and sum, we obtain 

n n 

L (Mi - mi)(xi - Xi_I ) < L (f(v) - f(ui ))(xi - Xi_I) + 6. i=1 i=1 
We let QI : =  {(Ii ' Ui )}?=1 and Q2 := {(Ii ' Vi )}?=I ' so that these tagged partitions have the 
same subintervals as � does. Also, the sum on the right side equals S(f; Q2) - S(f; QI ) . 
Hence it follows from ( 1 )  that inequality (2) holds. 

347 
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(c) :=} (a) Define the step functions ae and we on [a , b] by 

ae (x) := mi and we (x) : =  Mi for x E (xi_ \ ,  Xi ) ' 
and ae(x) := f(xi ) =: we(x) for i = 0, 1 ,  . . .  , n ;  then a/x) ::: f(x) ::: we(x) for x E 
[a , b]. Since ae and we are step functions, they are Riemann integrable and 

and 

Therefore it follows that 

If we apply (2), we have that 

lb (we - ae) < 2e . 

Since e > 0 is arbitrary, the Squeeze Theorem implies that f E R[a, b]. Q.E.D. 

We have already seen that every continuous function on [a , b] is Riemann integrable. 
We also saw in Example 7. 1 .6 that Thomae's function is Riemann integrable. Since 
Thomae's function has a countable set of points of discontinuity, it is evident that con­
tinuity is not a necessary condition for Riemann integrability. Indeed, it is reasonable to 
ask "how discontinuous" a function may be, yet still be Riemann integrable. The Riemann 
Criterion throws some light on that question in showing that sums of the form (2) must be 
arbitrarily small. Since the terms (Mi - m)(xi - Xi_I ) in this sum are all 2: 0, it follows 
that each of these terms must be small. Such a term will be small if (i) the difference 
Mi - mi is small (which will be the case if the function is continuous on the interval 
[xi_I ' Xi ])' or if (ii) an interval where the difference Mi - mi is not small has small length. 

The Lebesgue Criterion, which we will discuss next, makes these ideas more precise. 
But first it is convenient to have the notion of the oscillation of a function. 

C.2 Definition Let f : A -+ JR be a bounded function. If S � A � JR, we define the 
oscillation of f on S to be 

(3) W(f; S) := sup{ lf(x) - f(y) 1 : x, Y E S}. 
It is easily seen that we can also write 

W(f; S) = sup{f(x) - f(y) : x , y E S} 
= sup{f(x) : X E S} - inf{f(x) : X E S}. 

It is also trivial that if S � T � A, then 

0 ::: W(f; S) ::: W(f; T) ::: 2 · sup{ lf(x) 1  : X E A} . 
If r > 0, we recall that the r-neighborhood of e E A is  the set 

�(e) := {x E A : Ix - e l < r} .  

C.3 Definition If e E A, we define the oscillation of f at e by 

(4) w(f; e) := inf{W(f; V (e» : r > O} = lim W(f; V (e». r r---+O+ r 
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Since r 1--* W (f; v, (c» is an increasing function for r > 0, this right-hand limit exists and 
equals the indicated infimum. 

C.4 Lemma If f : A � IR is bounded and c E A, then f is continuous at c if and only 
if the oscillation w(f; c) = o. 

Proof. (=» If f is continuous at c, given 8 > o there exists 8 > o such that if x E V, (c) ,  
then If (x) - f(c) 1 < 812. Therefore, if x ,  y E V, (c) ,  we have lf(x) - f(y) 1 < 8, whence 
o :s w (f; c) :s W (f; v, (c» :s 8 . Since 8 > 0 is arbitrary, this implies that w (f; c) = O. 

({:::) If w(f; c) = 0 and 8 >  0, there exists s > 0 with W(f; �(c)) < 8. Thus, if 
Ix - cl < s then If (x) - f(c) 1  < 8, and f is continuous at c. Q.E.D. 

We will now give the details of the proof of the Lebesgue Integrability Criterion. First 
we recall the statement of the theorem. 

Lebesgue's Integrability Criterion A bounded function f :  [a , b] � IR is Riemann 
integrable if and only ifit is continuous almost everywhere on [a , b] . 

Proof. (=» Let 8 > O be given and, for each k E N, let Hk := {x E [a , b] : w (f; x) > 
1 12k}. We will show that Hk is contained in the union of a finite number of intervals having 
total length < 8 12k . 

By the Riemann Criterion, there is a partition P k = { [xL , xtm �i such that if m� 
(respectively, Mt) is the infimum (resp., supremum) of f on the interval [xt-l ' xt] ,  then 

n(k) L. (Mt - m�) (xt - xt-l ) < 814k . i=l 
If x E Hk n (xL , xt) , there exists r > 0 such that V, (x) s; (xL , xt) ,  whence 

1 /2k :s w (f; x) :s W(f; V, (x» :s Mt - m�. 
If we denote a summation over those i with Hk n (xL l ' xt) =1= 0 by L', then 

n(k) ( 1/2k) "'(Xk _ xk ) < " (Mk - mk) (xk _ x
k ) < 814k � I , -1 - � I I l 1 - 1  - , i=l 

whence it follows that 

Since Hk differs from the union of sets Hk n (xt - Xt-l) by at most a finite number of 
the partition points, we conclude that Hk is contained in the union of a finite number of 
intervals with total length < 8 12k . 

Finally, since D := {x E [a, b] : w (f; x) > O} = U�l Hk, it follows that the set D 
of points of discontinuity of f E R[a, b] is a null set. 

( {:::) Let I f (x) I :s M for x E [a , b] and suppose that the set D of points of discon­
tinuity of f is a null set. Then, given 8 > 0 there exists a countable set {Jk}�l of open 
intervals with D S; U�l Jk and L�l [ (Jk) < 812M. Following R. A. Gordon, we will 
define a gauge on [a , b] that will be useful. 
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(i) If t ¢ D, then I is continuous at t and there exists 8 (t) > 0 such that if x E Voct) (t) 
then I /(x) - l(t ) 1  < e/2, whence 

O s Mt - mt := sup{f(x) : x E Voct) (t)} - inf{f(x) : x E Voct) (t)} S e. 
(ii) If t E D, we choose 8(t) > 0 such that Voct) (t) � Jk for some k. For these values· of 

t , we have 0 S Mt - mt S 2M. 
Thus we have defined a gauge 8 on [a , b]. If P = {([Xi_I ' Xi ] '  t)}7=1 is a 8-fine 

partition of [a , b], we divide the indices i into two disjoint sets 

and 

If P is 8-fine, we have [Xi_l ' xi ] � Voct) (t), whence it follows that Mi - mi S Mt. ­
mt. • Consequently, if i E Sc then Mi - �i S e, while if i E Sd we have Mi - mi S 2M. 
H�wever, the collection of intervals [Xi_I ' Xi ] with i E Sd are contained in the union of the 
intervals {Jk} whose total length is < e/2M. Therefore 

n 

L (Mi - m)(xi - Xi-I ) i=1 
= L (Mi - mi) (xi - Xi_I ) + L (Mi - m)(xi - Xi-I ) iESc iESd 

s L e(xi - Xi_I ) + L 2M(Xi - Xi_I ) iESc iESd 
S e(b - a) + 2M · (e/2M) S e(b - a + 1) .  

Since e > 0 i s  arbitrary, we conclude that I E R[a, b]. Q.E.D. 
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APPROXIMATE INTEGRATION 

We will supply here the proofs of Theorems 7.4.3, 7.4.6 and 7.4.8. We will not repeat the 
statement of these results, and we will use the notations introduced in Section 7.4 and refer 
to numbered equations there. It will be seen that some important results from Chapters 5 
and 6 are used in these proofs. 

Proof of Theorem 7.4.3. If k = 1 ,  2, . . .  , n, let ak := a + (k - l )h and let gJk : [0, h] --+ 

lR be defined by 

for t E [0, h]. Note that gJk (O) = 0 and that (by Theorem 7.3.6) 

gJ�(t) = 4 [I(ak) + f(ak + t)J + 4 tf'(ak + t) - f (ak + t) 

= 4 [I(ak) - f(ak + t)J + 4 tf'(ak + t). 
Consequently gJ�(O) = 0 and 

gJ£'(t) = -4  f'(ak + t) + 4 f'(ak + t) + 4 tf"(ak + t) 

= 4 tf"(ak + t). 
Now let A, B be defined by 

A := inf{f"(x) : x E [a , b] } ,  B := sup{f"(x) : x E [a , b]} 

so that we have 4At ::::: gJ£' (t) ::::: 4Bt for t E [0, h], k = 1 , 2, . . . , n. Integrating and apply­
ing Theorem 7.3 . 1 ,  we obtain (since gJ�(O) = 0) that �At2 ::::: gJ� (t) ::::: �Bt2 for t E [0, h] ,  
k = 1 ,  2, . . .  , n. Integrating again and taking t = h, we obtain (since gJk (0) = 0) that 

l..Ah3 < m (h) < l..Bh3 12 - 'l'k - 12 

for k = I ,  2, . . .  , n. If we add these inequalities and note that 

� gJk (h) = Tk (f) - lb f(x) dx , 

we conclude that tz.Ah3n ::::: Tn (f) - 1: f(x) dx ::::: tz.Bh3n . Since h = (b - a)/n, we 
have 

tz.A(b - a)h2 ::::: Tn (f) - lb f(x) dx ::::: tz.B(b - a)h2 . 
Since f" is continuous on [a , b], it follows from the definitions of A and B and Bolzano's 
Intermediate Value Theorem 5 .3.7 that there exists a point c in [a , b] such that equation (4) 
in Section 7.4 holds. Q.E.D. 
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ProofofTheorem 7.4.6. Ifk = 1 , 2, · . .  , n, let ck := a + (k - !)h, and 1/rk : [0, !h] --+ lR 
be defined by jCk+1 

1/rk(t) := Ck-I f(x) dx - f(ck)2t 

for t E [0, !hl Note that 1/rk(O) = ° and that since 

we have 

jCk+1 jCk-1 
1/rk(t) := f(x) dx - f(x) dx - f(ck)2t, Ck Ck 

1/r�(t) = f(ck + t) - f(ck - t)(- I) - 2f(ck) 
= [i(ck + t) + f(ck - t)] - 2f(ck) .  

Consequently 1/r� (0) = ° and 

1/r; (t) = f'(ck + t) + f'(ck - t)( -1 ) 
= f'(ck + t ) - f'(ck - t). 

By the Mean Value Theorem 6.2.4, there exists a point ck,l with ICk - ck,l I < t such that 
1/r; (t) = 2tf" (ck I) ' If we let A and B be as in the proof of Theorem 7.4.3, we have 
2tA .:::: 1/r;(t) .:::: 2tB for t E [0, h/2], k = 1 , 2, " ' , n . 1t follows as before that 

!At3 < ./. (t) < !Bt3 3 - 'f'k - 3 
for all t E [0, !h], k = 1 , 2, " ' , n. If we put t = !h, we get 

� Ah3 < ./. (!h) < � Bh3 • 24 - 'f'k 2 - 24 
If we add these inequalities and note that 

n rb t; 1/rk (!h) = Ja f(x) dx - Mn (f), 

we conclude that 

1 rb 1 
24 Ah3n .:::: Ja f(x) dx - Mn(f) .:::: 24 Bh3n . 

If we use the fact that h = (b - a)/n and apply Bolzano's Intermediate Value Theorem 
5 .3 .7 to I" on [a , b] we conclude that there exists a point y E [a, b] such that (7) in 
Section 7.4 hotds. Q.E.D. 

Proof of Theorem 7.4.8. If k = 0, 1 , 2, . . .  , !n - 1 ,  let ck := a + (2k + l )h, and let 
((Jk : [0, h] --+ lR be defined by jCk+1 

((Jk (t) := �t [i(ck - t) + 4f(ck) + f(ck + t)] - C -I f(x) dx. k 
Evidently ((Jk (0) = ° and 

((J£ (t) = �t [-f'(ck - t) + f'(ck + t)] - � [i(ck - t) - 2 f(ck) + f(ck + t)] , 
so that ((J£ (0) = ° and 

((Jt (t) = � t [I" (ck - t) + f" (ck + t)] - � [ -f' (ck - t) + f' (ck + t)] , 
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so that ((Jt (0) = 0 and 

((J£"(t) = � t [J"'(ck + t) - f'//(ck - t)] . 
Hence it follows from the Mean Value Theorem 6.2.4 that there is a Yk,t with h - Yk,t I .::: t 
such that ((J£" (t) = �t2 f(4) (Yk, t ) ' If we let A and B be defined by 

A := inf{f(4) (x) : x E [a , b]} and B := sup{f(4) (x) : x E [a , b] } , 
then we have 

�At2 < rn"'(t) < �Bt2 3 - Tk - 3 . 

for t E [0, h], k = 0, 1 ,  . . .  , !n - 1 .  After three integrations, this inequality becomes 

�AtS < rnk (t) < �BtS 90 _ T  - 90 
for all t E [0, h], k = 0, 1 ,  . . .  , !n - 1. If we put t = h, we get 

�Ahs < rnk (h) < �Bhs 90 _ T  - 90 
for k = 0, 1 ,  . . .  , ! n - 1 . If we add these ! n inequalities and note that 

we conclude that 
1 s n lb 1 s n -Ah - < S (f) - f(x) dx < -Bh -. 90 2 - n 

a - 90 2 
Since h = (b - a)/n, it follows from Bolzano's Intermediate Value Theorem 5.3.7 (applied 
to f(4») that there exists a point C E [a, b] such that the relation ( 10) in Section 7.4 holds. 

Q.E.D. 



APPENDIX E 

TWO EXAMPLES 

In this appendix we will give an example of a continuous function that has a derivative at 
no point and of a continuous curve in 1R2 whose range contains the entire unit square of 1R2. 
Both proofs use the Weierstrass M-Test 9.4.6. 

A Continuous Nowhere Differentiable Function 

The example we will give is a modification of one due to B .  L. van der Waerden in 1930. 
Let 10 : IR � IR be defined by lo(x) := dist(x , Z) = inf{ lx - kl : k E Z}, so that 10 is a 
continuous "sawtooth" function whose graph consists of lines with slope ± 1 on the intervals 
[k/2, (k + 1)/2] , k E Z. For each m E N, let Im (x) := ( l /4m)/o(4mx), so that 1m is also 
a continuous sawtooth function whose graph consists of lines with slope ± 1 and with 
o :::: 1m (x) :::: 1/ (2 · 4m). (See Figure E. 1 .) 

o 

Figure E.1 Graphs of 10 , 11 ' and 12, 
We now�define g : IR � IR by g(x) := L:::=o Im (x). The Weierstrass M-Test implies 

that the series is uniformly convergent on IR; hence g is continuous on R We will now 
show that g is not differentiable at any point of IR. 

Fix x E R For each n E N, let hn := ±1 /4n+1 , with the sign chosen so that both 4nx 
and 4n (x + hn) lie in the same interval [k/2, (k + 1)/2] . Since 10 has slope ±1 on this 
interval, then 

In fact if m < n ,  then the graph of 1m also has slope ±1 on the interval between x and 
x + hn and so 

for m < n .  
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On the other hand, if m > n ,  then 4m (x + hn) - 4mx = ±4m-n-1 is an integer, and since 
fo has period equal to 1 ,  it follows that 

' 

fm (x + hn) - fm (x) = O. 

Consequently, we have 

whence the difference quotient (g (x + hn) - g(x»/ hn is an odd integer if n is even, and 
an even integer if n is odd. Therefore, the limit 

1
. g(x + h) - g(x) 1m -"-----..:....:....:.. h-+O h 

does not exist, so g is not differentiable at the arbitrary point x E R 
A Space-Filling Curve 

We will now give an example of a space-filling curve that was constructed by I. J. Schoenberg 
in 1936. Let cp : IR � IR be the continuous, even function with period 2 given by 

for 0 ::: t ::: 1/3, 
for 1/3 < t < 2/3, 
for 2/3 ::: t ::: 1 .  

(See Figure E.2.) For t E [0, 1 ] ,  we define the functions 
00 cp(32kt) 00 cp(32k+l t) f(t) ;= L � and get) := L k+1 . k=O 2 k=O 2 

Since 0 ::: cp(x) ::: 1 and is continuous, the Weierstrass M -Test implies that f and g are 
continuous on [0, 1 ] ;  moreover, 0 ::: f(t) ::: 1 and 0 ::: get) ::: 1 .  We will now show that an 
arbitrary point (xo ' Yo) in [0, 1] x [0, 1] is the image under (j, g) of some point to E [0, 1 ] .  
Indeed, let Xo and Yo have the binary (= base 2) expansions: 

ao a2 a4 al a3 as Xo = "2 + 22 + 23 + . . . and Yo = "2 + 22 + 23 + . . .  , 
where each ak equals 0 or 1 .  It will be shown that Xo = f(to) and Yo = g(to)' where to has 
the ternary (= base 3) expansion 

t _ � 2ak _ 2ao + 2al + 
2a2 + 2a3 + . . .  o - L.t 3k+1 - 3 32 33 34 . k=O 

o 1 2 
"3 "3 

Figure E.2 Graph of cp. 
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First, we note that the above fonnula does yield a number in [0, 1] .  We also note that 
if ao = 0, then ° :::: to :::: 1 /3 so that CPCto) = 0, and if ao = 1 ,  then 2/3 :::: to :::: 1 so that 
cp(to) = 1 ;  therefore, in both cases cp(ao) = ao ' Similarly, it is seen that for each n E N there 
exists mn E N such that 

n 2an 2an+1 3 to = 2mn + "3 + 32 + . . .  

whence it follows from the fact that cp has period 2 that cp(3n to) = an ' Finally, we conclude 
that 

and 
00 m(32k+1 t )  00 a """ .,.. 0 """ 2k + I g(to) = � 2k+1 = � 2k+1 = yO' k=O k=O 

Therefore Xo = f(to) and Yo = gCto) as claimed. 
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HINTS FOR SELECTED EXERCISES 

Reader: Do not look at these hints unless you are stymied. However, after putting a consid­
erable amount of thought into a problem, sometimes just a little hint is all that is needed. 
Many of the exercises call for proofs, and there is usually no single approach that is correct, 
so even if you have a totally different argument, yours may be correct. Very few of the 
following hints give much detail, and some may seem downright cryptic at first. Somewhat 
more detail is presented for the earlier material. 

Section 1.1 

1 .  Show that if A � B, then A = A n  B. Next show that if A = A n B, then A � B. 

2. Show that if x E A \ (B n C), then x E (A \ B) U (A \ C). Next show that if y E (A \ B) U 
(A \ C), then y E A  \ (B n C). Since the sets A \ (B n C) and A \ (B n C) contain the same 
elements, they are equal. 

5. (a) A l n A2 = {6, 12, 18, 24, · · · } = {6k : k E N} = A5 •  
(b) U An = N \ { l }  and n An = 0. 

7. No. For example, both (0, 1) and (0, -1 )  belong to C. 
9. (a) I(E) = [2, 3], so h(E) = g(f(E» = g([2, 3]) = [4, 9]. 

(b) g-l (G) = [-2, 2], so h-l (G) = [-4, 0]. 
13. If x E rl (G) n 1-1 (H), then x E l-l (G) and x E l-l (H), so that I(x) E G and 

I(x) E H. Then I(x) E G n H, and hence x E l-l (G n H). This shows that l-l (G) n 
rl (H) � rl (G n H). 

15. One possibility is I(x) := (x - a)/(b - a) . 
19. If g(f(xl » = g(f(x2» , then I(xl ) = l(x2), so that Xl = x2' which implies that g o  I is 

injective. If W E  C, there exists y E B such that g(y) = w, and there exists x E A such that 
I(x) = y. Then g(f(x» = w, so that g o  I is surjective. Thus g 0 I is a bijection. 

20. (a) If I(xl ) = l(x2), then g(f(xl» = g(f(x2», which implies Xl = x2' since g o  I is injec­
tive. Thus I is injective. 

Section 1.2 

1 . Note that 1/(1 · 2) = 1/(1 + 1) . Also kiCk + 1) + 1/[(k + l)(k + 2)] = (k + 1)/(k + 2). 
2. [ !k(k + l)f + (k + 1)3 = [! (k + l)(k + 2)]

2
. 

4. 1 (4k3 - k) + (2k + 1)2 = 1 [4(k + 1)3 - (k + 1)] . 
6. (k + 1)3 + 5(k + 1) = (k3 + 5k) + 3k(k + 1) + 6 and k(k + 1) is always even. 
8. 5k+l - 4(k + 1) - 1 = 5 . 5k - 4k - 5 = (5k - 4k - 1) + 4(5k - 1) . 

13. If k < 2k , then k + 1 < 2k 
+ 1 < 2k 

+ 2k = 2(2k) = 2k+ 1 • 

16. It is true for n = 1 and n � 5, but false for n = 2, 3, 4. 

18. ,Jk + 1/.Jk+T = (,Jk.Jk+T + 1)/.Jk+T > (k + 1)/.Jk+T = .Jk+T, 
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Section 1.3 

1. Use Exercise 1 . 1 . 19 (= Exercise 19 of Section 1 . 1) . 
2. Part (b) Let f be a bijection of Nm onto A and let C = (f(k)} for some k E Nm• Define g on 

Nm_l by g(i) := f(i) for i = 1 ,  " ' , k - 1 ,  and g(i) := f(i + 1) for i = k, " ' , m - 1 .  Then 
g is a bijection of Nm_l onto A \ C. 

3. (a) There are 6 = 3 · 2 · 1 different injections of S into T. 
(b) There are 3 surjections that map a into 1, and there are 3 other surjections that map a 

into 2. 
7. If Tl is denumerable, take Tz = N. If f is a bijection of Tl onto Tz' and if g is a bijection of Tz 

onto N, then (by Exercise 1 . 1 . 19) g 0 f is a bijection of Tl onto N, so that Tl is denumerable. 
9. If S n T = 0 and f : N --+ S, g : N --+ T are bijections onto S and T, respectively, let hen) := 

f« n + 1)/2) if n is odd and hen) := g(n/2) if n is even. 
10. (a) P({l , 2}) = {0, { I } ,  {2}, { I ,  2}} has 2z = 4 elements. 

(c) P({ I ,  2, 3, 4}) has 24 = 16 elements. 
1 1 .  Let Sn+l := {Xl ' . . .  , Xn ' Xn+l }  = Sn U {xn+l }  have n + 1 elements. Then a subset of Sn+l either 

(i) containsxn+l , or (ii) does not containxn+l . There is a total of2n 
+ 2n = 2 ·  2n 

= 2n+1 subsets 
of Sn+l ' 

12. For each m E N, the collection of all subsets of Nm is finite. Note that F(N) = U:::'=l P(Nm). 

Section 2.1 

1 .  (a) Justify the steps in: b = 0 + b = (-a + a) + b = -a + (a + b) = -a + 0 = -a. 
(c) Apply (a) to the equation a + (-I)a = a(1 + (-1)) = a · 0  = O. 

2. (a) 
(c) 

-(a + b) = (-I)(a + b) = (- I)a + (- I)b = (-a) + (-b). 
Note that (-a)( -(I/a)) = a(I/a) = 1 .  

3. (a) 
(c) 

3/2 
2, -2 

(b) 0, 2 
(d) 1 , -2 

6. Note that if q E Z and if 3qZ is even, then qZ is even, so that q is even. 
7. If p E N, then there are three possibilities: for some m E N U {O}, (i) p = 3m, 

(ii) p = 3m + 1, or (iii) p = 3m + 2. 
10. (a) If e = d, then 2. 1 .7(b) implies a + e < b + d. If e < d, then a + e < b + e < b + d. 
13. If a =I- 0, then 2. 1 . 8(a) implies that aZ > 0; since bZ � 0, it follows that aZ + bZ > O. 
15 . (a) If 0 <  a < b, then 2. 1 .7(c) implies that 0 < aZ < ab < bZ• Then by Example 2. 1 . 13(a), 

we infer that a = R < J(iij < .fbi = b. 
16. (a) {x : x  > 4 0r x < -I} .  

(c) {x " : -I < x < O or x > l}. 
(b) {x : 1 < x < 2 or - 2 < x < -I}. 
(d) {x : x < 0 or x > I} .  

19. The inequality is equivalent to 0 :s aZ - 2ab + bZ = (a - b)z . 
20. (a) Use 2. 1 .7(c). 
21 .  (a) Let S := {n E N :  0 < n < I } .  If S is not empty, the Well-Ordering Property of N implies 

there is a least element m in S. However, 0 < m < 1 implies that 0 < mZ < m, and since 
mZ is also in S, this is a contradiction of the fact that m is the least element of S. 

22. (a) Let x := e - 1 > 0 and apply Bernoulli's Inequality 2 .1 . 13(c). 
24. (a) If m > n, then k := m - n E N, and ek � e > 1 which implies that e

m 
> en . Conversely, 

the hypotheses that e
m 

> en and m :S n lead to a contradiction. 
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25. Let b := c1/mn and show that b > 1 .  Exercise 24(a) implies that c1/n = bm > bn = c1/m if and 
only if m > n. 

26. Fix m E N and use Mathematical Induction to prove that am+n = am an and (am)n = amn for all 
n E N. Then, for a given n E N, prove that the equalities are valid for all m E 1':1. 

Section 2.2 

1. (a) If a ::: 0, then la l  = a = R; if a < 0, then la l  = -a = R. 
(b) It suffices to show that I l lbl = 1/ 1b l  for b "" 0 (why?). Consider the cases b > 0 and 

b < o. 
3. If x :'S y :'S z, then Ix - yl + Iy - zl = (y - x) + (z - y) = z - x = Iz - xl .  To establish the 

converse, show that y < x and y > z are impossible. For example, if y < x :'S 'z, it follows from 
what we have shown and the given relationship that Ix - y I = 0, so that y = x, a contradiction. 

6. (a) -2 :'S x :'S 9/2 
7. x = 4 0r x  = -3. 
8. (a) x < 0 

10. {x : -3 < x < -5/2 or 312 < x < 2}. 
1 1 . {x : 1 < x < 4}. 
12. (a) {(x , y) : y = ± x}. 

(b) -2 :'S x :'S 2. 

(b) -3/2 < x < 112. 

(c) The hyperbolas y = 21x and y = -2Ix. 
13. (a) If y ::: 0, then -y :'S x :'S y and we get the region in the upper half-plane on or between 

the lines y = x and y = -x. 
16. (a) Suppose that a :'S b. 
17. If a :'S b :'S  c, then mid{a , b, c} = b = min{b, c, c} = min{max{a, b}, max{b, c}, max{c, an. 

The other cases are similar. 

Section 2.3 

1. Since 0 :'S x for all x E Sl ' then u = 0 is a lower bound of Sl . If v > 0, then v is not a lower 
bound of Sl because vl2 E Sl and vl2 < v. Therefore inf Sl = O. 

3. Since lin :'S 1 for all n E N, then 1 is an upper bound for S3. 
4. sup S4 = 2 and inf S4 = 1/2. 
6. Let u E Sbe an upper bound of S. If v is another upper bound ofS, then u :'S v. Hence u = sup S. 
9. Let u := sup A, v := sup B and w := sup{u, v}. Then w is an upper bound of A U  B, because 

if x E A, then x :'S u :'S w, and if x E B, then x :'S v :'S w. If z is any upper bound of A U B, 
then z is an upper bound of A and of B, so that u :'S z and v :'S z. Hence w :'S z. Therefore, 
w = sup(A U B). 

1 1 .  Consider two cases: u ::: s* and u < s·. 

Section 2.4 

1. Since 1 - l in < 1 for all n E N, 1 is an upper bound. To show that 1 is the supremum, it must 
be shown that for each e > 0 there exists n E N such that 1 - 1 In > 1 - e, which is equivalent 
to lin < e. Apply the Archimedean Property 2.4.3 or 2.4.5. 

2. inf S = -1 and sup S = 1 .  
4 .  (a) Let u := sup S anda > O .  Then x :'S u for all x E S,  whence ax :'S au for all x E S,  whence 

it follows that au is an upper bound of as. If v is another upper bound of as, then ax :'S v 



362 HINTS FOR SELECTED EXERCISES 

for all X E S, whence x :::: v/a for all X E S, showing that v/a is an upper bound for S so 
that u :::: v/a, from which we conclude that au :::: v. Therefore au = sup(aS). 

5. Let u := sup f(X). Then f(x) :::: u for all x E X, so that a + f(x) :::: a + u for all x E X, 
whence sup{a + f(x) : x E X} :::: a + u. If w < a + u, then w - a < u, so that there exists 
Xw E X with w - a < f(xw)' whence w < a + f(xw)' and thus w is not an upper bound for 
{a + f(x) : x E X}. 

7. Ifu := sup f(X) and v := sup g(X), then f(x) :::: u andg(x) :::: v for all x E X, whence f(x) + 
g(x) :::: u + v for all x E X. 

9. (a) f(x) = 1 for x E X. (b) g(y) = o for y E f. 
1 1 .  Let S := {h(x, y) : x E X, Y E f}. We have h (x ,  y) :::: F(x) for all x E X, Y E f so that 

sup S :::: sup{F(x) : x E X}. If w < sup{F(x) : x E X}, then there exists Xo E X with w < 
F(xo) = sup{h(xo' y) : y E f}, whence there exists Yo E f with w < h(xo ' Yo)' Thus w is not 
an upper bound of S, and so w < sup S. Since this is true for any w such that w < sup{F(x) : 
x E X}, we conclude that sup{F(x) : x E X} :::: sup S. 

13 . Note that n < 2n (whence 1/2n 
< l /n) for any n E N. 

14. Let S3 := {s E R : 0 :::: s, S2 < 3}. Show that S3 is nonempty and bounded by 3 and let y := 
sup Sy If y2 < 3 and l /n < (3 - y2)/(2y + 1) show that y + l/n E S3' If l > 3 and l/m < 
(l - 3)/2y show that y - l /m E S3' Therefore l = 3. 

17. If x < 0 < y, then we can take r = O. If x < y < 0, we apply 2.4.8 to obtain a rational number 
between -y and -x. 

Section 2.5 

2. S has an upper bound b and a lower bound a if and only if S is contained in the interval [a, bl. 
4. Because z is neither a lower bound nor an upper bound of S. 

5. If Z E R, then z is not a lower bound of S so there exists Xz E S such that Xz :::: z. Similarly, 
there exists y z E S such that z :::: y z' 

8. If x > 0, then there exists n E N with 1/ n < x, so that x ffi 1n '  If y :::: 0, then y ffi 11 , 
10. Let 71 := inf{bn : n E N}; we claim that an :::: 71 for all n. Fix n E N; we will show that an is a 

lower bound for the set {bk : k E N} .  We consider two cases. 0) If n :::: k, then since In :2 Ik, we 
have an :::: ak :::: bk ·  OJ) If k < n, then since Ik :2 In ' we have an :::: bn :::: bk · Therefore an :5 bk 
for all k E N, so that an is a lower bound for {bk : k E N} and so an :::: 71. In particular, this shows 
that 71 E [an '  bnl for all n, so that 71 E n In ' 

12. � = (.01 1000 · . ')2 = (.0101 1 1  . .  ')2 ' i6 = (.0 1 1 1000 · . ')2 = (.01 101 1 1 · . ')2 ' 

13 .  (a) � � (.0101)2' (b) � = (.010101 · . ,)z' the block 01 repeats. 
16. 1/7 = . 142 857 · · ·, the block repeats. 2/19 = . 105 263 157 894 736 842 · · · , the block repeats. 
17. 1 .25 13:7 · ·  · 137 · · ·  = 31253/24975, 35. 14653 · · · 653 · · ·  = 35 1 1 139/99900. 

Section 3.1 

1. (a) 0, 2, 0, 2, 0 (c) 1/2, 1/6, 1/ 12, 1/20, 1/30 
3. (a) 1 , 4, 13, 40, 121 (c) 1 , 2, 3, 5, 4. 
5. (a) We have 0 < n/(nz + 1) < n/n2 = l/n. Given e > 0, let K(e) � l /e. 

(c) We have 1 (3n + 1)/(2n + 5) - 3/21 = 13/(4n + 10) < 13/4n. Given e > 0, let 
K(e) � 13/4e. 

6. (a) 1/Jn + 7  < l /.fo (b) 12n/(n + 2) - 21 = 4/(n + 2) < 4/n 
(c) .fo/(n + 1) < l /.fo (d) 1 (-l)nn/(nZ + 1) 1 :::: l/n . 
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9. O < .;x;. < e  {::::::} O < Xn < e2 • 

1 1 .  1 1/n - I/(n + 1 ) 1  = I/n(n + 1) < I/n2 ::::: lin. 

13. Let b := 1/(1 + a) where a > O. Since (1 + a)
n 

> in(n - l)a2, we have that 
0 <  nb

n 
::::: n/[in(n - l)a2] ::::: 2/[(n - l )a2]. Thus lim(nb

n
) = O. 

15. If n > 3, then 0 < n2 In! < nl(n - 2)(n - 1 )  < I /(n - 3). 

Section 3.2 

1 . (a) lim(xn) = 1 (c) xn ::: n12, so the sequence diverges. 

3. Y = (X + Y) - X. 
6. (a) 4 (b) 0 (c) 

8. In (3) the exponent k is fixed, but in (1 + l int the exponent varies. 

9. lim(yn) = 0 and lim(y'nyn)  = i .  

1 1 .  b .  

13. 
15. 
18. 
20. 

(a) 

(a) 

(a) 

(a) 

L = a 
Converges to 0 
(1) 

21 . Yes. (Why?) 

(b) L = b12 
(b) 
(c) 

(c) 

(b) 

22. From Exercise 2.2.16, un = ! (xn + Yn + IXn - yn l) .  

1 . 
L = l ib 

Converges to O. 
(n). 

23. Use Exercises 2.2. 16(b), 2.2. 17, and the preceding exercise. 

Section 3.3 

1. (xn) is a bounded decreasing sequence. The limit is 4. 

(d) � o. 

(d) L = 819. 

2. The limit is 1 .  3. The limit i s  2. 4. The limit is 2. 
5. (Yn) is increasing. The limit is Y = i ( 1  + J1 + 4p). 
7. (xn) is increasing. 

10. (sn) is decreasing and (tn) is increasing. Also tn ::::: xn ::::: sn for n E N. 

1 1 . Note Yn = I/(n + 1) + I/(n + 2) + . . . + 1/2n < I/(n + 1) + I/(n + 1) + . . .  + I/(n + 1) 
= nl(n + 1) < 1 .  

13. (a) e (b) e2 (c) e 
14. Note that if n ::: 2, then 0 ::::: sn - ../i ::::: s� - 2. 

15. Note that 0 ::::: sn - ./5 ::::: (s� - 5)/./5 ::::: (s� - 5)/2. 

(d) l ie. 

16. e2 = 2.25, e4 = 2.441 406, eg = 2.565 785, eI6 = 2.637 928. 
17. eso = 2.691 588, elOo = 2.704 814, elOoo = 2.716 924. 

Section 3.4 

1. For example x
2
n
- 1 := 2n - 1 and x

2
n := 1/2n. 

3. L = i (1 + ./5). 

7. (a) e 
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8. (a) 1 
12. Choose n l 2: 1 so that Ix I > 1 ,  then choose n2 > nl so that Ix I > 2, and, in general, choose n1 n2 

nk > nk_l so that IXn I > k. 
k 

13 . (x2n-l ) = (- 1 ,  -1/3, -1/5 , · ·  . ) .  
14. Choose nl 2: 1 so that xn 2: S - 1, then choose n2 > nl so that xn > S - 1/2, and, in general, 

1 2 
choose nk > nk_l so that xn > S - 1/ k. 

k 

Section 3.5 

1. For example, ((- In. 
3 .  (a) Note that l (-W - (-lt+l

l = 2 for all n E N. 
(c) Take m = 2n, so xm - xn = x2n - xn = In2n - Inn = In2 for all n. 

5 .  lime v'1i'+1 - ,J'ii) = O. But, if m = 4n, then .J4rI - ,J'ii = ,J'ii for all n .  
8. Let U := sup{xn : n E N}. If e > 0, let H be such that u - e < xH :::: u .  If m 2: n 2: H, then 

u - e < xn :::: xm :::: u so that IXm - xn l < e. 

10. tim(xn) = (1/3)xl + (2/3)x2. 12. The limit is ../2 - 1 .  
1 3 .  The limit is 1 + ../2. 
14. Four iterations give r = 0.201 64 to 5 places. 

Section 3.6 

1 .  If {xn : n E N} is not bounded above, choose nk+l > nk such that xn 2: k for k E N. 
k 

3. Note that IXn - 01 < e if and only if l /xn > l /e .  
4 .  (a) [,J'ii > a] {::::::} [n > a2] (c) In=l 2: ..;nrJ.  when n 2: 2. 
8. (a) n < (n2 + 2) 1/2 . 

(c) Since n < (n2 + 1) 1/2, then nl/2 < (n2 + 1) 1/2/n l/2. 
9. (a) Since xn/Yn --7 00, there exists Kl such that if n 2: Kl , then xn 2: Yn . Now apply Theorem 

3 .6.4(a). 

Section 3.7 

1 .  The partial sums of L b n are a subsequence of the partial sums of L an ' 
3. (a) Since l/(n + l ) (n + 2) = l/(n + 1) - l/(n + 2), the series is telescoping. 
6. (a) The 'Sequence (cos n) does not converge to O. 

(b) Since' l (cos n)/n2 1 :::: 1/n2, the convergence of L (cos n)/n2 follows fromExample3.7.6(c) 
an«;l Theorem 3.7.7. 

7. The "even" sequence (s2n) is decreasing, the "odd" sequence (s2n+l ) is increasing, and -1 :::: 
sn :::: O. Also 0 :::: · s2n - s2n+l = 1/.J2n + 1 .  

9 .  L 1/n2 i s  convergent, but L l/n is not. 
U .  Show that bk  2: al/ k for k E N, whence b l  + . . .  + bn 2: al (1 + . . . + l /n). 
12. Evidently2a(4) :::: a(3) + a (4) and22a(8) :::: a(5) + ' "  + a(8), etc. Alsoa(2) + a(3) :::: 2a(2) 

and a(4) + . . .  + a(7) :::: 22a(22), etc. The stated inequality follows by addition. Now apply the 
Comparison Test 3.7.7. 

14. (a) The terms are decreasing and 2n /2n 1n(2n) = l/(n In2) . Since L l/n diverges, so does 
L l/(n ln n). 
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15 .  (a) The tenns are decreasing and 2
n
/2

n
(ln 2

n
)C = ( l/nC) , (I/ ln2Y. Now use the fact that 

I:(l/nC) converges when c > 1 .  

Section 4.1 

1. (a-c) If Ix - 1 1  ::::: 1 ,  then Ix + 1 1  ::::: 3 so that Ix2 - 1 1  ::::: 3 1x - 1 1 .  Thus, Ix - 1 1  < 1/6 assures 
that Ix2 - 1 1  < 1/2, etc. 

(d) If lx - I I < I , then lx3 - I I ::::: 7 Ix - n  

2. (a) Since Ivfx - 21 = Ix - 41/(vfx + 2) ::::: � Ix - 41 ,  then Ix - 41 < 1 implies that we have 
Ivfx - 21 < � .  

(b )  If I x  - 4 1  < 2 x 10-2 = .02, then Ivfx - 21 < .01.  

5. If ° < x < a, then ° < x + c < a +c < 2a, so that Ix2 - c2 1 = Ix + c l lx - c l  ::::: 2alx - cI .  
Given e > 0, take 8 := e /2a. 

8. If c =1= 0, show that Ivfx - .Jcl ::::: ( l/.Jc)lx - cl, so we can take 8 := e.Jc. If c = 0, we can 
take 8 := e2 . 

9. (a) If Ix - 21 < 1/2 show that I I/ ( l - x) + 1 1  = I (x - 2)/(x - 1) 1  ::::: 21x - 21 .  Thus we can 
take 8 := inf{ I/2, e/2}. 

(c) If x =1= 0, then Ix2/lx l - 01 = Ix i .  Take 8 := e. 

10. (a) If Ix - 21 < 1 ,  then Ix2 + 4x - 121 = Ix + 6 1 1x - 21 < 91x - 21. We may take 8 := 

inf{ 1, e /9} .  
(b) If Ix + 1 1  < 1/4, then I (x + 5)/(3x + 2) - 41 = 71x + I I/ 12x + 3 1  < 141x + l I .  and we 

may take 8 := inf{ I/4, e/I4}. 

11 .  (a) Let xn := I/n. (c) Let xn := I/n and Yn := - I/n. 

13. (b) If f(x) := sgn(x), then lim (f(x» 2 = 1 ,  but lim f(x) does not exist. 
x�o x�o 

Since If(x) - 01 ::::: lx i ,  we have lim f(x) = 0. 
x�o 

14. (a) 
(b) If c =1= ° is rational, let (xn) be a sequence of irrational numbers that converges to c; then 

f(c) = c =1= ° = lim(f(xn». What if c is irrational? 

16. The restriction of sgn to [0, 1] has a limit at 0. 

Section 4.2 

1. (a) 10 

2. (a) 1 

(b) -3 

(b) 4 

(c) 1/12 

(c) 2 

3. Multiply the numerator and denominator by ,J 1 + 2x + ,J 1 + 3x . 

(d) 1/2. 

(d) 1/2. 

4. Consider xn := I/21fn and cos(I/xn) = 1 .  Use the Squeeze Theorem 4.2.7. 

8. If Ixl ::::: 1, k E N, then Ixk l = Ix lk ::::: 1, whence _x2 ::::: xk+2 ::::: x2 . 

I I .  (a) No limit (b) ° (c) No limit (d) 0. 

Section 4.3 

�. Let f(x) := sin(l/x) for x < ° and f(x) := ° for x > 0. 

3. Given a > 0, if ° < x < I/a2, then .;x < I/a, and so f(x) > a. 

5. (a) If a > 1 and 1 < x < a/(a - 1), then a < x/ex - 1), hence we have 
lim x/ex - 1) = 00. 

x .... 1+ 
(c) Since (x + 2)/ vfx > 2/ vfx, the limit is 00. 

(e) If x > 0, then 1/ vfx < (v'.X+})/x, so the right-hand limit is 00. 

(g) 1 (h) - 1 .  
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8. Note that If(x) - L I  < dor x > K if and only if I f(1/z) - L I  < dor 0 < z < 1/ K. 
9. There exists cx > 0 such that Ixf(x) - L I  < 1 whenever x > cx .  Hence If(x) 1 < ( IL l  + 1)/x 

for x >  cx. 

12. No. If hex) := f(x) - g(x), then lim hex) = 0 and we have 
x-+oo 

f(x)/g(x) = 1 + h(x)/g(x) --+ 1 .  

13. Suppose that If(x) - LI  < s for x >  K ,  and that g(y) > K for y > H .  Then 
If 0 g(y) - L I < s for y > H. 

Section 5.1 

4. (a) Continuous if x =1= 0, ± 1, ± 2, . . .  
(c) Continuous if sin x =1= 0, 1 

(b) Continuous if x =1= ± 1 ,  ± 2, . . .  
(d) Continuous if x =1= 0, ± 1 ,  ± 1/2, . . . . 

7. Let s := f(c)/2, and let 8 > 0 be such that if Ix - cl < 8, then If(x) - f(c)1 < s, which 
implies that f(x) > f(c) - s = f(c)/2 > o. 

8. Since f is continuous at x, we have f(x) = lim(f(xn» = O. Thus X E S. 

10. Note that I lx I - Ic l l � Ix - c ! -
13 .  Since Ig(x) - 61 � sup{ 12x - 6 1 ,  Ix - 3 1 }  = 2 1x - 3 1 ,  g i s  continuous at x = 3. If c =1= 3, let 

(xn) be a sequence of rational numbers converging to c and let (Yn) be a sequence of irrational 
numbers converging to c. Then lim(g(xn» =1= lim(g(Yn» 

Section 5.2 

1. (a) Continuous on � (c) Continuous for x =1= o. 
2. Use 5.2. 1(a) and Induction; or, use 5.2.8 with g(x) := xn . 
4. Continuous at every noninteger. 
7. Let f(x) := 1 ifx is rational, and f(x) := -1  ifx is irrational. 

12. First show that f(O) = 0 and fe-x) = -f(x) for all x E �; then note that f(x - xo) = 
f (x) - f (xo)· Consequently f is continuous at the point Xo if and only if it is continuous at O. 
Thus, if f is continuous at xo' then it is continuous at 0, and hence everywhere. 

13. First show that f (0) = 0 and (by Induction) that f (x) = cx for x E N, and hence also for x E Z. 
Next show that f (x) = cx for x E Q. Finally, if x if. Q, let x = lim(rn) for some sequence in Q. 

15. If f(x) � g(x), thenboth expressions give h (x) =j(x); and if f(x) � g(x), then h(x) = g(x) 
in both cases. 

Section 5.3 

1. Apply either the Boundedness Theorem 5 .3.2 to l /f, or the Maximum-Minimum Theorem 
5.3.4 to conclude that inf f(l) > O. 

3. Choose a sequence (xn) such that If(xn+J) 1  � ! If(xn) 1  � (!)n lf(x1 ) 1 .  Apply the Bolzano­
Weierstrass Theorem to obtain a convergent subsequence. 

4. Suppose that p has odd degree n and that the coefficient an of xn is positive. By 4.3.16, 
lim p(x) = 00 and lim p(x) = -00. 

x�oo x-+-oo 

5. In the intervals [1 .035, 1 .040] and [-7.026, -7.025]. 
7. In the interval [0.7390, 0.7391]. 
8. In the interval [1 .4687, 1 .4765]. 
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(b) 6. 
10. 1/2n 

< 10-5 implies that n > (5 In 1O) / 1n2  � 16.61. Take n = 17. 

1 1 .  If I (w) < 0, then it follows from Theorem 4.2.9 that there exists a 8-neighborhood V8 (w) such 
that I(x) < 0 for all x E V8 (w). 

14. Apply Theorem 4.2.9 to fJ - I(x). 

15. If 0 < a < b � 00, then I((a, b» = (a2 , b2) ;  if -00 � a < b < 0, then I((a, b» = (b2, a2) .  
If a < 0 < b, then I((a, b» is not an open interval, but equals [0, c) where c := sup{a2 , b2} .  
Images of closed intervals are treated similarly. 

16. For example, if a < 0 < b and c := inf{ I/(a2 + 1) , 1/(b2 + I)}, then g((a, b» = (c, 1] .  If 
0 <  a < b, then g((a, b» = (l/(b2 + 1) ,  1/(a2 + 1» . Also g([- I ,  1]) = [ 1/2, 1] . If a < b, 
then h((a, b» = (a3 , b3) and h((a , b]) = (a3 , b3] .  

17 .  Yes. Use the Density Theorem 2.4.8. 

19. Consider g(x) := l /x for x E J := (0, 1) .  

Section 5.4 

1. Since l /x - l /u = (u - x)/xu, it follows that 1 1/x - l /u l  � (l/a2) lx - u l for x, u E [a, (0). 
3. (a) Let xn := n + l/n, un := n. 

(b) Let xn := 1/2mr, un := 1/(2mr + 7l' /2). 

6. If M is a bound for both I and g on A, show that I/(x)g(x) - l(u)g(u) 1  � MI/(x) -
l(u) 1  + Mlg(x) - g(u) 1  for all x ,  u E A. 

8 .  Given e > 0 there exists 8/ > 0 such that I y  - v i  < 8/ implies I/(y) - l(v) 1 < e .  Now choose 
8g > 0 so that Ix - u l  < 8g implies Ig(x) - g(u) 1  < 81 ' 

1 1 . If Ig(x) - g(O) 1 � K lx - 01 for all x E [0, 1], then .JX � Kx for x E [0, 1]. But if xn := l/n2, 
then K must satisfy n � K for all n E N, which is impossible. 

14. Since I is bounded on [0, p], it follows that it is bounded on R. Since I is continuous on 
J := [-1, p + 1], it is uniformly continuous on J .  Now show that this implies that I is 
uniformly continuous on R. 

Section 5.5 

1. (a) The 8-intervals are [-� , � ] ,  [� ,  �] ,  and [� , �] . 
(b) The third 8-interval does not contain [�, 1]. 

2. (a) Yes. (b) Yes. 

3. No. The first 82-interval is [- iii , iii ] and does not contain [O, � ] . 

4. (b) If t E (�, 1) then [t - 8 (t), t + 8(t)] = [- � + �t ,  � + �t] C (�, 1) . 
6. We could have two subintervals having c as a tag with one of them not contained in the 8-interval 

around c. 

7. IfP := {([a, XI ] ' tl ) ,  . . .  ([Xk_ l ,  c], tk) ,  ([c, Xk+I ] ' tk+I ) '  " ' , ([xn ' b], tn) }  is 8* -fine, then pi := 
{([a, XI] ' tl), " ' ,  ([Xk_l , c], tk) }  is a 8' -fine partition of [a, c] and P" := {([c, Xk+l ] ,  tk+l) , " ' , 
([Xn '  b] , tn )} is a 8"-fine partition of [c, b] . 

9. The hypothesis that I is locally bounded presents us with a gauge 8. If {( [Xi_ I ' Xi ] '  ti) }7=1 is a 
8-fine partition of[a, b] and Mi is a bound for Il i on [Xi_I ' Xi ]' letM := Sup{Mi : i = 1 ,  . .  " n}. 



368 HINTS FOR SELECTED EXERCISES 

Section 5.6 

1. If x E [a, b], then f(a) .:5 f(x). 
4. If 0 .:5 f(xl )  .:5 f(x2) and 0 .:5 g(xl) .:5 g(x2) ,  then f(xl )g(xl ) .:5 f(x2)g(xl) .:5 f(x2)g(X2)· 
6. If f is continuous at c, then lim(j(xn» = f(c), since c = lim(xn). Conversely, since 

0 .:5 jj (c) .:5 f(x2n) - f(x2n+I ), it follows that jj(c) = 0, so f is continuous at c. 
7. Apply Exercises 2.4.4, 2.4.5 and the Principle of the Iterated Infima (analogous to the result in 

Exercise 2.4.1 1). 
8 .  Let XI E I be such that y = f(xl) and x2 E I be such that y = g(x2) · If x2 .:5 xI ' then y = 

g(Y2) < f(x2) .:5 f(xl )  = y, a contradiction. 
1 1 .  Note that f-I is continuous at every point of its domain [0, 1] U (2, 3]. 
14. Lety := xl/n and z := xl/q so thatyn = X = z q ,  whence (by Exercise 2.1 .26) ynp = xp = zqp .  

Since np = mq,  show that (x
l/n)m = (x l/q)P, or xm/n = xp/q . Now consider the case where 

m, p E Il. 
15. Use the preceding exercise and Exercise 2. 1 .26. 

Section 6.1 

1. (a) f' (X) = lim[(x + h)3 - x3]/ h = lim(3x2 + 3xh + h2) = 3x2, h�O h�O 
I . v'x + h - JX . 1 1 (c) h (x) = hm = hm = --. h�O h h�0 v'x + h + JX  2JX 

4. Note that If(x)/x l .:5 Ix l  for X E R. 
5. (a) f' (x) = (1 - x2)/(1 + x2)2 

(c) h'(X) = mkxk-I (cosxk) (sinxk)m-I (b) g'(x) = (x - l)/J5 - 2x + x2 
(d) k'(X) = 2x sec2(x2). 

6. The function f' is continuous for n 2: 2 and is differentiable for n 2: 3. 
8. (a) f'(X) = 2 for x >  0, f'ex) = 0 for - 1  < x < 0, and f'(X) = -2 for x < -I ,  

(c) h'(x) = 2Ix l for all x E lR, 
10. If x #- 0, then g' (x) = 2x sin(1/x2) - (2/x) cos(l/x2) .  Moreover, 

g' (0) = lim h sin(1/ h2) = O. Consider x := 1/ v'2mr. h�O n 

1 1 .  (a) j'{x) = 2/(2x + 3) (b) g'(x) = 6(L(x2»2/x 
(c) h'(X) = l/x (d) k'(X) = 1/(xL(x» . 

14. 1/ hi (0) = 1/2, 1/ hi (1) == 1/5, and 1/ hi (-1)  = 1/5. 
16. D[Arctany] = I/D[tanx] = l/ sec2 x = 1/(1 + yZ). 

Section 6.2 

1 .  (a) Increasing on [3/2, 00), decreasing on (-00, 3/2], 
(c) Increasing on (-(X), -1] and [I ,  00) 

2. (a) Relative minimum at x = 1 ;  relative maximum at x = -I ,  
(c) Relative maximum at x = 2/3. 

3. (a) Relative minima at x = ± 1 ;  relative maxima at x = 0, ± 4, 
(c) Relative minima at x = -2, 3; relative maximum at x = 2. 

6. If x < y there exists c in (x, y) such that I sin x - sin YI = I cos c l ly  - xl .  
9 .  f(x) = x4(2 + sin(1/x» > 0 for x #- 0, so f has an absolute minimum at x = O. Show that 

f' ( 1/2mr) < 0 for n 2: 2 and f' (2/(4n + 1)11") > 0 for n 2: 1 .  
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10. g'(O) = lim( l  + 2x sin(l /x» = 1 + 0 = 1 ,  and if x "# 0, then g'(x) = 1 + 4x sin(l/x) -
x .... 0 

2 cos(l/x). Now show that g' ( l/2nJr) < 0 and that we have g' (2/(4n + 1)11") > 0 for n E N. 

14. Apply Darboux's Theorem 6.2. 12. 
17. Apply the Mean Value Theorem to the function g - f on [0, x] . 
20. (a, b) Apply the Mean Value Theorem. 

(c) Apply Darboux's Theorem to the results of (a) and (b). 

Section 6.3 

1 .  A = B(lim f(x)/g(x» = O. 
x .... c 

4. Note that f' (0) = 0, but that f' (x) does not exist if x "# O. 
6. (a) (b) 1 (c) 0 (d) 
7. (a) (b) 00 (c) 0 (d) 
8. (a) 0 (b) 0 (c) 0 (d) 
9. (a) (b) (c) e3 (d) 

10. (a) (b) (c) (d) 

Section 6.4 

1 .  f(2n-l) (x) = (_ l)na2n-l sinax and f(2n) (x) = (_l)na2n cos ax for n E N. 

1/3. 
O. 
O. 
O. 
O. 

4. Apply Taylor's Theorem to f(x) := .JI+X at xo := 0 and note that RJ (x) < 0 and R2(x) > 0 
for x >  O. 

5. 1 .095 < JI2 < 1 . 1  and 1 .375 < .fi < 1 .5 .  
6. R2(0.2) < 0.0005 and R2(l) < 0.0625. 

1 1 .  With n = 4, In 1 .5 = 0040; with n = 7, In 1 .5 = 00405. 
17. Apply Taylor's Theorem to f at Xo = c to show that f(x) � f(c) + f' (c) (x - c). 
19. Since f(2) < O and f(2.2) > O, thereis a zero of f in [2.0, 2.2]. The value ofx4 is approximately 

2.094 551 5. 
20. r1 � 1 .452 626 88 and r2 � -1 . 164 035 14. 21 .  r � 1 .324 717 96. 
22. r1 � 0.158 594 34 and r2 � 3. 146 193 22. 
24. r � 0.739 085 13. 

Section 7.1 

1 .  (a) 1 11\ II = 2 
2. (a) 02 . 1 + 12 . 1 + 22 · 2  = 0 + 1 + 8 = 9 

(b) 37 (c) 13  

23. r1 � 0.5 and r2 � 0.809 016 99. 

(d) 33. 
5.  (a) If U E [Xi_I ' x;l, then Xi_1 ::s U so that C1 ::s ti ::s Xi ::s Xi_ 1 + I IPII whence c1 - IIP II ::s 

xi_ J ::s u. Also U ::s Xi so that Xi - I IPI I ::s Xi_ 1 ::s ti ::s c2' whence U ::s Xi ::s C2 + I IPI I . 
10. g is not bounded. Take rational tags. 
12. Let P n be the partition of [0, 1] into n equal parts. If P n is this partition with rational tags, then 

S(f; P n) = 1 ,  while if Qn is this partition with irrational tags, then S(f; Qn) = O. 
13 . Argue as in Example 7.1 .3(d). 
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15. If 1 1'1'11 < 8, := 8/4a, then the union of the subintervals in '1' with tags in [c, d] contains 
the interval [c + 8" d - 8,] and is contained in [c - 8" d + 8,]. Therefore Ol(d - c - 28,) � 

S(rp; '1') � Ol(d - c + 28,), whence IS(rp; '1') - a (d - c) 1 � 2ot8, < 8. 

16. (b) In fact, (xl + XiXi_1 + xl-I) . (Xi - Xi_I ) = x; - X;-I ' 
(c) The terms in S(Q; Q) telescope. 

18. Let '1' = {( [Xi_I ' x), t) };=I be a tagged partition of [a, b] and let 
Q := { ([xi_ 1 + C, xi + c], ti + c) 1;=1 so that Q is a tagged partition of [a + c, b + c] and 
II QI I = 1 1'1' 1 1 .  Moreover, S(g; Q) = S(f; '1') so that IS(g; Q) - t I I = I S(f; '1') - t II < 8 
when II QI I < 8, . 

Section 7.2 

2. If the tags are all rational, then S(h; '1') � 1, while if the tags are all irrational, then S(h; '1') = o. 
3. Let Pn be the partition of [0, 1] into n equal subintervals with t\ = l /n and Qn be the same 

subintervals tagged by irrational points. 
5. If cl , " ' ,  c are the distinct values taken by rp, then rp-I (C . )  is the union of a finite collection n , r. 

{l. l " ' " J. } of disjoint subintervals of [a, b]. We can write rp = 'L;=I 'L/=I c .rp, . , ,rj , jk 
6. Not necessarily. 
8. If I(c) > 0 for some c E (a, b), there exists 8 > 0 such that I(x) > �/(c) for Ix - cl � 8. 

Then J: I � Je
e�8

8 I � (28) �/(c) > O. If c is an endpoint, a similar argument applies. 
10. Use Bolzano's Theorem 5.3.7. 
12. Indeed, Ig(x) 1  � 1 and is continuous on every interval [c, 1 ]  where 0 < c < 1 . The preceding 

exercise applies. 
13. Let I(x) := l /x for x E (0, 1] and 1(0) := O. 
16. Let m := inf I(x) and M := sup I. By Theorem 7.1 .4(c), we have 

m(b - a) � J: I � M(b - a). By Bolzano's Theorem 5.3.7, there exists c E [a, b] such that 
I(c) = <J: f)/(b - a). 

19. (a) Let Pn be a sequence of tagged partitions of [0, a] with IIPn ll --+ 0 and let '1': be the 
corresponding "symmetric" partition of [-a, a]. Show that S(f; '1':) = 2S(f; Pn) --+ 
2 J; I· 

21 .  Note that x 1-+ I(X2) is an even continuous function. 
22. Let Xi := i.(7r /2) for i = 0, 1 ,  . . .  , n .  Then we have that 

(7r/2n) 'Li':� I(cosx) = (7r/2n) 'L�=I I(sinxk) · 

Section 7.3 

1 .  Suppose that E :,;", {a = Co < ci < . . .  < cm = b} contains the points in [a, b] where the 
derivative F'(x) either does not exist, or does not equal I(x). Then I E  R[ci_l , c) and 
J��l I = F(c) - F(ci_ I ) · Exercise 7.2. 14 and Corollary 7.2. 10 imply that I E R[a, b] and 
that J: I = 'L�=I (F(c) - F(ci-\ ») = F(b) - F(a). 

2. E = 0. 
4. Indeed, B'(x) = Ix l  for all x .  

3. Let E := {-I ,  I } .  If  x rt. E, G'(x) = g(x). 
6. Fe = Fa - J: I· 

7. Let h be Thomae's function. There is no function H :  [0, 1] --+ lR such that H'(x) = h(x) 
for x in some nondegenerate open interval; otherwise Darboux's Theorem 6.2. 12 would be 
contradicted on this interval. 
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9. (a) G(x) = F(x) - F(c), (b) H(x) = F(b) - F(x), 
10. Use Theorem 7.3.6 and the Chain Rule 6.1 .6. 

(c) S(x) = F(sinx) - F(x). 

1 1 . (a) F'(x) = 2x(1 + x6)-1 (b) F'(x) = (1 + X2) 1/2 _ 2X(1 + x4) 1/2 . 
13. g'(x) = f(x + c) - f(x - c). 
16. (a) Take rp(t) = 1 + t2 to get � (23/2 - 1). 

(b) Take rp(t) = 1 + t3 to get �. 
(c) Take rp(t) = 1 + v'i to get � (33/2 - 2312) . 
(d) Take rp(t) = t l/2 to get 2(sin2 - sin 1) . 

18. (a) Take x = rp(t) = t l/2 , so t = 1{f(x) = x2 to get4(1 - In(5/3)). 
(b) Take x = rp(t) = (t + 1) 1/2 , so t = 1{f(x) = x2 - 1 to get In(3 + 2v'2) - ln 3. 
(c) Take x = rp(t) = t l/2 to get 2(3/2 + In 3/2). 
(d) Take x = rp(t) = t l/2 to get Arctan 1 -Arctan(1/2). 

19. In (a) - (c) rp' (0) does not exist. For (a), integrate over [c, 4] and let c --+ O+. For (c), the 
integrand is even so the integral equals 2 Jol (1 + t) 1/2 dt. 

20. (b) Un Zn is contained in Un,k Jt and the sum of the lengths of these intervals is 
::: Ln e/2n = e. 

21 . (a) The Product Theorem 7.3 . 16 applies. 
(b) We have =f2t J: fg ::: t2 J: f2 + J: g2. 
(c) Let t --+ 00 in (b). 
(d) If J: f2 =f:. 0, let t = (I: g2/ J: f2) 1/2 in (b). 

22. Note that sgn 0 h is Dirichlet's function, which is not Riemann integrable. 

Section 7.4 

1. Use (4) with n = 4, a = I ,  b = 2, h = 1/4. Here 1/4 ::: !"(c) ::: 2, so T4 � 0.697 02. 
3. T4 � 0.782 79. 
4. The index n must satisfy 2/12n2 < 10-6 ; hence n > 1000/ v'6 � 408.25. 
5. S4 � 0.785 39. 
6. The index n must satisfy 96/180n4 < 10-6; hence n ::: 28. 
12. The integral is equal to the area of one quarter of the unit circle. The derivatives of h are 

unbounded on [0, 1]. Since hI! (x) ::: 0, the inequality is Tn (h) < 7r /4 < Mn (h). See Exercise 8. 
13. Interpret K as an area. Show that hI! (x) = -(1 - X2)3/2 and that 

h(4) (X) = -3(1 + 4x2)(1 - X2)-7/2. To eight decimal places, 7r = 3. 141 59265. 
14. Approximately 3.653 48449. 15. Approximately 4.821 159 32. 
16. Approximately 0.835 648 85. 
18. 1 . 
20. Approximately 0.904 524 24. 

Section 8.1 

1. Note that 0 ::: fn(x) ::: x/n --+ 0 as n --+ 00. 

3. If x >  0, then Ifn (x) - 11 < 1/(nx) . 
5. If x > 0, then If/x) 1 ::: 1/(nx) --+ O. 
7. If x > 0, then 0 < e-x < 1 . 

17 . Approximately 1 . 851 937 05. 
19. Approximately 1 . 198 140 23. 
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9. If x > 0, then 0 ::::: x2e-nx = x2(e-x)n --+ 0, since 0 < e-x < 1 .  

10. If x E Z,  the limit equals 1 .  If x ¢ Z,  the limit equals O. 
1 1 . If x E [0, a], then Ifn (x) 1  ::::: a/no However, fn (n) = 1/2. 
14. If x E [0, b], then If/x) 1  ::::: bn . However, fn (TI/n) = 1/3. 

15 .  If x E [a, (0), then Ifn(x) 1  ::::: l/(na). However, fn (l/n) = � sin 1 > O. 
18. The maximum of fn on [0, (0) is at x = l/n, so I Ifn 11 [0,00) = l/(ne) . 

20. Ifn is sufficiently large, II fn ll [a,oo) = n2a2/ena . However, Il fn ll [o,
oo) = 4/e2. 

23. Let M be a bound for (f/x» and (gn (x» on A, whence also If(x) 1  ::::: M. The Triangle 
Inequality gives Ifn (x)gn (x) - f(x)g(x) 1  ::::: M( lfn (x) - f(x) 1  + Ign (x) - g(x) I) for x E A. 

Section 8.2 

1. The limit function is f(x) := 0 for 0 ::::: x < 1 ,  f(l) := 1/2,�J(x) := 1 for 1 < x ::::: 2. 
4. If 8 > 0 is given, let K be such that if n ::: K, \hen Hfn - f II / < 8� Then Ifn (xn) - f(xo) I ::::: 

I fn (xn) - f(xn) 1  + If(xn) - f(xo) I ::::: 8/2 + If(xn) - f(xo)l . Since f is continuous (by The­
orem 8.2.2) andxn --+ xo, then lf(xn) - f(xo) 1  < 8/2 forn ::: K', so that Ifn (xn) - f(xo) 1  < 8 
for n ::: max{K , K'} . 

6. Here f(O) = 1 and f(x) = 0 for x E (0, 1], The convergence is not uniform on [0, 1] .  
7. Given 8 := 1 ,  there exists K > 0 such that if n ::: K and x E A, then Ifn (x) - f(x) 1  < 1 ,  so 

that Ifn (x) 1  ::::: IfK (x) 1  + 1 for all x E A. Let M := max{ l IfI Il A , . . .  , I IfK-I I I A , I IfK II A + I} .  

8, fn (1/.fo) = .fo/2. 

10. Here (gn) converges uniformly to the zero function, The sequence (g�) does not converge 
uniformly. 

1 1 .  Use the Fundamental Theorem 7.3.1 and Theorem 8,2.4. 
13. If a > 0, then II fn II [a,"') ::::: l/(na) and Theorem 8.2.4 applies. 
15. Here IIgn 11 [0, 1) ::::: 1 for all n. Now apply Theorem 8.2.5, 
20. Let fn (x) := xn on [0, 1) . 

Section 8.3 

1. Let A := x > 0 and let m --+ 00 in (5). For the upper estimate on e, take x = 1 and n = 3 to 
obtain Ie --0 2� 1  < 1/ 12, so e < 2� .  

2 .  Note that if.n ::: 9 ,  then 2/(n + I ) !  < 6 x 10-7 < 5 X 10-6
• Hence e � 2.71828. 

3. Evidently, En (x) ::::: eX for x :::, O. To obtain the other inequality, apply Taylor's Theorem 6.4.1 
to [0, a]. 

. , 

5, Note that 0 ::::: tn /0 + t) ::::: tn for t E [0, x]. 
6. In 1.1 � 0.0953 and In 1 .4 � 0,3365. Take n > 19, 999. 
7. ln2 � 0.6931 .  

10. L'(l) = lim[L(1 + l /n) - L(1)]f(1/n) = lim L«l + l /nt) = L(lim(1 + l/n)n) = 
L(e) = 1 .  

1 1 . (c) (xy)" = E(aL(xy» = E(aL(x) + aL(y» = E(aL(x» . E(aL(y» = x" . y" . 
12. (b) (x")fi = E(fJL(x"» = E(fJaL(x» = x"fi, and similarly for (xfi)". 
15. Use 8.3.14 and 8.3.9(vii). 
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17. Indeed, we have 10ga x = (lnx)/(lna) = [(1nx)/(lnb)] · [(1nb)/(lna)] if a 1= 1 ,  b 1= 1. Now 
take a = 10, b = e. 

Section 8.4 

1. If n > 21x l ,  then I cosx - Cn (x) 1  ::::: (16/15)lx IZn /(2n) ! ,  so cos(0.2) � 0.980067, cos 1 � 
0.549 302. Similarly, sin(0.2) � 0.198 669 and sin 1 � 0.841 471 .  

4 .  We integrate 8.4.8(x) twice on [0, x ] .  Note that the polynomial on the left has a zero in the 
interval [1 .56, 1 .57], so 1 .56 ::::: IT /2. 

5. Exercise 8.4.4 shows that C4 (x) ::::: cos x ::::: C/x) for all x E R Integrating several times, we get 
S4(X) ::::: sinx ::::: S5 (X) for all x > 0. Show that S4(3.05) > o and S5(3. 15) < O. (This procedure 
can be sharpened.) 

6. If Ix l  ::::: A and m > n > 2A, then Icm (x) - cn (x) 1  < (16/15)AZn /(2n) !, whence the conver­
gence of (c n) to c is uniform on each interval [-A ,  A]. 

7. D[(c(x» z - (s(x»z] = 0 for all x E R For uniqueness, argue as in 8.4.4. 
8. Let g(x) := f(O)c(x) + f'(O)s(x) for x E R, so that g"(x) = g(x), g(O) = f(O) and g' (O) = 

f'(O). Therefore hex) := f(x) - g(x) has the property that h"(x) = hex) for all x E R and 
h(O) = 0, h' (0) = O. Thus g(x) = f(x) for all x E R, so that f(x) = f(O)c(x) + f' (O)s(x). 

9. If <p(x) := c(-x), show that <p"(x) = <p(x) and <p(0) = 1, <p'(0) = 0, so that <p(x) = c(x) for 
all x E R Therefore c is even. 

Section 9.1 

1 .  Let sn be the nth partial sum of L� an ' let tn be the nth partial sum of L� Ian I ,  and suppose 
that an 2: 0 for n > P. If m > n > P, show that tm - tn = sm - sn ' Now apply the Cauchy 
Criterion. 

3. Take positive terms until the partial sum exceeds 1, then take negative terms until the partial 
sum is less than 1 ,  then take positive terms until the partial sum exceeds 2, etc. 

5. Yes. 
6. If n 2: 2, then sn = - ln2  - Inn  + In(n + 1). Yes. 
9. We have sZn - sn 2: naZn = 4 (2na2n) ,  and sZn+1 - sn 2: 4 (2n + l )a2n+I • Consequently 

lim(nan) = O. 
1 1 .  Indeed, if Inzan l ::::: M for all n, then lan l ::::: M/nz . 
13. (a) Rationalize to obtain L xn where xn := [J1I(,JnTI + J1I)r

l and note that xn � Yn := 
1/(2n). Now apply the Limit Comparison Test 3.7.8. 

(b) Rationalize and compare with L 1/n3/z . 
14. If L an is absolutely convergent, the partial sums of L Ian I are bounded, say by M. Evidently 

the absolute value of the partial sums of any subseries of an are also bounded by M. 
Conversely, if every subseries of L an is convergent, then the subseries consisting of the 

strictly positive (and strictly negative) terms are absolutely convergent, whence it follows that 
L an is absolutely convergent. 

Section 9.2 

1. (a) Convergent; compare with L l/nz . 
2. (a) Divergent; apply 9.2. 1 with bn := l /n. 

(c) Divergent; note that 21/n -+ 1 .  

(c) Convergent; use 9.2.4 and note that (n/(n + l»n -+ l/e < 1 .  
3 .  (a) (lnn)P < n for large n, by L'Hospital's Rule. 
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(c) Convergent; note that (lnn)lnn > n2 for large n. 
(e) Divergent; apply 9.2.6 or Exercise 3.7.12. 

4. (a) Convergent (b) Divergent (c) Divergent 
(d) Convergent; notethat (ln n) exp(-nl/2) < n exp(-nl/2) < 1/n2 forlargen,byL'Hospital's 

Rule. 
(e) Divergent (f) Divergent. 

6. Apply the Integral Test 9.2.6. 
7. (a, b) Convergent (c) Divergent (d) Convergent. 
9. If m > n 2: K, then ISm - sn l :s IXn+1 1 + . . .  + IXm l < rn+I /(l - r). Now let m � 00. 

12. (a) A crude estimate of the remainder is given by S - S4 < It) x-2 dx = 1/5. Similarly 
S - slO < 1/ 1 1  ands - sn < l/(n + 1) , so that 999 terms suffice to get s - s999 < 1/1000. 

(d) If n 2: 4, then xn+l /xn :s 5/8 so (by Exercise 10) Is - s4 1 :s 5/12. If n 2: 10, then 
xn+l/xn :s 1 1/20 so that Is - slO l :s (10/210) ( 1 1/9) < 0.012. If n = 14, then Is - sI4 1 < 
0.000 99. 

13. (b) Here L�+I < Inoo X-3/2dx = 2/Jn, so Is - slO l < 0.633 and Is - sn l < 0.001 when 
n > 4 x 106. 

(c) If n 2: 4, then Is - sn I :s (0.694)xn so that Is - s4 1 < 0.065. If n 2: 10, then 
Is - sn l :s (0.628)xn so that Is - slO l < 0.000 023. 

14. Note that (s3n) is not bounded. 
16. Note that, for an integer with n digits, there are 9 ways of picking the first digit and 10 ways of 

picking each of the other n - 1 digits. There is one value of mk from 1 to 9, there is one value 
from 10 to 19, one from 20 to 29, etc. 

18 . Here lim(n(1 - xn+l /xn» = (c - a - b) + 1, so the series is convergent if c > a + b and is 
divergent if c < a + b. 

Section 9.3 

1. (a) Absolutely convergent 
(c) Divergent 

(b) Conditionally convergent 
(d) Conditionally convergent. 

2. Show by induction that S
2 

< S4 < s6 < . . .  < S5 < s3 < sl .  Hence the limit lies between sn and 
sn+1 so that Is - sn I < I Sn+1 - sn I = zn+l · 

5. Use Dirichlet's Test with (Yn) := (+1 ,  -1 ,  -:-1 ,  +1 ,  +1 ,  -1 ,  -1 , · ·  .) .  Or, group the terms in 
pairs (after the first) and use the Alternating Series Test. 

7. If f(x) := (lnx)P /xq , then f' ex) < 0 for x sufficiently large. L'Hospital's Rule shows that the 
terms in the alternating series approach O. 

8. (a) Convergent (b) Divergent (c) Divergent (d) Divergent. 
1 1 .  Dirichlefs Test does not apply (directly, at least), since the partial sums of the series generated 

by (1 ,  - 1 , - 1 ,  1 ,  1 ,  1 , · · ·) are not bounded. 
15 . (a) Use Abel's Test with xn := l/n. 

(b) Use the Cauchy Inequality with xn := F,., Yn := l/n, to get 
L F,./n :s (L ay/2(L l /n2) 1/2, establishing convergence. 

(d) Let an := [n(lnn)2r
l , which converges by the Integral Test. However, bn := [Jnlnnrl , 

which diverges. 

Section 9.4 

1 .  (a) Take Mn := l/n2 in the Weierstrass M-Test. 
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(c) Since I sin yl .:::: Iy l ,  the series converges for all x. But it is not unifonnly convergent on R 
If a > 0, the series is unifonnly convergent for Ix l .:::: a .  

(d) If 0 .:::: x .:::: I ,  the series is divergent. If 1 < x < 00, the series is convergent. It is unifonnly 
convergent on [a, (0) for a > 1 .  However, it is not unifonnly convergent on (1 ,  (0). 

4. If p = 00, then the sequence ( Ian I I /
n) is not bounded. Hence if IXo l > 0, then there are infinitely 

many k E N  with lak I > 1 I Ixo I so that lakx� I > 1 .  Thus the series is not convergent when 
Xo #- O. 

5 .  Suppose that L := lim(lan I / lan+ l l) exists and that 0 < L < 00. It follows from the Ratio Test 
that L: anx

n converges for Ix l < L and diverges for Ix l > L. The Cauchy-Hadamard Theorem 
implies that L = R. 

6. (a) R = 00 
(d) 1 

8. Use lim(n l/n) = 1 .  

(b) R = 00 
(e) R = 4 

10. By the Uniqueness Theorem 9.4. 13 ,  an = (_ l)nan for all n. 

(c) R = lie 
(f) R = 1 .  

12. Ifn E N, there exists a polynomial Pn such that j(n) (x) = e-l/x2 Pn (1lx) for x #- O. 
2 13. Let g(X) := 0 for x � 0 and g(x) := e-I/x for x < O. Show that g(n) (0) = 0 for all n. 

16. Substitute -y for x in Exercise 15 and integrate from y = 0 to y = x for Ix l < I ,  which is 
justified by Theorem 9.4. 1 1 .  

19. J; e-t2 dt = L:::"=o (_ I)nx2n+1 In ! (2n + 1) for x E R 

/2 7r 1 ·  3 . 5 . . .  (2n - 1) 20. Apply Exercise 14 and J:: (sinx)2ndx = - . 
2 . 

Section 10.1 

2 · 4 · 6 · · · 2n 

1 .  (a) Since tj - 8(tj ) .:::: xj_1 and Xj .:::: tj + 8 (t), then 0 .:::: Xj - xj_1 .:::: 28(tj ) .  
(b) Apply (a) to each subinterval. 

2. (b) Consider the tagged partition { ([O, 1] ,  I),  ([1 , 2], I ) , ([2, 3], 3), ([3, 4], 3)}. 

3. (a) If P = {([xj_I , xj ] ,  tj )}7=1 and if tk is a tag for both subintervals [Xk_I , Xk] and [Xk , Xk+I ]' 
we must have tk = xk . We replace these two subintervals by the subinterval [Xk_I , Xk+I ] with the tag fk' keeping the 8-fineness property. 

(b) No. 
(c) Iffk E (Xk_ I , xk), then we replace [xk_l '  xk] by the two intervals [Xk_I , tk] and [tk , xk] both 

tagged by fk, keeping the 8-fineness property. 
4. If Xk_1 .:::: 1 .:::: xk and if fk is the tag for [Xk_I , xk], then we cannot have fk > I ,  since then fk -

8(tk) = � (tk + 1) > 1 .  Similarly, we cannot have fk < I, since then fk + 8 (fk) = � (fk + 1) < 1 .  
Therefore fk = 1 .  

5. (a) Let 8 (t) := � min{ lf - 1 1 ,  If - 21 , If - 3 1 }  if t #- 1 , 2, 3  and 8(t) := l for t = 1 , 2, 3. 
(b) Let 82(f) := min{8(t) ,  81 (f)}, where 8 is as in part (a). 

7. (a) FI (x) := (2/3)x3/2 + 2XI/2, 
(b) F2(x) := (2/3)(1 - x)3/2 - 2(1 - x) I/2, 
(c) F3 (x) := (2/3)x3/2(ln x - 213) for x E (0, 1] and F3 (0) := 0, 
(d) F4(x) := 2x 1/2(lnx - 2) for x E (0, 1] and F4(0) := 0, 
(e) Fs(x) := -� + Arcsinx .  
(f) F6(x) := Arcsin(x - 1) . 

8.  The tagged partition Pz need not be 8e-fine, since the value 8e (z) may be much smaller than 
8e (x). 
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9. If f were integrable, then I; f ::: 10
1 

Sn = 1/2 + 1/3 + . . . + 1/(n + 1) .  
10. Weenumerate thenonzero rationalnumbers as rk = mk/nk anddefine 8B (mk/nk) := s/(nk2k+1 ) 

and 8B (x) := 1 otherwise. 
12. The function M is not continuous on [-2, 2]. 
13 . LI is continuous and L; (x) = II (x) for x =f:. 0, so Theorem 10. 1 .9 applies. 
15 . We have C; (x) = (3/2)xI/2 cos(1/x) + x-1/2 sin(1/x) for x > 0. Since the first term in C; has 

a continuous extension to [0, 1], it is integrable. 
16. We have C�(x) = cos(l/x) + (1/x) sin(1/x) for x > 0. By the analogue of Exercise 7.2.12, 

the first term belongs to n[O, 1] .  
17 . (a) Take rp(t) := t2 + t - 2 so Erp = 0 to get 6. 

(b) Take rp(t) := "fi so Erp = {OJ to get 2(2 + ln 3). 
(c) Take rp(t) := ..;t=l so Erp = {I} to get 2 Arctan 2. 
(d) Take rp(t) := Arcsin t so Erp = {I} to get �1r. 

19. (a) In fact f(x) := F'(x) = cos(n/x) + (n/x) sin(n/x) for x >  0. We set f(O) := 0, 
F' (0) : =  0. Note that f is continuous on (0, 1] . 

(b) F(ak) = ° and F(bk) = (_I)k / k. Apply Theorem 10.1 .9. 
(c) If If I E n*[O, 1 ] ,  then L�=I 1/  k ::::: L�=I I:k If  I ::::: I; If  I for all n E N. k 

20. Indeed, sgn(j(x» = (_ I)k = m(x) on [ak , bk] so m(x) · f(x) = Im(x)f(x)1 for x E [0, 1]. 
Since the restrictions of m and Im l  to every interval [c, l ]  for 0 <  c < 1 are step func­
tions, they belong to nrc, 1]. By Exercise 7.2. 1 1 , m and Iml belong to n[O, 1] and I; m = 

L�I(- ll /k(2k + 1) and Io
l
lml = L�I l /k(2k + 1) .  

21 .  Indeed, rp(x) = <I>'(x) = I cos(n/x) 1 + (n/x) sin(n/x) · sgn(cos(n/x» for x ¢ E by Exam­
ple 6. 1 .7(c). Evidently rp is not bounded near 0. If x E [ak , bk], then rp(x) = I cos(n/x) I  + 

(n /x) 1  sin(n /x) 1  so that I�k Irp l  = <I>(bk) - <I>(ak) = 1/ k, whence Irpl ¢ n*[O, 1]. 

22. Here 1/f(x) = \{I'(x) = 2x l cos(n/x) 1 + n sin(n/x) · sgn(cos(n/x» for x ¢ {OJ U EI by Ex­
ample 6.1 .7(b). Since 1/f is bounded, Exercise 7.2. 1 1  applies. We cannot apply Theorem 7.3.1 
to evaluate I; 1/f since E is not finite, but Theorem 10. 1 .9 applies and 1/f E n[O, 1]. Corollary 
7.3.15 implies that 11/f 1  E n[O, 1]. 

23. If p ::: 0, then mp ::::: fp ::::: Mp, where m and M denote the infimum and the supremum of f 
on [a, b], so that m I: p ::::: I: fp ::::: M I: p. If 1: p = 0, the result is trivial; otherwise, the 
conclusion follows from Bolzano's Intermediate Value Theorem 5.3.7. 

24. By the Multiplication Theorem 10. 1 . 14, fg E n*[a, b]. If g is increasing, then g(a)f ::::: fg ::::: 
g(b)f so that g(a) 1: f ::::: I: fg ::::: g (b) I: f· Let K(x) := g(a) I: f + g(b) 1: f, so that K 
is continuous and takes all values between K (b) and K (a). 

Section 10.2 

2. (a) If G(x) := 3xl/3 for x E [0, 1] then lei g = G(1) - G(c) -+ G(I) = 3. 
(b) We have lei (1/ x) dx = In c ,  which does not have a limit in R as c -+ 0. 

3. Here I; (1 - x)-1/2 dx = 2 - 2(1 - c) 1/2 -+ 2 as c -+ 1-.  
5 .  Because of continuity, gl E n*[c, 1] for all c E (0, 1) . If w(x) : =  X-1/2, then IgI (x) 1  ::::: w(x) 

for all x E [0, 1] . The "left version" of the preceding exercise implies that gl E n*[O, 1] and 
the above inequality and the Comparison Test 10.2.4 imply that gl E £[0, 1]. 

6. (a) The function is bounded on [0, 1] (use l'Hospital) and continuous in (0, 1) .  
(c) If x E (0, 1 ]  the integrand is dominated by l (ln 1) lnx l .  If x E [1 , 1) the integrand is 

dominated by l (ln 1) In(1 - x) l · 
7. (a) Convergent (b, c) Divergent (d, e) Convergent (f) Divergent. 
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10. By the Multiplication Theorem 10.1 .4, fg E R*[a, b]. Since If(x)g(x) 1  � B lf(x) l ,  then fg E 

([a, b] and II fg ll � B llf ll .  
1 1 .  (a) Let f(x) := (_I)k2k / k for x E [Ck_l ,  ck) and f(l)  := 0, where the ck are as in Example 

1O.2.2(a). Then f+ := max{f, O} ¢. R*[O, 1] . 
(b) Use the first formula in the proof of Theorem 10.2.7. 

13. (jj) If f(x) = g(x) for all x E [a, b], then dist(j, g) = 1: If - gl = O. 
(jjj) dist(j, g) = I: I f - gl = 1: Ig - fl = dist(g, f). 
(jk) dist(j, h) = 1: If  - h i � I: I f - gl + 1: Ig - h i = dist(j, g) + dist(g, h). 

16. If (jn) converges to f in ([a, b], given B > 0 there exists K(B/2) such that if m, n 2: K(B/2) 
then I Ifm - f ll < B/2 and II fn - f II < B/2. Therefore II fm - fn II � IIfm - f II + I If - fn II < 
B/2 + B/2 = B. Thus we may take H(B) := K(B/2). 

18. If m > n, then IIgm - gn II � l /n + l im � O. One can take g := sgn. 
19. No. 
20. We can take k to be the O-function. 

Section 10.3 

1. Let b 2: max{a , 1/8(00)} .  IfP is a 8-fine partition of [a, b], show that P is a 8-fine subpartition 
of [a, (0). 

3. If f E ([a, (0), apply the preceding exercise to If I ·  Conversely, if I: If  I < B for q > p 2: 
K(B), then I /aq f - I: f l  � I: If I < B so both limy I: f and limy I: If I exist; therefore 
f, lf l E R*[a, (0) and so f E ([a, (0). 

5. If f, g E ([a, (0), then f, If I, g and Ig i  belong to R*[a, (0), so Example 1O.3.3(a) implies that 
f + g and If I + Ig l  belong to R*[a, (0) and that laoo(\f l  + Ig l )  = laoo If I + laoo Ig l .  Since 
If + g l  � I f I + Ig l ,  it follows that I: I f  + g l  � I: I f  I + I: Ig l  � laoo If I + laoo Ig l, whence 
II f + g il � 1 If 11 + Ilg l I .  

6 .  Indeed, J( ( l/x) dx = In y,  which does not have a limit as y � 00. Or, use Exercise 2 and the 
fact that I:P( l /x) dx = In2 > 0 for all p 2: 1 .  

8 .  If y > 0, then g cos x dx = sin y,  which does not have a limit as y � 00. 
9 .  (a) We have g e-sx dx = ( l /s)(1 - e-sy) � lis. 

(b) Let G(x) := _(I/s)e-SX for x E [0, (0), so G is continuous on [0, (0) and G(x) � 0 as 
x � 00. By the Fundamental Theorem 10.3.5, we have 1000 g = -G(O) = l /s .  

12 .  (a) If x 2: e,  then (lnx)/x 2: l /x .  
(b) Integrate by parts on [ I ,  y] and then let y � 00. 

13. (a) I sinx l  2: 1/.fi > 1/2 and l /x > 1/(n + 1);rr for x E (n;rr + ;rr /4, n;rr + 3;rr /4). 
(b) If y > (n + 1);rr , then g IVI 2: (1/4)(1/1 + 1/2 + . . .  + 1/(n + 1)). 

15. Let u = rp(x) = x2. Now apply Exercise 14. 
16. (a) Convergent (b, c) Divergent (d) Convergent (e) Divergent 

(f) Convergent. 
17. (a) If fl (x) := sinx, then fl ¢. R*[O, (0). In Exercise 14, take f2(x) := x-Ij2 sin x and 

rp2(x) := 1/../X. 
(c) Take f(x) := x-Ij2 sin x and rp(x) := (x + 1)/x .  

18 .  (a) f(x) := sinx is in R*[O, y], and F(x) := I; sin t dt = 1 - cosx is bounded on [0, (0), 
and rp(x) := l /x decreases monotonely to O. 

(c) F(x) := I; cos t dt = sinx is bounded on [0, (0) and rp(x) := x-Ij2 decreases mono­
tonely to O. 
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19. Let u = cp(x) := x2• 
20. (a) If y > 0, then fci e-x dx = 1 - e-Y --+ 1 so e-x E "R,*[O, (0). Similarly e-1x l = 

eX E "R,* (-00, 0]. 
2 2 (c) 0 � e-x � e-x for Ix l  ?: 1, so e-x E "R,*[O, (0). Similarly on (-00, 0]. 

Section 10.4 

1 .  (a) Converges to 0 at x = 0, to 1 on (0, 1] . Not unifonn. Bounded by 1 .  Increasing. Limit = 1 .  
(c) Converges to 1 on [0, 1) ,  to 1 atx = 1. Not unifonn. Bounded by 1. Increasing. Limit = 1 .  

2 .  (a) Converges to ..;x on [0, 1]. Unifonn. Bounded by 1 .  Increasing. Limit = 2/3. 
(c) Converges to 1 at x = 1, to 0 on (1 ,  2]. Not unifonn. Bounded by 1. Decreasing. 

Limit = O. 
3. (a) Converges to 1 at x = 0, to 0 on (0, 1]. Not unifonn. Bounded by 1. Decreasing. 

Limit = O. 
(c) Converges to O. Not unifonn. Bounded by l ie. Not monotone. Limit = o. 
(e) Converges to O. Not unifonn. Bounded by 1/./5£. Not monotone. Limit = O. 

4. (a) The Dominated Convergence Theorem applies. 
(b) Ik(x) --+ 0 for x E [0, 1), but (fk (1» is not bounded. No obvious dominating function. 

Integrate by parts and use (a). The result shows that the Dominated Convergence Theorem 
does not apply. 

6. Suppose that (fk (c» converges for some c E [a, b]. By the Fundamental Theorem, Ik(x) -
Ik (c) = f Ir By the Dominated Convergence Theorem, fcx It --+ J: g, whence (fk(x» con­
verges for all x E [a, b]. Note that if Ik (x) := (_ I )

k
, then (fk (X» does not converge for any 

x E [a , b]. 
7 .  Indeed, g(x) := suP{fk(X) : k E N} equals 11k on (k - 1, k], so that J; g = 1 + ! + . . . + �. 

Hence g rt "R,*[O, (0). 
10. (a) If a > 0, then I (e-tx sinx)lx l � e-ax for t E la := (a, (0). If tk E la and tk --+ to E la' 

then the argument in 1O.4.6(d) shows that E is continuous at to. Also, if tk ?: 1 ,  then 
I (e-tkx sinx)lx l � e-x and the Dominated Convergence Theorem implies that E(tk) --+ O. 
Thus E(t) --+ 0 as t --+ 00. 

(b) It follows as in 1O.4.6(e) that E' (to) = - Jooo e-tox sinx dx = -1/(tg + 1). 
(c) By 10.1 .9, E(s) - E(t) = J/ E' (t) dt = - J/ (t2 + l )- 'dt = Arctan t - Arctans for 

s , t  > O. But E (s) --+ 0 and Arctan s --+ 7T 12 as s --+ 00. 
(d) We do not know that E is continuous as t --+ 0+. 

12. Fix x E I. As in 1O.4.6(e), if t ,  to E [a , b], there exists tx between t ,  to such that I(t, x) -
l(to' x) � (t - to)¥r (tx ' x). Therefore a(x) � [jet, x) - l(to' x)]/(t - to) � w(x) when 
t =1= to. Now argue as before and use the Dominated Convergence Theorem 10.4.5. 

13 . (a) If (�k) is a sequence of step functions converging to I a.e., and (tk) is a sequence of 
step functions converging to g a.e., Theorem 1O.4.9(a) and Exercise 2.2. 16 imply that 
(max{sk ' tk })· is a sequence of step functions that converges to max[j, g} a.e. Similarly, 
for min[j, g}. 

14. (a) Since Ik E M[a, b] is bounded, it belongs to "R,* [a, b]. The Dominated Convergence 
Theorem implies that I E "R,*[a, b]. The Measurability Theorem 10.4. 1 1  now implies that 
I E  M[a, b]. 

(b) Since t � Arctan t is continuous, Theorem 1O.4.9(b) implies that Ik := Arctan 0 gk E 
M[a, b]. Further, I/k (x) 1  � 17T for x E [a, b]. 

(c) If gk --+ g a.e., it follows from the continuity of Arctan that Ik --+ I a.e. Parts (a,b) imply 
that I E M[a, b] and Theorem 1O.4.9(b) applied to cp = tan implies that g = tan 01 E 
M[a, b]. 
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15. (a) Since IE is bounded, it is in nora, b] if and only if it is in M[a, b]. 
(c) IE' = 1 - IE ' 
(d) 1EUF(X) = max{lE(x), 1F (x)} and 1EnF(X) = min{1E(x), 1F (x)}. Further, E \ F = 

E n F'. 
(e) If (Ek) is an increasing sequence in M[a, b], then (IE ) is an increasing sequence in 

k M[a, b] with 1E(x) = lim IE (x), and we can apply Theorem 1O.4.9(c). Similarly, (IF ) 
is a decreasing sequence in -Cha, b] and 1F (x) = lim IF (x). 

k 

k . 
(f) Let An := U�=l Ek, so that (An) is an increasing sequence in M[a, b] With U:l An = E, 

so (e) applies. Similarly, if Bn := n�=l Fk, then (Bn) is a decreasing sequence in M[a, b] 
with n:l Bn = F. 

16. (a) m(0) = 1: 0 = 0 and 0 :5  IE :5 1 implies 0 :5  m(E) = J: IE :5 b - a. 
(b) Since l[e.d] is a step function, then m([e, d]) = d - e. 

(c) Since IE' = 1 - IE' we have m(E') = J: (1 - 1E) = (b - a) - m(E). 
(d) Note that 1EUF + 1EnF = IE + IF' 
(f) If (Ek) is increasing in M[a, b] to E, then (IE ) is increasing in M[a, b} to IE ' The 

k 
Monotone Convergence Theorem 10.4.4 applies. 

(g) If (Ck) is pairwise disjoint and En := U�=l Ck for n E N, then m(En) = m(C1) + . . .  + 

m(Cn) · Since UZ:l Ck = U:l En and (En) is increasing, (f) implies that m(UZ:l Ck) = 

limn m(En) = limn L�=l m(Ck) = L:l m(Ck)' 

Section 11.1 

1 .  If Ix - ul < inf{x, I - x} ,  then u < x + (1 - x) = 1 and u > x - x  = 0, so that 0 < u < 1 .  
3. Since the union of two open sets i s  open, then GI U · · ·  U Gk U Gk+l = (G1 U · · ·  U Gk) U Gk+ l 

is open. 
5. The complement of N is the union (-00, 1) U (1 , 2) U . . .  of open intervals. 
7. Corollary 2.4.9 implies that every neighborhood of x in Q contains a point not in Q. 

10. x is a boundary point of A {=} every neighborhood V of x contains points in A and points in C(a) {=} x is a boundary point of C(a). 
12. The sets F and C(F) have the same boundary points. TheJ:efore F contains all of its boundary 

points {=} C (F) does not contain any of its boundary points {=} C (F) is open. 
13. x E A 0 {=} x belongs to an open set V � A {=} x is an interior point of A. 
15. Since A- is the intersection of all closed sets containing A, then by 1 1 . 1 .5(a) it is a closed 

set containing A. Since C(A -) is open, then Z E C(A -) {=} Z has a neighborhood V£ (z) in 
C(A -)  {=} Z is neither an interior point nor a boundary point of A. 

19. If G =1= 0 is open and x E G, then there exists e > 0 such that V/x) � G, whence it follows 
that a := x - e is in Ax ' 

21. If ax < Y < x then since ax := inf Ax there exists a' E Ax such that ax < a' :5 y. Therefore 
(y, x] � (a', x] � G and y E G. 

23. If x E IF and n E N, the interval In in Fn containing x has length 1/3n . Let Yn be an endpoint of 
In with Yn =1= x.  Then Yn E lF  (why?) and Yn -+ x.  

24. As in the preceding exercise, take zn to be the midpoint of In '  Then zn ¢ IF (why?) and zn -+ X.  

Section 11.2 

1 .  Let Gn := (1 + l in, 3) for n E N. 
3. Let G n := (1/2n, 2) for n E N. 
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5. If 9, is an open cover of K, and 92 is an open cover of K2, then 9, U 92 is an open cover of 
K, U K2• 

7. Let Kn := [0, n] for n E N. 
10. Since K '" 0 is bounded, it follows that inf K exists inR If Kn := {k E K : k :5 (inf K) + l ,tn}, 

then Kn is closed and bounded, hence compact. By the preceding exercise n Kn '" 0, but if 
Xo E n Kn' then Xo E K and it is readily seen that Xo = inf K .  [Alternatively, use Theorem 
1 1 .2.6.] 

12. Let 0 ",  K S; JR be compact and let e E JR. If n E N, there exists xn E K such that 
sup{le - x l : x E K} - lin < Ie - xn l .  Now apply the Bolzano-Weierstrass Theorem. 

15. Let F, := {n : n E N} and F2 := {n + lin : n E N, n :::: 2}. 

Section 11.3 

1. (a) If a < b :5 0, then r' (I) = 0. If a < 0 < b, then r' (l) = (-./b, ./b). If 0 :5 a < b, 
then r' (l) = (-./b, -Ja) U (Ja, ./b). 

3. r' (G) = r' ([O, s» = [1 ,  1 + S
2
) = (0, 1 + S

2
) n I. 

4. Let G := 0/2, 3/2). Let F := [-1/2, 1/2]. 
8. Let I be the Dirichlet Discontinuous Function. 
9. First note that if A S; JR and x E JR, then we have x E 1-' (JR \ A) {=} I(x) E JR \ A {=} 

I(x) ¢ A {=} x ¢ ri CA) {=} x E JR \ ri CA); therefore, r'(JR \ A) = JR \ ri CA). 
Now use the fact that a set F S; JR is closed if and only if JR \ F is open, together with 
Corollary 1 1 .3.3. 

Section 11.4 

1. If Pi := (Xi ' Y) for i = 1 , 2, 3, then d, (P" P2) :S (Ix, - x3 1  + IX3 - x2 1) + ( Iy, - Y3 1 + IY3 -
Y2 1) = d, (P" P3) + d, (P3 , P2) .  Thus d, satisfies the Triangle IneqUality. 

2. Since I/(x) - g(x) 1  :5 I/(x) - h(x) 1  + I h (x) - g(x) 1  :5 doo(f, h) + doo(h, g) for all x E [0, 1], 
it follows that doo (f, g) :5 doo(f, h) + doo(h , g) and doo satisfies the Triangle Inequality. 

3. We have s '" t if and only if des, t) = 1 .  If s '" t, the value of des, u) + d(u , t) is either 1 or 2 
depending on whether u equals s or t, or neither. 

4. Since doo(Pn ,  P) = sup{ lxn - x l ,  IYn - yl} , if doo(Pn ,  P) -+ 0 then it follows that both 
IXn - x l  -+ 0 and IYn - y l  -+ 0, whence xn -+ x and Yn -+ y. Conversely, if xn -+ x and 
Yn -+ Y, then IXn - x l -+ 0 and IYn - Y I -+ 0, whence doo(Pn ,  P) -+ O. 

6. If a sequ�nce (xn) in S converges to x relative to the discrete metric d, then d(xn , x) -+ 0 which 
implies thilt xn = x for all sufficiently large n. The converse is trivial. 

7. Show that a set consisting of a single point is open. Then it follows that every set is an open set, 
so that every set is also a closed set. (Why?) 

10. Let G S; S2 be open in (S2' d2) and let x E I-' (G) so that I(x) E G. Then there exists an 
s-neighborhood Ve (f (x» S; G. Since I is continuous at x, there exists a 8-neighborhood V8 (x) 
such that I(V8 (x» S; Ve (f(x» . Since x E I-' (G) is arbitrary, we conclude that I-' (G) is 
open in (S" d, ) . The proof of the converse is similar. 

1 1 .  Let 9 = {G,,} be a cover of I(S) S; JR by open sets in R It follows from 1 1 .4. 1 1  that each 
set I-' (G,,) is open in (S, d). Therefore, the collection U-' (G,,)} is an open cover of S. 
Since (S, d) is compact, a finite subcollection U-' (G ) " " , 1-' (G )} covers S, whence it 

al aN follows that the sets {G , . . .  , G } must form a finite subcover of 9 for I (S). Since 9 was an 
al aN 

arbitrary open cover of I(S), we conclude that I(S) is compact. 
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Alternating series, 263 ff. 
And/or, 2, 335 
Antiderivative, 210 
Antipodal points, 1 35 
Approximate integration, 219 ff., 35 1 ff. 
Approximation theorems, 140 ff. 
Archimedean Property, 40 
Arithmetic Mean, 28, 246 
Axiom, 334 

B 
Base, 13, 245 
Basepoint, 212, 217 
Bernoulli, Johann, 176 
Bernoulli's Inequality, 29, 173 
Bernstein Approximation Theorem, 144 
Bessel functions, 172 
Biconditional, 337 
Bijection, 8 
Binary representation, 47 ff. 
Binomial expansion, 273 
Bisection method, 132 
Bolzano, Bernhard, 1 19 
Bolzano Intermediate Value Theorem, 

133 
Bolzano-Weierstrass Theorem: 

for infinite sets, 323 
for sequences, 78, 322 

Bound: 
lower, 35 
upper, 35 

Boundary point, 3 1 8  
Bounded Convergence Theorem, 237 

function, 39, 105, 129, 147 
sequence, 60 
set, 35, 333 

Boundedness Theorem, 200 
Bridge, 13 

C 
Canis lupus, 170 
Cantor, Georg, 21  

set IF, 3 17 
Theorem of, 21 ,  47, 50 

Caratheodory's Theorem, 161  
Cartesian Product, 4 
Cauchy, A-L., 52, 96, 121  

Condensation Test, 95 
Convergence Criterion, 82, 91 ,  203, 

232, 268, 279 
Inequality, 219 
Mean Value Theorem, 178 
Root Test, 257 
sequence, 8 1 ,  330 

Cauchy-Hadamard Theorem, 269 
Chain Rule, 162 
Change of Variable Theorem, 2 14, 218, 

283 
Chartier-Dirichlet Test, 301 
Closed interval, 44 

set, 3 13, 331  
Closed Set Properties, 3 14, 3 15 
Closure of a set, 3 19 
Cluster point, 97, 3 15 
Compact set, 3 19 ff. 
Compactness, Preservation of, 325, 332 
Comparison Tests, 93 ff., 290 
Complement of a set, 3 
Complete metric space, 330 

381 
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Completeness Property of JR, 34 ff., 
esp. 37 
Theorem, 293 

Composition of functions, 9, 1 27 
Composition Theorem, 216 
Conclusion, 336 
Conditional, 336 

convergence, 253 
Conjunction, 335 
Consistency Theorem, 277 
Continuity, 1 20 ff., 33 1 ff. 

global, 323 ff., 332 
uniform, 136 ff. 

Continuous Extension Theorem, 140 
Inverse Theorem, 152, 326 

Contractive sequence, 84 
Contradiction, 335 

proof by, 342 
Contrapositive, 337 

proof by, 341 
Convergence: 

absolute, 253 
interval of, 269 
in a metric space, 329 
radius of, 269 
of a sequence, 54 
of a sequence of functions, 227 ff. 
of a series, 89 
of a series of functions, 266 ff. 
of integrals, 301 ff. 
pointwise, 227 
uniform, 229 ff. 

Converse, 337 
Convex function, 187 ff. 
Cosine function, 249 
Countability: 

of N x N, 18 , 344 
of Q, 19 
of Z, 18  

Countable: 
additivity; 3 1 1  
set, 18  ff. 

Counter-example, 339 
Curve, space-filling, 355 
Cover, 319 

D 
D' Alembert's Ratio Test, 258 
Darboux Intermediate Value Theorem, 

174 
Decimal representation, 49 

periodic, 49 
Decreasing function, 149, 170 

sequence, 69 
DeMorgan's Laws 3, 336 
Density Theorem, 42 
Denumerable set (see also countable set), 

18  
Derivative, 158 ff. 

higher order, 184 
second, 184 

Descartes, Rene, 157, 193 
Difference: 

symmetric, 1 1  
of two functions, 105 
of two sequences, 61 

Differentiable function, 158 
uniformly, 176 

Differentiation Theorem, 270 
Dini, Ulisse, 238 
Dini's Theorem, 238 
Direct image, 7 

proof, 340 
Dirichlet discontinuous function, 122, 

202, 204, 215, 277, 307 
integral, 297, 306 
test, 264, 301 

Discontinuity Criterion, 121 
Discrete metric, 329 
Disjoint sets, 3 
Disjunction, 335 
Distance, 33, 292 
Divergence: 

of a function, 98, 102 
of a sequence, 54, 77, 86 ff. 

Division, in JR, 24 
Domain of a function, S 
Dominated Convergence Theorem, 303 ff. 
Double implication, 337 

negation, 335 

E 
Element, of a set, 1 
Elliptic integral, 273 
Empty set 0, 3 
Endpoints of intervals, 44 
Equi-integrability, 302 

Theorem, 303 
Equivalence, logical, 335 
Euler, Leonhard, 74, 96 
Euler's constant C, 262 

number e, 73, 241 



Even function, 167, 209 
number, 2, 25 

Excluded middle, 335 
Existential quantifier 3, 338 
Exponential function, 239 ff. 
Exponents, 24 
Extension of a function, 139 ff. 
Extremum, absolute, 130 

relative, 168, 171 ,  187 

F 
IF (= Cantor set), 317 
Falsity, 335 
Fermat, Pierre de, 157, 193 
Fibonacci sequence, 54 
Field, 23 
8-Fine partition, 145, 275 
Finite set, 16 ff. 
First Derivative Test, 171  
Fluxions, 157 
Fresnel Integral, 300 
Function(s), 5 ff. 

additive, 1 1 1 ,  129, 152 
Bessel, 172 
bijective, 8 
bounded, 39, 105, 129 ff. 
composition of, 9, 127 
continuous, 120 ff., 331 ff. 
convex, 187 ff. 
decreasing, 149, 170 
derivative of, 158 
difference of, 105 
differentiable, 158 
direct image of, 7 
Dirichlet, 122, 202, 204, 215, 277 
discontinuous, 120 
domain of, 5 
even, 167, 209 
exponential, 239 ff. 
gauge, 145 
graph of, 5 
greatest integer, 124, 217 
hyperbolic, 252 
image of, 6 
increasing, 149, 170 
injective, 8 
integrable, 196, 276, 295 ff., 308 ff. 
inverse, 8, 152, 164 ff. 
inverse cosine, 10, 
inverse image of, 7 
inverse sine, 10 

jump of, 150 
limit of, 98 ff. 
Lipschitz, 138 
logarithm, 243 ff. 
measurable, 306 ff. 
metric, 328 
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monotone, 149, 170 
multiple of, 105 
nondifferentiable, 159, 354 
nth root, 42, 152 ff. 
odd, 167, 209 
one-one, 8 
onto, 8 
oscillation, 348 
periodic, 144 
piecewise linear, 142 
polynomial, 108, 126, 143 
power, 154, 244 
product of, 105 
quotient of, 105 
range of, 5 
rational, 108, 126 
rational power, 154 
restriction of, 10 
sequence of, 227 ff. 
series of, 266 ff. 
signum, 102, 122 
square root, 10, 42 
step, 141, 205 
sum of, 105 
surjective, 8 
Thomae's, 1 22, 200, 215 
Translate, 202 
trigonometric, 126, 246 ff. 
values of, 6 

Fundamental Theorems of Calculus, 
210 ff., 28 1 ff., 297 ff. 

G 
Gallus gallus, 335 
Gauge, 145 ff., 238, 275 ff., 350 
Generalized Riemann integral, 274 ff. 
Geometric Mean, 28, 246 

series, 90 
Global Continuity Theorem, 324, 332 
Graph, 5 
Greatest integer function, 124, 217 

lower bound (= infimum), 36 

H 
Hadamard-Cauchy Theorem, 269 
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Hake's Theorem, 288, 295 ff. 
Half-closed interval, 44 
Half-open interval, 44 
Harmonic series, 70, 91 ,  253 
Heine-Borel Theorem, 321 
Henstock, Ralph, 275 
Higher order derivatives, 1 84 
Horizontal Line Tests, 8 
Hyperbolic functions, 252 
Hypergeometric series, 263 
Hypothesis, 336 

induction, 13  

I 
Image, 6, 7 
Implication, 336 
Improper integrals, 259, 274, 287 ff. 
Increasing function, 149, 170 

sequence, 69 
Indefinite integral, 2 12, 217, 283 
Indeterminate forms, 176 ff. 
Indirect proofs, 341 
Induction, Mathematical, 12 ff. 
Inequality: 

Arithmetic-Geometric, 28, 246 
Bernoulli, 29, 173 
Schwarz, 219 
Triangle, 3 1 ,  328 

Infimum, 36 
Infinite limits, 1 14 ff. 

series, 89 ff., 253 ff. 
set, 16  ff. 

Injection, 8 
Injective fUnction, 8 
Integers, 2 
Integral: 

Dirichlet, 297, 306 
elliptic, 273 
Fresnel, 30b 
generalized Riemann, 274 ff. 
improper, 259, 287 ff. 
indefinite, 212, 2 17, 283 
Lebesgue, 193, 274, 290 ff. 
Riemann, 196 ff. 
Test, for series, 259 

Integration by parts, 216, 285 
Interchange Theorems: 

relating to continuity, 234 
relating to differentiation, 235 
relating to integration, 237, 301 ff. 

relating to sequences, 233 ff. 
relating to series, 267 ff. 

Interior Extremum Theorem, 168 
of a set, 3 1 8  
point, 3 18  

Intermediate Value Theorems: 
Bolzano's, 133 
Darboux's, 174 

Intersection of sets, 3, 4 
Interval(s), 44 ff. 

characterization of, 45 
of convergence, 269 
length of, 44 
nested, 45 ff. 
partition of, 145, 194 
Preservation of, 135 

Inverse function, 8, 152 ff., 164 ff. 
image, 7 

Irrational number, 24 
Iterated sums, 256 

suprema, 44 

J 
Jump, of a function, 150 

K 
K (s)-game, 56 
Kuala Lumpur, 335 
Kurzweil, Jaroslav, 275, 302 

L 
Lagrange, J.-L., 183 

form of remainder, 185 
Least upper bound (= supremum), 35 
Lebesgue, Henri, 193, 214, 274, 349 

Dominated Convergence Theorem, 304 
Integrability Theorem, 2 15, 349 
integral, 193, 274, 290 ff. 
measure, 3 1 1 

Leibniz, Gottfried, 97, 157, 193 
Alternating Series Test, 263 
Rule, 191 

Lemma, 341 
Length, of an interval, 44 
L'Hospital, G. F., 176 

Rules, 176 ff. 
Limit: 

Comparison Test, 93, 257 
of a function, 98 ff. 
inferior, 74 



infinite, 1 14 ff. 
one-sided, 1 1 1  
of a sequence, 54 
of a series, 89 
superior, 74, 269 

Line tests, 8 
Lipschitz condition, 138 
Location of Roots Theorem, 132, 147 
Logarithm, 243 ff. 
Logical equivalence, 335 
Lower bound, 35 

M 
M (= collection of measurable sets), 3 1 1  
M -Test, of Weierstrass, 268, 354 ff. 
Mapping, see Function 
Mathematical Induction, 12 ff. 
Maximum, absolute, 130 

relative, 168 
Maximum-minimum Theorem, 131 ,  147, 

325 
Mean Value Theorem: 

Cauchy form, 178 
for derivatives, 169 ff. 
for integrals, 209, 287 

Measurability Theorem, 308 
Measurable function, 306 ff. 

set, 3 1 1  
Measure, Lebesgue, 3 1 1  

zero, see Null set 
Meat grinder, 6 
Member of a set, 1 
Mesh (= norm) of a partition, 195 
Metric function, 328 

space, 327 ff. 
Middle, excluded, 335 
Midpoint Rule, 222 ff., 352 
Minimum, absolute, 130 

relative, 168 
Monotone Convergence Theorem, 69, 304 

function, 149 ff. 
sequence, 69 
Subsequence Theorem, 78 

Multiple of a sequence, 61 
Mtdtiplication Theorem, 285 

N 
N (= collection of natural numbers), 2 
Natural numbers, 2 
Negation, 335 

Negative numbers, 25 
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Neighborhood, 33, 3 1 2, 329 
Nested Intervals Property, 46, 80 
Newton, Isaac, 96, 157, 193 
Newton-Leibniz Formula, 274 
Newton's Method, 189 ff. 
Nondifferentiable functions, 159, 354 
Norm of a function, 230, 292 

of a partition, 195 
. 

Null set, 214 
Number(s): 

even, 2, 15  
irrational, 24 
natural, 2 
rational, 2, 24 
odd, 2, 15  
real, 2 ,  22 ff. 

o 
Odd function, 167, 209 

number, 2, 25 
One-one function, 8 
One-sided limit, 1 1 1  
Onto, 8 
Open cover, 3 19 

interval, 44 
set, 3 13,  331 
Set Properties, 3 13, 315  

Order Properties of JR., 25 ff. 
Ordered pair, 4 
Oscillation, 348 ff. 

P 
IP (= positive class), 25 
Partial sum, 89, 267 

summation formula, 264 
Partition, 145, 194 

a-fine, 145, 275 
mesh of, 195 
norm of, 195 
tagged, 145, 195 

Peak, 78 
Periodic decimal, 49 

function, 144 
Piecewise linear function, 142 
Pigeonhole Principle, 343 
Point: 

boundary, 3 18  
cluster, 97, 3 15  
interior, 3 18  
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Pointwise convergence, 227 
Polynomial, BernsteIn, 143 

functions, 1 26 
Taylor, 184 

Positive class 1P', 25 
Power, of a real number, 154, 244 

functions, 244 
series, 268 ff. 

Preservation: 
of Compactness, 325, 332 
of Intervals, 135 

Primitive of a function, 210 
Principle of Mathematical Induction, 

12  ff. 
Product: 

Cartesian, 4 
of functions, 105 
of sequences, 61 
of sets, 4 
Rule, 160 
Theorem, 216 

Proof: 
by contradiction, 342 
by contrapositive, 341 
direct, 340 
indirect, 341 

Proper subset, 1 
Properly divergent sequence, 86 ff. 
Property, 2 
p-series, 92 

Q 
Q (= collection of rational numbers), 2 
Q.E.D., 34J 
Quantifiers, 337 ff. 
Quod erat demonstratum, 341 
Quotient: 

R 

of functions, 105 
of sequences, 61 
Rule, 160 

JR (= collection of real numbers), 2, 22 ff. 
Raabe's Test, 260 
Radius of convergence, 269 
Range, of a function, 5 
Rational numbers Q, 2, 24 

function, 126 
power, 154 

Ratio Test, 66, 258 

Real numbers JR, 2, 22 ff. 
power of, 154, 244 

Rearrangement Theorem, 255 
Reciprocal, 23 
Reductio ad absurdum, 342 
Remainder in Taylor's Theorem: 

integral form, 2 17, 285 
Lagrange form, 1 85 

Repeating decimals, 49 
Restriction, of a function, 10 
Riemann, Bernhard, 193, 274 

Integrability Criterion, 347 
integral, 193 ff., esp. 196 
sum, 195 

Riesz-Fischer Theorem, 293 
Rolle's Theorem, 168 
Root(s): 

S 

existence of, 42, 152 ff. 
functions, 10, 42 
Location of, 132, 147 
Newton's Method, 1 89 ff. 
Test, 257 

Schoenberg, I. J., 355 
Schwarz inequality, 219 
Second Derivative Test, 187 
Semimetric, 332 
Seminorm, 292 
Sequence(s), 53 

bounded, 60 
Cauchy 8 1 ,  330 
constant, 53 
contractive, 84 
convergent, 54 
difference of, 61 
divergent, 54, 86 
Fibonacci, 54 
of functions, 227 ff. 
inductive, 53 
limit of, 54 
monotone, 69 
multiple of, 6 1  
product of, 61 
properly divergent, 86 
quotient of, 61 
recursive, 53 
shuffled, 80 
subsequence of, 75 
sum of, 61  



tail of, 57 
tenn of, 53 
unbounded, 60 
unifonn convergence of, 229 

Series, 89 ff., 253 ff. 
absolutely convergent, 253 
alternating, 263 
alternating hannonic, 92, 253 
conditionally convergent, 253 
convergent, 89 
of functions, 266 ff. 
geometric, 90 
grouping of, 254 
hannonic, 91 ,  253 
hypergeometric, 263 
power, 268 ff. 
p-series, 92 
rearrangements of, 255 
sixless, 263 
Taylor, 271 ff. 
2-series, 91 
uniformly convergent, 267 ff. 

Set(s): 
boundary point of, 3 18  
bounded, 35, 333 
Cantor IF, 317 
Cartesian product of, 4 
closed, 3 13, 331 
closure of, 319 
cluster point of, 97, 315  
compact, 319 ff. 
complement of, 3 
containslcontained in, 1 
countable, 18, 343 ff. 
denumerable, 18  
disjoint, 3 
empty, 3 
equality of, 2 
finite, 16, 343 ff. 
inclusion of, 1 
infimum of, 36 
infinite, 16  
interior of, 3 18  
interior point of, 3 18  
1ntersection of, 3 ,  4 
intervals, 44 ff. 
measurable, 3 1 1  
null, 214 
open, 3 13, 331 
relative complement of, 3 
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supremum of, 35 
symmetric difference, 1 1  
unbounded, 35 
uncountable, 1 8  
union of, 2 ,  3 
void, see Empty set 

Shuffled sequence, 80 
Signum function, 102, 122 
Simpson's Rule, 223 ff., 352 
Sine function, 249 
Sixless series, 263 
Space-filling curve, 355 
Square root of 2: 

calculation of, 72 
existence of, 41 
irrationality of, 25 

Square root function, 10, 42 
Squaring function, 10 
Squeeze Theorem, 64, 108, 204, 280 
Statement, 334 
Step function, 141 ff., 205 
Straddle Lemma, 167 
Strong Induction, 15 
Subcover, 319 
Subsequence, 75 
Subset, 1 
Substitution Theorems, 214, 2 18, 283 
Subtraction in �, 24 
Sum: 

iterated, 256 
of functions, 105 
partial, 89 
Riemann, 195 
of sequences, 61 
of a series, 89 

Supremum, 35 
iterated, 44 
Property, 37 

Surjection, 8 
Surjective function, 8 
Syllogism, Law of, 340 
Symmetric difference, 1 1  

T 
Tagged partition, 145, 195 
Tail, of a sequence, 57 
Tautology, 335 
Taylor, Brook, 183 

polynomial, 184 
series, 27 1 ff. 
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Taylor's Theorem, 1 84, 2 17, 285 
Terminating decimal, 49 
Test: 

first derivative, 171  
for absolute convergence, 257 ff. 
for convergence of series, 91ff. ,  257 ff. 
nth derivative, 187 
nth Term, 91  

Thomae's function, 122, 200, 215 ,  307 
Translate, 202 
Trapezoidal Rule, 221 ff., 351 
Triangle Inequality, 31 ,  328 
Trichotomy Property, 25 
Trigonometric functions, 246 ff. 

U 
Ultimately, 57 
Uncountable, 1 8  
Uncountability of IR, 47, 50 
Uniform continuity, 136 ff., 148 
Uniform convergence: 

of a sequence, 229 ff., 302 
of a series, 267 ff. 

Uniform differentiability, 176 
Uniform norm, 230 

Union of sets, 2, 3 
Uniqueness Theorem: 

for finite sets, 17, 343 
for integrals, 196, 276 
for power series, 271 

Universal quantifier "1, 338 
Upper bound, 35 

V 
Vl;llue, of a function, 6 
van der Waerden, B. L., 354 
Vertical Line Test, 5, 8 
Void set, see Empty set 

W 
Well-ordering Property of N, 12  
Weierstrass, Karl, 96, 1 19, 159 

z 

Approximation Theorem, 143 
M -Test, 268, 354 ff. 
nondifferentiable function, 159, 354 

z (= collection of integers), 2 
Zero element, 23 
Zero measure, see Null set 
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